

High-Reliability
Through Silicon Via
(TSV) Solutions for
Image Sensor
Packaging

Belgacem Haba, Ph.D. TESSERA 13 January 2010

Outline

- Why a Through Silicon Via (TSV)?
- Adoption and Barriers
- CMOS image sensors and TSV
- Conclusion

Third direction: Z direction

- As many die as possible in z-direction
- 3 solutions:
 - Wire bondable die stacking in single package
 - Package stacking (POP: package on package)
 - Ball-Stack
 - Fold over

TSV – actually an old technology Co-planar GaAs RF die always have TSVs!

Via hole grounding technology used in commercial GaAs MMICs since 1976!

Hynix 20 stacked NAND Flash Chips @1.4mm

TSV Process Routes

TSV Process Steps

- · Etch through thickness of silicon wafer, to oxide stop
- Etch through silicon oxide dielectric underneath bond pad, to metal stop
- Apply dielectric to sidewalls
- Form conductive pipe

Silicon Through-hole Formation

A wide variety of basic profiles

Source: Alcatel

TESSERA 🐡

Plasma Etching of Silicon

Wet chemistry has insufficient detail for this application
Plasma (dry) etching always used

- Tapered etch (SF₆ chemistry)
- · Anisotropic etch
 - Bosch process (SF $_6$ / C $_4$ F $_8$ alternating chemistry)
 - SF_6 etch with O_2 , CI_2 and HBr sidewall passivation

Plasma Etching of Silicon

Why a TSV ?

- When performance fails
- · When form factor is needed
- When it simplifies the structure or process

Semiconductor

- Moore's Law...

TESSERA 🐡

Scaling Conventional Wires

More scatterings at wire surfaces and grain boundaries. Resistivity increases as cross-sectional dimensions scale.

No known technology solution to this problem [2].

- [1] W. Steinhögl, et al., Physical Rev. B, Vol. 66, 075414 (2002).
- [2] Sematech/Novellus Copper Resistivity Workshop, June 2005.

The Problem with Interconnects

More than 50% of electronics power is consumed by interconnects

- Interconnect length does not scale with transistor nodes
 - · Complexity increases to keep chip size constant e.g. memory

TESSERA 🐡

3D Cost Effective way to Scale

Webcast: Through-Silicon Vias: Ready for Prime Time?, Semiconfuctor International, 3/25/2

0000

Optical Exposure Systems

"Steppers and Scanners"

$$R = k \frac{\lambda}{NA}$$

TESSERA «

Lithographic Lenses

Outline

- Why a Through Silicon Via (TSV)?
- Adoption and Barriers
- CMOS image sensors and TSV
- Conclusion

TESSERA «

Evolution of Memory

• 5MB IBM hard drive, 1956

Jan 7th PR: SanDisk Announces the 12-Gigabyte microSDHC Card the World's Largest Capacity Card for Mobile Phones

Through Silicon Vias

Eight Stacked Chips (WSP)

8-die Stack

19

TESSERA 🐡

Example Via Last TSS Memory Application (Samsung ISSCC2009)

8Gb DDR3 DRAM

- · 4 tiers
- 2010 ramp-up.
- · Overcomes scaling limit

TESSERA «

SHELLCASE MVP structure

TESSERA 🐡

Latest High Die Stacking Press Releases

Stacking By Edge Connect

16-die Flash Stack

16-die Flash Stack

8-die Flash Stack

TESSERA 🐡

24 WLS Within a Package < 1.0 mm

Micro SD Card Footprint

Final Product (Ready For Wire Bond)

Total Package Thickness ~ 155 μm

TESSERA 🐡

Outline

- Why a Through Silicon Via (TSV)?
- Adoption and Barriers
- CMOS image sensors and TSV
- Conclusion

The Potential of Imaging

Image Sensor Trends

TESSERA 🐡

Cell Phone Camera Trend

Market Adoption: Imager Wafer-Level Packaging (WLP)

Camera Module Trend

Transition from traditional plastic lenses and barrel to reflowable camera module

TESSERA 🐡

Image Sensor Packaging Trend

- COB line requires Clean Room infrastructure (camera module assembly yield)
- COB requires substrate, connector, flex
- Die size shrink (more dice on wafer \rightarrow WLP cost per die is reduced)
- Industry drive for Wafer Level Camera and reflowable camera modules.

CMOS Sensor

Micro Lenses

Provide optical compensation for low fill factor of imagers, but...

- · Require air space above micro lenses
- Collect particles
- · Limit subsequent thermal excursions

COB Assembly Smaller pixels - More particle problems

Lower Resolution Larger Pixels

Particle has small effect on pixel

Higher Resolution Smaller Pixels

Particle has large effect on pixel

TESSERA 🐡

COB vs WLP Module Yield

Particle Contamination During COB Manufacturing Decreases Yield at Higher Resolution

Wafer Level Packaging

WLP "solves" the problem of particle contamination by applying a protective glass cover to the die, while in wafer form, as the FIRST step of the module build process.

TESSERA 🐡

Wafer Level Package: Ball Grid Array interconnect

- · Chip size package
- Electrical connection is through embedded leadframe and solder balls
- Entire wafer is encapsulated and then singulated
- Resulting particle-free package can then be built into a module using surface mount assembly techniques

Wafer Level Package: Ball Grid Array interconnect

TESSERA 🐡

Image Sensor Evolution for WLP

Imaging Area w/micro-lenses Glass Cavity wall

Cavity Si

Solder Bump Encapsulant

Lead Lead

In Future: Transition from edge connect to TSV \rightarrow WLCSP

2008: Introduction of TSV type WLCSP

TSV type WLP

Tessera SHELLCASE® MVP – Through Pad Interconnect

TESSERA.

