

IBM Research

On the Calibration of Alpha Sciences Proportional Counters

Michael Gordon (gordonm @us.ibm.com)

Ken Rodbell

IBM Research 1101 Kitchawan Road Yorktown Heights, NY 10598

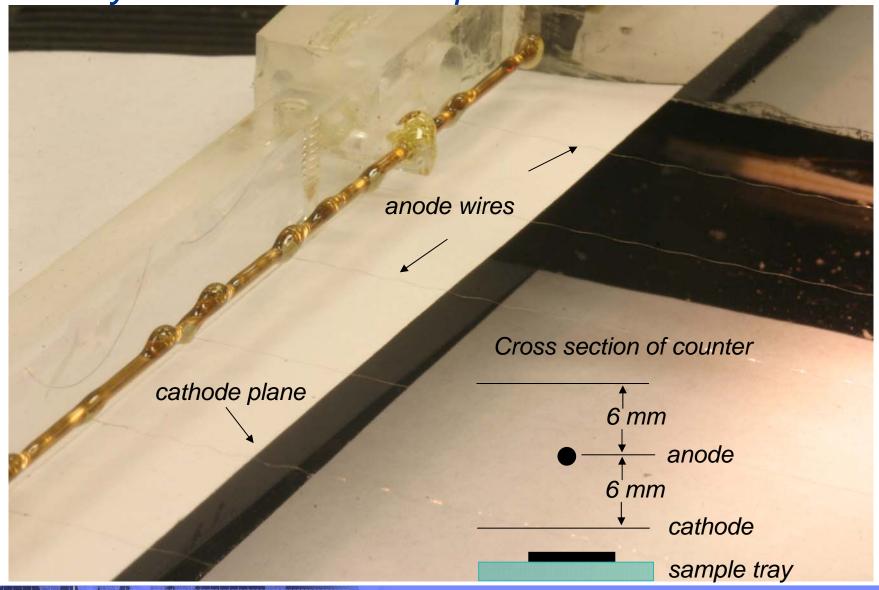
Outline

How is the discriminator set on Alpha Sciences counter and what is the alpha-particle energy associated with the setting? What is the impact of cutting out the low energy alphas from a sample?

- Introduction
- Background
- Overview of the Alpha Sciences proportional counters
- Our low-energy alpha-particle source
- Results
- Conclusion

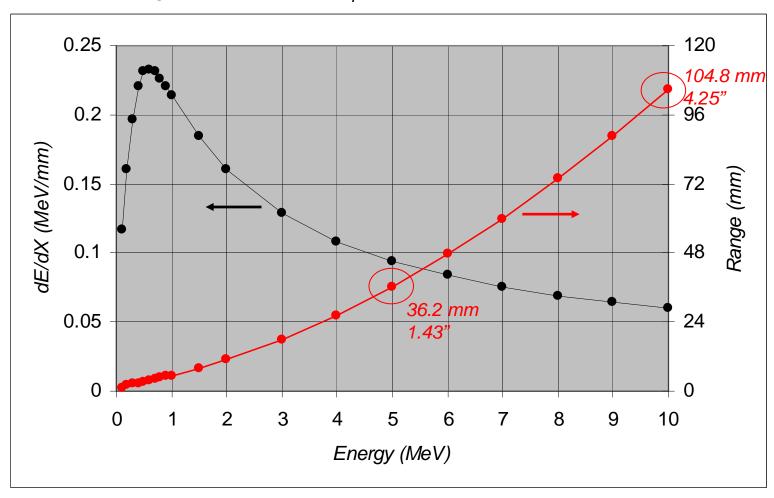
Introduction

- We review a technique for determining the alpha-particle energy associated with a discriminator setting.
- We have a low energy "thick" alpha-particle source that was developed for this work.
- The alpha particles from this source stop in the gas within the active volume of the detector (important for association between pulse-height analysis and alpha-particle energy).
- We compared the count rate of the source vs discriminator setting in the proportional counter, and the count rate of the same source with a silicon surface barrier detector to obtain an energy scale.

