Liquid Cooling: An Update

Dr. Mikhail Spokoyny,

EEPT Lab, A.J. Drexel Plasma Institute, Philadelphia PA, USA
mspokoyny@drexel.edu

in cooperation with
Cool Technology Solutions, Inc. San Diego CA, USA

April 11, 2012
IEEE Santa Clara Valley CPMT Society Chapter
Santa Clara, CA

Content

1. Main Trends in meeting challenges of thermal management within computer industry and power electronics
2. Liquid Cooling – niche for these applications
3. Current Conditions of the liquid cooling market - main applications, standard and new technologies
4. New Direction in liquid cooling – Submerged Jets
5. Different Technologies within Submerged Jets and main results of their implementations
6. Conclusions
1. More transistors require more power
2. More power produces more heat to be dissipated
3. Faster microprocessor more frequency - more heat to be dissipated
4. Next step – Multi-core architecture
5. More cores – higher heat flux – more challenges for heat dissipation
Heat Density Challenge

Power Electronics: Evolution in Wind-Energy Engineering

- Increase of peak power up to 7 MW per unit
- High power IGBT-modules and inverters are needed for high efficiency energy conversion
 1% loss of efficiency at 7 MW = 70 kW heat

Consequences:
- Increase of system power = larger power dissipation
 → MORE HEAT
In Power Electronics More HEAT is generated due to:
• General increase of power capacity of semiconducting devices
• Even the most efficient circuitry design cannot negate negative effects of the absolute increase in power dissipated by a device

In Digital Computational Devices More HEAT is generated due to:
• Increase of computational power due to higher clock rates
• Higher performance by multi-core design architecture

Solution:
• Efficient Thermal design
• Implementation of appropriate cooling method
• Selection of high-efficiency cooling systems and components

Cooling Systems. Classification

- Passive Cooling Systems – dissipates heat at the level at or above ambient temperature without possibility of Tj control – Constant current and voltage fans, radiators, cold plates.
- Passive Controlling Cooling Systems – dissipates heat at the level at or above ambient temperature with a possibility of Tj control – Variable speed and voltage control fans, cold plates with variable flow pumps.
- Active Cooling System – dissipates heat at the level below ambient temperature without possibility of Tj control – Constant voltage thermoelectric devices, Stirling micro refrigerator, closed loop chillers.
- Active Controlling Cooling System – dissipates heat at the level below ambient temperature with possibility of Tj control – Constant voltage thermoelectric devices, Stirling micro refrigerator, closed loop chillers.
- Hybrid Cooling System – dissipates heat at any desired level. At the level at or above ambient temperature Passive Cooling is employed, while at the level below ambient temperature Active Cooling kicks in.
Cooling Systems Classification

Main schemes of energy dissipation

Passive Cooling Systems

- **Passive Cooling System – AIR**
 - Heat is dissipated to the ambient air.
 - Vapor chamber can be utilized instead of a heat pipe.

- **Passive Cooling System – LIQUID**
 - Heat is dissipated to the ambient air.

Active Cooling Systems

- **Active Cooling System – AIR**
 - Heat is dissipated to the ambient air.

- **Active Cooling System – LIQUID**
 - Heat is dissipated to the house water.

Controlling Cooling Systems vary fan speed or after the chiller liquid temperature depending on the temperature of the cooled object.
Cooling Systems Classification
Main schemes of energy dissipation

Controlling and Hybrid Cooling Systems

Passive Controlling Cooling System – controls fan’s voltage and speed
Active Controlling Cooling System – controls TEM’s voltage and pump’s voltage and speed
Active Controlling Cooling System – controls chiller’s temperature set point

The heat convection is ALWAYS part of heat dissipation because heat from OBJECT may dissipate outside only to air or to Liquid (house water, river, sea)

<table>
<thead>
<tr>
<th>Type of convection</th>
<th>Heat Transfer Coefficient “h”, W/m²K</th>
<th>Advantage</th>
<th>Disadvantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural air convection</td>
<td>From 5 to 10</td>
<td>Cost: zero, very compact</td>
<td>Dissipated heat is limited to no more than 2 W</td>
</tr>
<tr>
<td>Forced air convection</td>
<td>From 10 to 200</td>
<td>Very efficient and practical.</td>
<td>Dissipates heat in applications up to 300 W, Acoustic noise from fans, Requires highly developed dissipating surface</td>
</tr>
<tr>
<td>Laminar liquid convection</td>
<td>From 5 to 10³</td>
<td>Capable of dissipating up to 800 W of heat, Utilizes low pressure, therefore low</td>
<td>Expensive, Requires cold plates with micro structures to significantly increase contact area</td>
</tr>
<tr>
<td>Turbulent liquid convection</td>
<td>From 10³ to 5*10⁵</td>
<td>Capable of dissipating up to 30 kW</td>
<td>Requires usage of high pressure powerful pumps</td>
</tr>
<tr>
<td>Two phase: water boiling, vapor chamber.</td>
<td>Two phase water boiling 10³⁶</td>
<td>Can dissipate almost any amount of heat</td>
<td>Next to impossible to create compact solutions, Require special device for vapor condensation</td>
</tr>
</tbody>
</table>
Heat Transfer / Convection