Typical TSV flow

- Etch through thickness of silicon wafer, to oxide stop
- Etch through silicon oxide dielectric underneath bond pad, to metal stop
- · Apply dielectric to sidewalls
- · Form conductive pipe

TESSERA «

Typical TSV

TSV Thermal Cycling

Cost and Reliability Barriers

- Semiconductor-based equipment set (expensive)
- Semiconductor-grade materials (expensive)
- Slow throughput (high capital \$ / wafer)
- Critical processes all conducted at blind end of high aspect ratio via (low yield)
 - · Oxide etching
 - · Ohmic contact to back side of bond pad
 - · Sidewall passivation and conductive coating
- Sharp changes in section at top and bottom of via (vulnerable to fatigue during thermal cycling)

TESSERA 🐡

The Problem with TSV.....

TSVs have never been widely adopted by industry

A New Approach to TSVs

- Low cost Si polymeric passivation
 - Thicker than SiO2 (few microns instead of less than micron).
 - · Passivation uniformity
 - No need for very expensive tools (of the shelf coater instead of LPCVD/ PECVD).
- Make TSV structure using PCB tools
 - · Laser Drill through Polymer and bond pad
 - · High throughput and low cost per drilled Via
 - · Of the shelf Laser tool
- Low Cost Lead Metalization
 - · No need for Via fill process
- Proven Supply Chain
 - · Rely on HVM proven material/ tools

TESSERA «

SHELLCASE MVP structure

SHELLCASE MVP flow – cont.

Apply PR Via mask

Etch tapered holes through silicon

Source: Tessera

TESSERA 🐡

SHELLCASE MVP flow – cont.

Apply polymeric passivation

Laser ablate small via through Si polymeric passivation, oxide and bond pad

Source: Tessera

SHELLCASE MVP flow – cont.

Coat with metal

Pattern metal

Source: Tessera

TESSERA 🐡

SHELLCASE MVP flow - cont.

Apply and pattern solder mask

Apply solder to form BGA interface

Source: Tessera

Electrophoretic Paint

Electrophoretic painting is an immersion painting process in which charged paint particles are attracted to an oppositely charged metallic surface. Deposition ceases when the coating forms a dielectric layer.

TESSERA 🐡

Self-limiting coating thickness Vs applied potential

SHELLCASE MVP- process details

Source: Tessera

TESSERA 🐡

SHELLCASE MVP - Reliability Results

Test	Test Conditions	Standard	Duration	Results
Automotive specification				
Moisture soak (pre- conditioning) Level 1 – MSL1	• 125°C / 24hrs • 85°C/85% RH/ 168 hrs • Reflow (peak 265°C) / 3 times	JESD22-A113-D	1 sequence	Pass
Steady state temperature humidity - TH	• 85°C/85% RH	JESD22-A101-B	2000 hrs	Pass
High temperature storage life HTS	• 150°C	JESD22- A103-A	2000 hrs	Pass
Temperature Cycling - TMCL	• -40°/+125° • 32 cycles/ day	JESD22-A104-B	2000 cycles	Pass

SHELLCASE MVP – Module Level Reliability

Test	Test Conditions	Standard	Duration	Results
Low Temperature Operation	• -20°C	Cell Phone Maker #M/ #N	96 hrs - operational	Pass: Optical and functional
High Temperature Operation	• 80°C	Cell Phone Maker #M/ #N	96 hrs - operational	Pass: Optical and functional
Thermal Shock	• +80°C, 30min • - 20°C, 30min	Cell Phone Maker #M/ #N	35 Cycles	Pass: Optical and functional
High Temperature and Humidity	• 80°/95%RH	Cell Phone Maker #M/ #N	96 hrs - operational	Pass: Optical and functional
Vibration Test	• 20-2000 Hz • 0-8gr • 3 axis, 15 min per plane •Load 100gr	Cell Phone Maker #M/ #N	1 Cycle	Pass: Optical and functional
ESD	• +/- 0.5KV, 1KV, 2KV	Cell Phone Maker #M/ #N	1 Cycle	Pass: Optical and functional

TESSERA ₩

SHELLCASE MVP: WLCP for CMOS Image Sensors

- Low cost, high yield, wafer level package
- Exceptional reliability meet MSL 1 and exceeds automotive specifications
- Micro Via Pad interconnect true TSV technology

Wafer Level Camera: Process Overview

Step R: Wafers of dearling mean a fact have ded

TESSERA 🐡

Wafer Level Camera: Process Overview

Step C: Wafers singulated into individual optical elements

Wafer Level Camera: Process Overview

Step D: Assembly optical elements on image sensors

TESSERA 🐡

OptiML WLC Technology

Revolutionizing the Camera Module

TESSERA

Conclusions

- Packaging of image sensors at the wafer level
 - · Cost-effective solution
 - Eliminates multiple camera module elements
 - · Allows reflowable camera module
- Low adoption rate of TSVs
 - · High cost
 - · Low yield
 - Low reliability
- Leveraging PCB industry materials and tool set greatly decreases the cost of making TSVs
- SHELLCASE MVP is the TSV solution for WLP of Image Sensors
 - · Low cost
 - Reliable