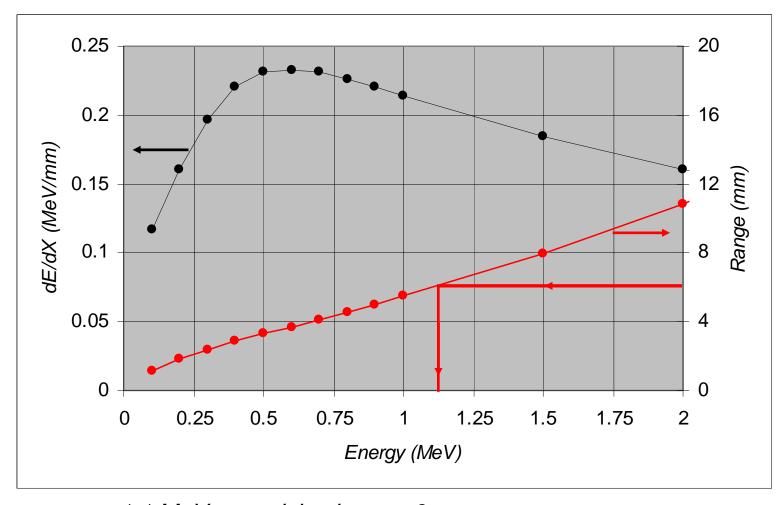

Background

- Many labs have Alpha Sciences proportional counters
 - Material labs
 - Semiconductor labs
- Recently, several labs participated in a "round-robin" study of both low and ultralow emissivity samples, "Multicenter comparison of alpha particle measurements and methods typical of semiconductor processing"*
 - Very few constraints were placed on the measurement
 - No sample preparation or measurement protocol
 - Samples were in many pieces that could be tiled to account for different sizes of the tray/active area of the counter
 - There was a ~ 2X difference between the largest and smallest sample emissivity measured
 - It was proposed that this difference could be due to the discriminator settings on the individual detectors
 - Most people "assume" that the discriminators are set to 1 MeV

^{*} http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5784521


Cutaway section of an old Alpha Sciences counter

SRIM simulations of alpha-particles in Ar gas


The counter gas used is Ar/CH₄

6 10/26/2011 © 2010 IBM Corporation

SRIM simulations of alpha-particles in Ar gas

~1.1 MeV α -particles have a 6 mm range <u>higher-energy alpha particle will not stop in the detector volume</u>

The low-energy α -source

- We need a low-energy α -source (so that the α 's stop in the active volume in the counter)
- We made an alpha-particle source from natural Samarium since it's one of the lowest energy naturally-occurring α -particle emitter
- Sm has 3 naturally-occurring α -emitting radioactive isotopes,
 - only ¹⁴⁷Sm is important, due to the shorter ½ life compared to ¹⁴⁸Sm, or ¹⁴⁹Sm

Sm Isotope	α-energy (MeV)	½-life (years)	Abundance (%)	Specific activity (α/sec-g)
¹⁴⁷ Sm	2.25	1.06E11	15	850
¹⁴⁸ Sm	¹⁴⁸ Sm 1.93		11.2	0.013
¹⁴⁹ Sm 1.07		>1E16 (stable?)	13.8	

$$SA = \frac{Ln2}{T_{1/2}(\text{sec})} x \frac{N(atoms/mol)}{A(g/mol)}$$

http://www.nndc.bnl.gov/chart/ Chart of the Nuclides, GE, 13th ed.