Mechanism:
- Entrainment of thermal energy in a flowing liquid or gas.

\[Q_h = h^*F^* (T_f - T_{avr.env}) \]
\[Q_g = G^*c^*(T_{out} - T_{in}) \]

\[Q_h = Q_g; \]

- S- contact surface area, F- surface area of radiator or cold plate; F/S-
 - coefficient of finned surfaces

Utilization of lower \(T_{avr.env} \) (cryogenic liquids) to increase dissipated heat is impossible in semiconductors industry as many semiconducting devices (example: transistors in microprocessors’ technology with less than 60 nm) are freezing at temperatures below minus 30°C

Main scientific and engineering direction of Cool Technology Solutions, Inc.: development of devices where turbulent convection is achieved artificially at low media velocities (at velocities 8 to 10 times lower than where usual laminar-to-turbulent transfer happens)

Main Liquid Cooling Technologies on a Market

Contact surface is comprised of:
- pins, plates, pin-fins with some increasing properties using diamond pins, pimples, dimples and etc
- Micro-channels as the main trend

Most modern heat transfer devices implement:
- Synthetic Jets
- Impingements Jets - the main trend

Highest results of thermal performances
- Micro-channels

Highest results of hydraulic performances
- Impingements Jets

SUBMERGED JETS
New Generation of Cooling Technologies
CONCEPT AND BRIEF SUMMARY

The first implementation of Submerged Jets Cooling Technologies family, new single-phase liquid cooling system - Collider Jet Cooling Technology - was unveiled in September of 2010 at Intel Development Forum. This cooling system for processors had utilized sets of jets directed towards each other with relative micro shift on the central axes snuffed to achieve sharp artificial turbulization of streams. Although not the best in the “family”, it is representative of physical processes that take place inside, and therefore deserves detailed description.

WHAT KIND OF TECHNOLOGY SHOULD BE NEXT?....

JET COOLING SYSTEM FOR MICROPROCESSORS
DESIGN REALIZATION, CFD and Experimental Data

Heat sinks were made of copper and aluminum and had the following basic geometrical characteristics:

<table>
<thead>
<tr>
<th>Overall dimensions</th>
<th>Array of Jets dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 x 26 x 14 mm</td>
<td>from 0.05 x 0.05 mm</td>
</tr>
<tr>
<td>30 x 46 x 26 mm</td>
<td>to 0.9 x 0.9 mm</td>
</tr>
<tr>
<td>55.6 x 55.6 x 23 mm</td>
<td>and Diameter</td>
</tr>
<tr>
<td>88 x 93 x 26 mm</td>
<td>from 0.1 mm</td>
</tr>
<tr>
<td>140 x 180 x 26 mm</td>
<td>to 0.9 mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pin dimensions</th>
<th>Gap between pins</th>
</tr>
</thead>
<tbody>
<tr>
<td>from 0.5 x 0.5 x 3.8 mm</td>
<td>from 0.25 mm</td>
</tr>
<tr>
<td>to 1.2 x 1.1 x 6.8 mm</td>
<td>to 1.2 mm</td>
</tr>
</tbody>
</table>
DIRECT NUMERICAL SIMULATION OF OPPOSING JETS FLOW STRUCTURE

Navier-Stokes equations along with a system of non-stationary, three-dimensional continuity expressions constituted system's mathematical model. These were resolved using icoFoam and turbFoam solvers from the hydrodynamic modeling system OpenFOAM along with pre and post-processor data preparation systems Salom and Paraview.

Direct numerical simulation Computational domain is presented on pictures. As seen from these images, the computational domain represents the flow volume of filling the manifold.

Computational domain. General view.

Time-dependent hydrodynamic interaction of opposing jets and coolant flow animation were obtained from simulations.

As an example, on these pictures show typical images of the velocity distribution U and flow structure in the characteristic section of the computational domain during developed steady flow.

The presented results allow to understand the nature of coolant flow inside the heat sink, making it possible to tailor geometrical parameters for prototyping and fabrication of experimental samples.
Typical distribution of flow velocity U in the gap between the pins located in the plane of symmetry of computational domain. Main nozzles 0.7 x 0.7 mm, support nozzles 0.12 x 0.12 mm.

