Developments in low-temperature metal-based packaging

2011. 12.14

Jiyoung Chang and Liwei Lin
Ph.D. Candidate, Department of Mechanical Engineering
University of California at Berkeley

Contents

- Project & Research goals
- Low temperature metal packaging
 - Dry thermocompression
 - Rapid Thermal process
 - Solder pre-reflow
 - Insertion of thin metal layer
- Summary

Research goals

Center for Micro/Nano Scaling Induced Physics (MiNaSIP) in U.C.Berkeley

- Subgroup research with Freescale™ semiconductor
 - Flux-less bonding
 - Short bonding time & Low bonding temp.
 - Sub-100μm width bonding ring
 - → Photolithography definable & Electroplating
 - Hermetic sealing
 - → Low permeability required
 - CMOS compatible process

Material selection • Material Selection Criteria — Temperature — Deposition & bonding method — Permeability — Mechanical properties *Glass Frit : Popular in MEMS packaging Min Nr Day Mo Vr 10 1000 — Deposition : Screen-printing (min.w≈150μm) — Temperature : 450 °C — Time :15-30 minutes — Metal bonding BSAC Material selection Permeability (g/cm+tory) Silicon Permeability (g/cm+tory) Function 10-0 10-10 10-

Leak & Autoclave Test

- Dyed-IPA leak test
 - Gross-leak detection
 - Small surface tension of IPA allows quick permeation through voids

12-hour Autoclave test failed: 125°C & 24psi

Why hermetic test failed??

- Formation of leakage pass-through due to...
- Void formation
 - Gas trapping during bonding process
 - Metal oxide on surface prevents reflow of solder
- Non-uniform bonding along the bonding ring
 - Lack of uniform pressure applied during bonding
- → Pre-reflow process approach

Pre-reflow profile optimization

- Process parameters in typical solder ball reflow process
 - Temperature gradient in preheat zone
 - Soak temperature and time when using Flux
 - Temperature gradient from soak to maximum temperature
 - Maximum peak temperature
 - Cooling gradient in cooling zone
 - Total heating time
- Current solder reflow profile is optimized for solder ball to form sphere shape not for square line form solder
 - → Reflow profile needs to be modified for line shape bonding

Low Width to Height ratio bonding ring

- Electroplated 10μm and 20μm width bonding ring
- Width to Height ratio 1.5:1~2:1

Electroplated SnAg with 10µm width bonding ring

Electroplated SnCu with 20µm width bonding ring

SnCu reflow test results

- Reflow profile modification
- Formed half-cylinder after reflow
- Partially non-uniform clogging surfaces observed

After reflow

SnAg 10µm width ring pre-reflow results • Reflow profile optimized in RTP • Uniform half-cylinder shape achieved • No clogging or solder gathering was observed Reflow Reflow After optimized reflow BSAC After optimized reflow

Summary

- Proof-of-Concept: Metal bonding for possible replacement of glass-frit
 - CMOS-integrated process
 - Compatible mechanical strength with glass-frit
- Rapid Thermal bonding result(no pre-reflow)
 - $-\,$ Successful leak-test for 200 μm bonding ring
 - Failed 12hr hermetic test
- Solder reflow profile optimization for sub-100μm metal bonding solution
 - Reflow profile optimization for 10mm SnAg boding ring
 - Uniform half-cylinder shape reflow results
- Solder pre-reflow bonding of SnAg 10μm bonding ring using Flipchip
 - Optimized reflow profile used for bonding
 - Possibility of sub-100μm bonding ring in MEMS packaging
- · Metal insertion approach
 - Al-Sn-Al approach showed better bonding quality than pure Al-Al bonding
 - Lower temperature and pressure

Acknowledgement

- IEEE-CPMT
- Prof. Liwei Lin
- · Mr. Kedar Shah
- Sponsor
 - Freescale™ semiconductor *≸freescale*

– DARPA (MR)

Thank you!!

