Alpha Particle Induced Soft Error Rates for FF Designed in a 28 nm Bulk CMOS Process

N. Gaspard, B. Bhuva, B. Narasimham, A. Oates, K. Patterson, N. Tam, M. Vilchis, S.-J. Wen, R. Wong, Y. Z. Xu
Perturbation in E field due to an ion hit
Soft Errors in Advanced Technologies

- Charge collection mechanisms are different
 - Multiple node charge collection is the norm
- Circuit-level parameters are changing
 - Operating frequency
 - Layout restrictions
- Flipflop hardness can not be guaranteed
Designers Perspective

- Designers currently use data from two generations back to estimate FIT rates for soft errors
 - For 28 nm designs, designers are using data from 65 nm or earlier technology
- No single mechanism dominates SER
 - Charge collection, charge sharing, pulse quenching mechanisms strongly influence SER
- Data from older technologies may not be applicable to newer technologies
 - For example, DICE FF is no longer a reliable option at 40 nm technology

MUST EVALUATE FF DESIGNS AT 28 NM NODE
Test ICs were designed and tested
TEST IC Design Details

- FF testing will be done through shift registers
- PLL and RPG are shared by all designs
- 40 shift register designs on the test ICs

Clock Block

RPG Block

N-bit shift register #1 with error detection

N-bit shift register #2 with error detection

N-bit shift register #3 with error detection

N-bit shift register #40 with error detection
Storage Cells Testing

- Arrays of storage cell designs or Circuit for Radiation Effects Self-Test (CREST) may be used for direct measurement of error rates
- On-chip error detection to facilitate high frequency testing
- Allows for meaningful comparison of different flip-flop designs
Flip-Flop Designs

- 40 different flip-flop designs from multiple design houses were used
- Varying soft error hardness ranging from conventional DFF to hardened DICE FF
- Varying range of power, speed, area
- FF were designed with standard V_t, low V_t, and high V_t transistors
- Layouts were generated for dual-well and triple-well structures
Fabrication and Test Process Details

- 28 nm commercial bulk CMOS process was targeted
- Two different die of 3 mm X 2 mm size were used
- Flip-flop designs were divided evenly between the die

- Each die was functionally tested to ensure full functionality
- Each die was exposed to Alpha source separately
Alpha source was characterized in air and in vacuum.
Alpha Test Results

- Alpha source was less than 8 mm away from the die
- Alpha flux was estimated to be about 300 alpha/mm²/sec
- FIT rates are calculated for 0.002 particles/cm²/hour
- FIT rates reported in the next slides are per MB
Alpha Test Results : 28 nm Node

- The following FIT numbers are in FIT/Mbit
- The range of FIT observed was 2852 to 0
- The median FIT value was 995
- The average FIT value was 927

<table>
<thead>
<tr>
<th>FF 1</th>
<th>2852</th>
<th>FF 7</th>
<th>1858</th>
<th>FF 13</th>
<th>1135</th>
<th>FF 19</th>
<th>569</th>
</tr>
</thead>
<tbody>
<tr>
<td>FF 2</td>
<td>2694</td>
<td>FF 8</td>
<td>1804</td>
<td>FF 14</td>
<td>1127</td>
<td>FF 20</td>
<td>482</td>
</tr>
<tr>
<td>FF 3</td>
<td>2295</td>
<td>FF 9</td>
<td>1780</td>
<td>FF 15</td>
<td>1072</td>
<td>FF 21</td>
<td>410</td>
</tr>
<tr>
<td>FF 4</td>
<td>2126</td>
<td>FF 10</td>
<td>1479</td>
<td>FF 16</td>
<td>1051</td>
<td>FF 22</td>
<td>316</td>
</tr>
<tr>
<td>FF 5</td>
<td>2001</td>
<td>FF 11</td>
<td>1216</td>
<td>FF 17</td>
<td>1032</td>
<td>FF 23</td>
<td>230</td>
</tr>
<tr>
<td>FF 6</td>
<td>1911</td>
<td>FF 12</td>
<td>1187</td>
<td>FF 18</td>
<td>995</td>
<td>FF 24</td>
<td>222</td>
</tr>
</tbody>
</table>
Alpha Test Results: 28 nm Node

The following FIT numbers are in FIT/Mbit.
Comparison Between 40 and 28 nm Nodes

For 28 nm node
- The range of FIT observed was 2852 to 0
- The median FIT value was 995
- The average FIT value was 927

For 40 nm node (not necessarily for the same FF designs)
- The range was 1384 to 0
- The median was 796
- The average was 622

Cisco FF with identical design except shrinkage showed 4X increase in FIT rates at 28 nm node compared with 40 nm node
Discussion

- Compared to 40 nm, 28 nm FF designs show higher median and average FIT rates

- FIT rates observed for a Cisco FF was 400% higher at 28 nm node compared to 40 nm node – the design was identical except shrinkage

- Lower critical charge values have strong effect on FIT rates

- Lower transistor sizes can not overcome increased vulnerability due to lower critical charge