Typical flow structure in the gap between the pins located in the plane of symmetry of computational domain. Main nozzles 0.7 x 0.7 mm, support nozzles 0.12 x 0.12 mm.

EXPERIMENTAL RESULTS

The section presents experimental results of the thermal resistance as a function of the flow rate in aforementioned cold plates. Experimental setup’s schematic drawing is shown on the picture. The temperature of the Processor Imitator was measured by a thermocouple, embedded in the center (and $\frac{1}{4}$, and $\frac{3}{4}$ of size) of Imitator and connected to a data acquisition system. Coolant’s flow rate varied between 0.1 GPM and 4 GPM. Corresponding pressure drops varied between 2 psi and 35 psi. Footprint cold plate 3” x 3” (77 mm x 77 mm).
Comparison results between straight and alternate jets with the same total cross section area

Comparison results between alternate jets and alternate jets with gap support nozzles

Cold Plate's thermal resistance as a function of the method and number of nozzles
CONCLUSION - 1

Thermal Performances (based on Thermal resistance)

- Micro channels: Best
- Collider Jets™ – Alternate horizontal jets: Worse
- Alternate horizontal jets with gap support jets

Hydraulic Performances (based on pressure drop)

- Impingement Jets: Best
- Straight horizontal jets
- Collider Jets™ – Alternate horizontal jets with gap support jets

Collider Jets™ Cooling Technology main advantage – Highly efficient thermal performance (although not as high as for Micro channels)

Collider Jets™ Cooling Technology main disadvantages – High pressure drop (poor hydraulic performances)
Inability to dissipate heat from local hot spots

SOLUTION?
Next generation of SUBMERGED JETS Cooling Technologies: Vortex Alternate™, Swirling Jets-Stream™, and Wave Jets™
Next Generation of SUBMERGED JETS Cooling Technologies – Vortex Alternate™, Swirling Jets-Stream™, and Wave Jets™
Comparison of preliminary results

Pressure Drop (bar) vs. Flow Rate

Flow Rate, LpM

Pressure Drop, bar.

CTS-V series: Vortex-Alternate jets
CTS-S series: Swirling Jet-Stream
CTS-W series: Wave Jet

Preliminary CONCLUSION - 2
Thermal Performances (based on Thermal resistance)
Best: Micro channels
Low Re numbers
Best: Impingement Jets
Low Re numbers

Swirling Jets-Stream™
Wave Jets™
Collider Jets™ - Alternate horizontal jets with gap support jets
Impingement Jets
Vortex-Alternate Jets™
Alternate horizontal jets
Straight horizontal jets

Hydraulic Performances (based on pressure drop)
Best: Wave Jets™
Best: Swirling Jets-Stream™

Worse: Micro channels
Worse: Alternate horizontal jets

Collider Jets™ - Alternate horizontal jets with gap support jets
Straight horizontal jets
Vortex-Alternate Jets™

New Parameter – Technology’s Ability to dissipate heat from a local hot spot
Preliminary CONCLUSION - 3

Ability to dissipate heat from local hot spot
(max Thermal Performance for max Heat Flux based on Local Thermal Resistance)

Best

Swirling Jets-Stream™
Impingement Jets
Wave Jets™
Micro channels
Vortex-Alternate Jets™
Alternate horizontal jets
Collider Jets™, Alternate horizontal jets with gap support jets
Straight horizontal jets

Worse

Samples of manufactured cold plates and heat exchangers implementing Submerged Jets Cooling Technologies developed by Cool Technology Solutions, Inc.

Preliminary CONCLUSION - 4

So far, among all existing on the market thermal management technologies ideal can not be found, each one has its disadvantages and limitations.

Usually better thermal performance (efficiency of heat transfer) is accompanied by either worse hydraulic properties, or limited, if any, capability of handling of (to dissipate heat from) a local hot spot.

New SUBMERGED JETS Cooling Technologies – Vortex Alternate™, Swirling Jets-Stream ™, and Wave Jets™ (US Patent Pending Applications) are not ideal either, but have already shown unique capabilities and extremely impressive performance.

We are very optimistic about New SUBMERGED JETS Cooling Technologies and it capabilities and prospects, and are pretty sure that for each specific request for any specific application we will be able to find the best applicable technology and solution capable of meeting requested set of parameters.
ACKNOWLEDGEMENTS

Author would like to thank Dr. F. Rottman and J. Hernsdorf for their help in preparation of this presentation; Dr. V. Trofimov for performing all simulations; Prof. S. Isaev for his advice and input through our discussions, and President of Cool Technology Solutions, Inc. Mr. N. Ortenberg for managing the entire project.

THANK YOU!
ANY QUESTIONS?