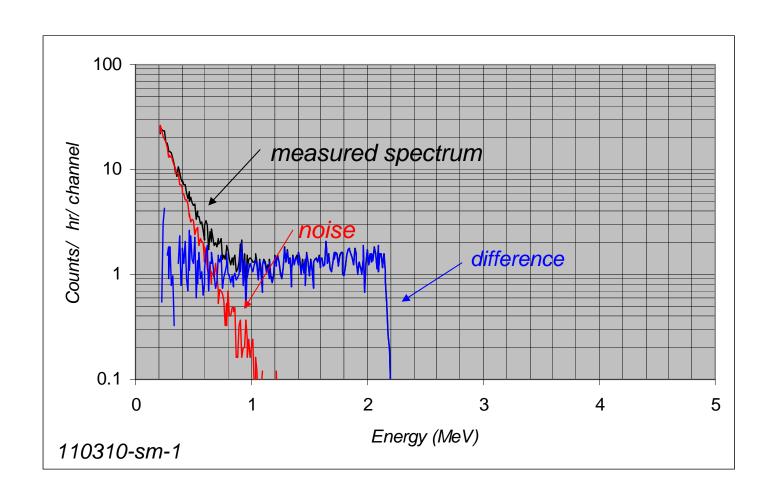
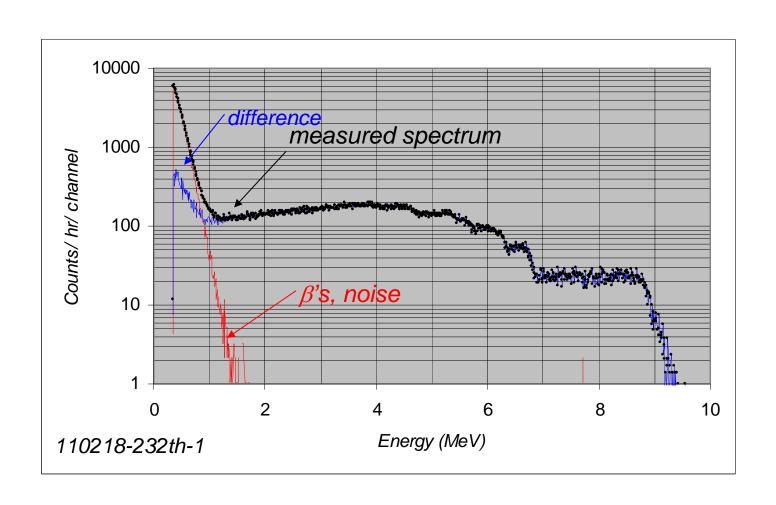

