

What is Nanopackaging?

- Materials and processes at nanoscale for:
 - Interconnecting
 - Powering
 - Cooling
 - Protecting
 - Devices and Systems.

Leading to nano-packaged devices and nano-packaged systems with highest functionality at lowest cost in smallest size

Nano-Packaging Requirements

- Improved properties
- Miniaturization
- Low-temperature for organic packaging compatibility

7 | NMDC

3D ASSM Strategy in Micro to Nanocomponents

- Power
 - · High-density capacitors and inductors
 - Super-capacitors
 - · Thin film batteries
- RF
 - Capacitors
 - Inductors
 - Antennas
- Digital
 - Capacitors
- Thermal
 - · TIM (Thermal Interface Materials)
- Interconnections
 - · Bonding layers: Adhesives and nanoparticle bonding layers
 - Nanoscale interconnections

Nano-packaging Strategy		
Function	Component	Goal
Power Components	High density capacitors High density inductor Supercapacitors Batteries	High surface area Thinner dielectrics or electrolytes Low-loss and high-frequency magnetic materials
RF Components	CapacitorsInductorsAntennas	High K and μLow lossLow TCC
Digital	Decoupling capacitors	Thinner dielectrics High permittivity
Interconnections	Bump Bonding layers Barriers	Low melting point Enhanced strength and fatigue resistance
Reliability	Hermetic coatings Characteristics Characteristics Adhesives Molding compounds	Moisture resistance Biocompatibility Hermeticity
Thermal Structure	• TIM	High thermal conductivity Low CTE

Power Supply Components

- Capacitors
- Inductors
- Supercapacitors
- Thinfilm batteries

11 | NMDC

Power Supply Capacitors

- Goal:
 - Voltage conversion:
 - Charge pumps
 - Linear regulators
 - · Filtering power supply noise
 - DC blocking
- Approach:
 - High-surface-area electrodes
 - · Conformal dielectrics
- Properties:
 - 50-100 uF/cm²
 - 20 V
 - 1 uA/uF leakage
 - · Integration in package

RF Components Capacitors Inductors Antennas

Digital Components Decoupling Capacitors

Interconnections

- Conductive Adhesives
- Nanoscale Interconnections
- Nanoparticle Bonding

Fine-pitch Interconnections with NCF & n-ACF Goals • Fine Pitch (30 micron) interconnections using NCF · 10X reduction in pitch compared to flipchip • 150 C assembly · Embedding in organic packages IC Embedding with Cu bump and Chip-Last; Cross-section Approach: Copper bumps · Bonding with NCF Properties: Contact resistance < 10 milliohms · Reliable interconnections: ■ 1400 cycles TST (-55 to 125) IC Embedding, Top View ■ 175 C, 72 hours HTS 192 hrs, HAST 25 | NMDC

Nanoscale Interconnection Materials 100 Sn-Pb solder Goal: 0.80 0.80 0.80 · Flipchip assembly for nextgeneration nano and 3D ICs ン₄₀ Approach: Nancomposite solder 20 · Nanocopper bump 10 40 · Nanocomposite solders creep resistance for traditional solder vs nanocomposite solder · Advanced Barriers Properties: 10-3 • Current handling 106 Amp/cm² Crack growth rate · Enhanced creep and fatigue 10-4 (mm/cycle) resistance Nano Cu 10-5 Enhanced strength Fine pitch capability with WLP: 10-6 100 10 50-100 microns ΔK - Measure of stress intensity at crack tip (MPa √m) Fatigue resistance for micro and nanocopper 26 | NMDC

Nanoscale Bonding Layer Goal: Patterned nanoparticles by in-situ capture on the • 3D IC assembly and interconnections with: bonding pads ■ Pitch less than 20 microns ■ T < 250 C Solder-free for reliability, fine-pitch and low-cost process ■ Bonding at 250-300°C Approach · Patterning nanoparticles SILICON • Low-temperature Cu pad-to-pad bonding Properties: SILICON • Sintering at T < 250°C · Conductivity approaching that of Direct capturing of nanoparticles on bonding bulk metals Bonding at low temperatures with gold, silver and copper nanoparticles · Flipchip infrastructure compatibility 27 | NMDC

Thermal Interfaces

Reliability

- Nano-composite for Electronics
- Packaging for Biocompatibility
- Nanomaterials for Bioelectronics

Summary

- 3D ASSM is about highest functionality at lowest cost in smallest- size system, enabled by
 - Silicon for devices, packages and boards
 - Components at nanoscale
- Silicon interposers and packages underway to enable this vision with low cost panel-based Si
- Nanoscale component research is underway for
 - Digital
 - RF
 - Power
 - Thermal
 - Encapsulation