Table of natural alpha-particle emitters and their energies

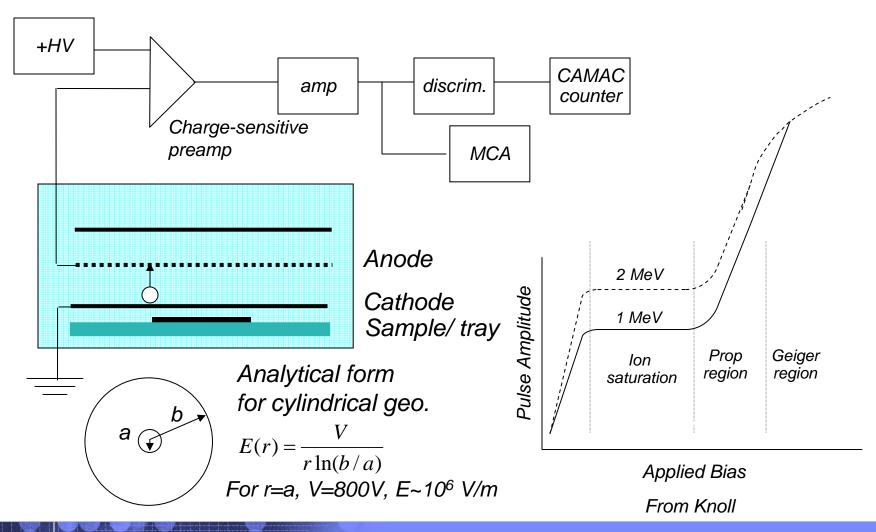
TABLE OF NATURAL ALPHA - PARTICLE ENERGIES

ENERGY (MeV)	MOTHER ISOTOPE	HALF-	-LIFE	EQUILIBRIUM ABUNDANCE	FAMILY CHAIN	COMMENTS		
1.83	Nd - 144	2.4	E 15 y	24 %	none	Natural part of Nd		
1.50	Ce - 142	5.	E 15 y	11 %	none	Natural part of Ce		
2.14	Gd - 152	1.1	E 14 y	21 %	none	Natural part of Gd		
2.23	Sm - 147	1.1	E 14 y	15 %	none	Natural part of Sm		
2.50	Hf - 174	2.	E 15 y	0.2%	none	Natural part of Hf		
3.18	Pt - 190	7.	E 11 y	0.01%	none	Natural part of Pt		
3.10	10 170		,	0.01%		navarar parvor r		
3.83	Th - 232	1.39	E 10 y	0.2 %	Th - 232	Natural Element		
3.95	Th - 232	1.39	E 10 y	23 %	Th - 232	Natural Element		
		1071075136	50 0 h d					
4.01	Th - 232	1.39	E 10 y	73 %	Th - 232	Natural Element		
4.15	U - 238	4.50	E 9 y	23 %	U - 238	Natural Element		
4.20	U - 238	4.50	E 9 y	73 %	U - 238	Natural Element		
4.39	U - 235	7.1	E 8 y	100%	U - 235	Natural Element		
4.60	Ra - 226	1.60	E3 v	6 %	U - 238	(2)		
4.62	Th - 230	7.5	E4 y	24 %	U - 238			
4.69	Th - 230	7.5	E4 v	76 %	U - 238	et.		
4.72	U - 234	2.5	E 5 y	28 %	U - 238			
4.78	U - 234	2.5	E 5 y	72 %	U - 238	(2)		
4.78	Ra - 226	1.60	E 3 y	94 %	U - 238			
5.18	Th - 228	1.91	У	0.2 %	Th - 232	(1)		
5.21	Th - 228	1.91	У	0.5 %	Th - 232	(1)		
5.30	Po - 210	138	d	100 %	U - 238	Daughter of Pb - 210		
5.34	Th - 228	1.91	У	28 %	Th - 232	(1)		
5.42	Th - 228	1.91	У	71 %	Th - 232	(1)		
5.45	Ra - 224	3.64	d	5 %	Th - 232	(1)		
5.49	Rn - 222	3.8	d	100 %	U - 238	(2) Seeps from the Earth		
5.61	Bi - 212	60.6	m	0.4 %	Th - 232	(1)		
5.68	Ra - 224	3.64	d	95 %	Th - 232	(1)		
5.77	Bi - 212	60.6	m	0.6 %	Th - 232	(1)		
6.00	Po - 218	3.05	m	100 %	U 238	(2)		
6.05	Bi - 212	60.6	m	25 %	Th - 232	(1)		
6.09	Bi - 212	60.6	m	10 %	Th - 232			
6.29	Rn - 220	54.5	S	100 %	Th - 232	(1)		
6.78	Po - 216	0.15	S	100 %	Th - 232	(1)		
7.69	Po - 214	162	us	100 %	U - 238	(2)		
8.79	Po - 212	0.3	us	64 %	Th - 232			
Source- unknown, yellowed sheet in my lab								
Source- unknown, yellowed sheet in my lab								


Energy spectrum from Sm source, in vacuum

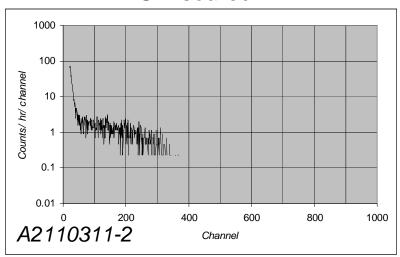
10/26/2011 © 2010 IBM Corporation

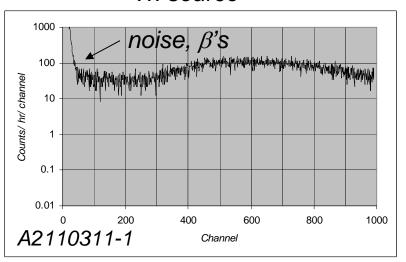
Energy spectrum from ²³²Th source, in vacuum



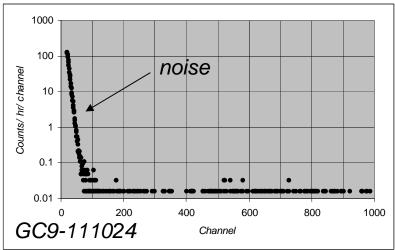
11 10/26/2011 © 2010 IBM Corporation

Alpha Sciences counter with Ortec discrete electronics

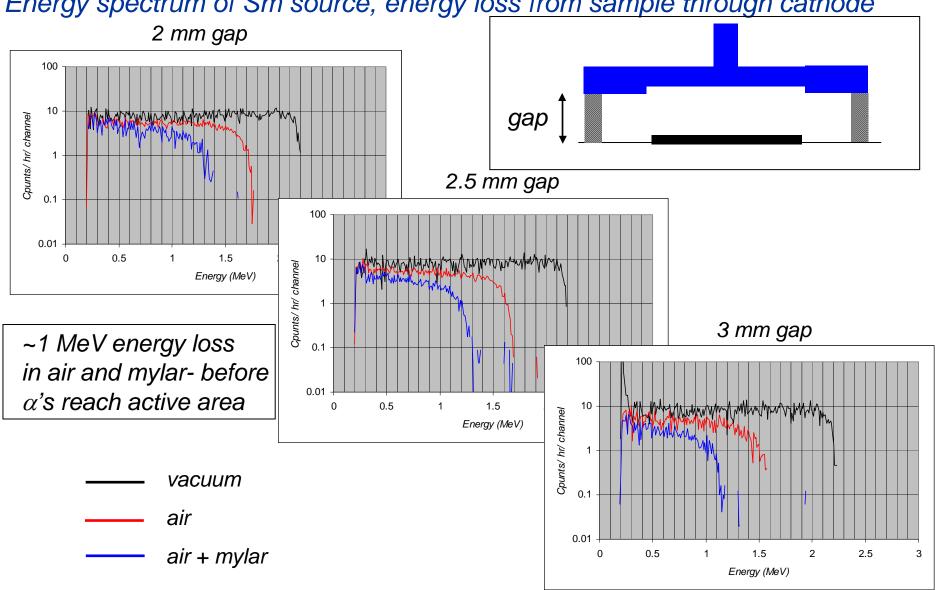

Using off-the-shelf electronics allows for easy adjustment and repair



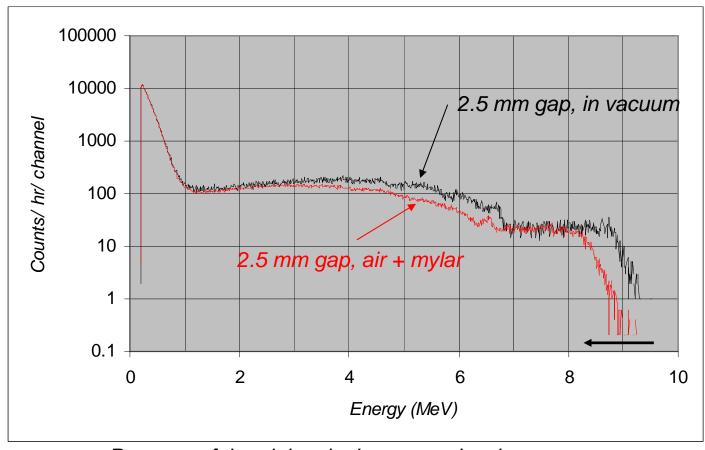
Pulse-height spectrum from sources in the Alpha Sciences counter


Sm source

²³²Th source


Ultra-low activity sample

13 10/26/2011 © 2010 IBM Corporation


Energy spectrum of Sm source, energy loss from sample through cathode

© 2010 IBM Corporation 10/26/2011

Energy spectrum of ²³²Th source, energy loss from sample through cathode

Passage of the alphas in the gap and mylar causes reduction in maximum energy and in the flux

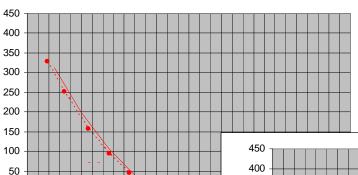
Results

- Integrate the measured alpha particle energy spectrum from the samarium source, using the silicon detector, above a given threshold (eg E>0.25 MeV, E>0.5 MeV, E>0.75 MeV and E>1.0 MeV)
- Repeat integration for each of the source-to-detector gaps
- Plot the resulting integrated count rate vs energy
- Integrate the count rate for the Alpha Sciences counter above a given ADC voltage threshold (eg V>0.5V, V>0.9V, V>1.5V, V >2.0V) using the discrete electronics
- We can correlate the pulse height with energy- given the MCA spectrum from the Alpha Sciences counter, and the maximum energy in the alpha particle energy spectra

Results

Si detector data

gas counter data



400 350 Counts/ hr/ channel 300 0.5 250 0.9 200 100 50

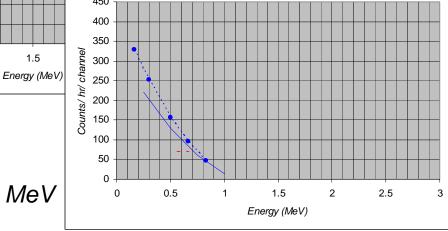
Energy (MeV)

0.5

2.5 mm gap

1.5

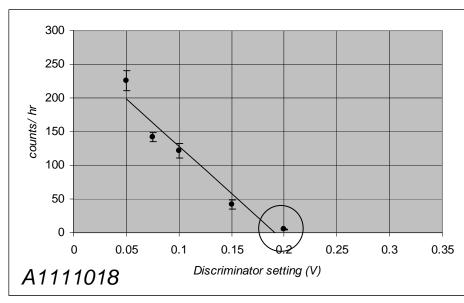
3 mm gap

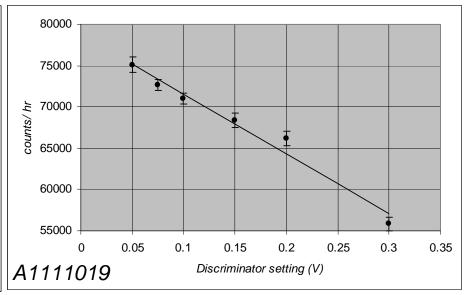

data from Si detector "fits" the gas counter data with a ~2.5 mm gap

0 count rate with this source is ~1-1.3 MeV

channel

Counts/hr/


0.5



Response of Alpha Sciences counter, original electronics

Sm source

Th source

Zero count rate corresponds to a total energy loss of 2.25 MeV

Raising the discriminator level lowers the detection efficiency (lowers the count rate) for a <u>thick source</u>

The slope of count rate vs discriminator setting, and the discriminator setting where the count rate goes to zero, will depend on the amplifier gain

Conclusion

- We have shown the energy spectrum from a low-energy Sm α -particle source.
- There is an appreciable energy-loss of low-energy α 's before they reach the active gas volume in the Alpha Sciences counters.
- While the discriminator can be set higher to reduce the background count rate, it cuts out the detection of low-energy α 's.
- The efficiency of detection in these counters is energy-dependent.
- What energy α 's are really important for samples that we measure?
- What is the α-particle energy associated with the discriminator setting on your Alpha Sciences counters?