A Comparison of Low Cost Interposer Technologies

5/23/2013

Terry (Teckgyu) Kang & Abraham Yee

Advanced Technology Group

Contents

- NVIDIA Products and Interposer Drivers
- Low Cost Interposers
 - Thin Si Interposer
 - Organic Interposer
 - Glass Interposer
- Interposer Comparison
- Summary

NVIDIA Products and Interposer Drivers

NVIDIA Products

- Application processor for mobile phones and tablet PCs (Tegra)
- Gaming GPU for laptop and desktop PCs (GeForce)
- High-end digital content creation for workstation (Tesla/Quadro/Volta)

Interposer Drivers

- Higher electrical performance
- Smaller form factor

Low Cost Interposer Approaches

Source: Yole/Global Foundries 2012

Source: SEMCO

Source: Corning (2013 IMAPS)

Si Interposer Process Cost Analysis

Cost Distribution of TSV Processes

- Via etching and filling (69%) processes are major cost factor
- TSV formation is the most expensive cost for interposer fabrication
- Thinner interposer reduces process cost

Assembly Flows for Thinner Interposer

Thin Si Interposer Summary

Advantages

- Reduce interposer process cost
- No warpage concern during top die attach (C2W)
- Tighter design rule
- Better electrical performance

Challenges

- uBump joint reliability
- Higher interposer thickness variation
- New investment for C2W process equipment (OSATs)

Organic Interposer

Source: SEMCO (2012 MEPTEC)

- Use low CTE and high modulus organic materials
- Mechanically symmetric structure
- Offer finer design rule than conventional substrate
- Apply Si fab equipment for manufacturing

Si vs. Organic Interposer

Si Interposer		Organic Interposer	
Wafer	Core Substrate Type	Panel	
Silicon (3ppm/K) 100µm ^{% Handling trouble}	Core Material (CTE) Core Thickness	Organic (4ppm/K) 60~450µm	
1 <i>µ</i> m	Line Width	3µm @2013	
Asymmetry (n+1)	Structure (Top+Bottom)	Symmetry (n+n)	
Dry Etch	Core Through Hole	Laser Via / Mechanical Drill	
PECVD + PVD+Cu Plating (Semiconductor Process)	Through Hole Filling	E'less Cu+Cu Plating (PCB Process)	
Wafer Thinning	Total Thickness Control	Core Thickness selected	
801ea/m² (12 inch)	Net Die (25 x 25mm ²)	1260ea/m² (200 x 250mm²)	

Organic Interposer Assembly Flow

I/P to PKG Substrate

- Similar to C2W process flow
- Die attach and mold process
- Thermal compression bonding for D/A

- C2S process flow
- Die attach and mold process
- Mass reflow for D/A

Organic Interposer Summary

Advantages

- Use low cost process and materials
- Process rectangular panel format
- Otilize existing supply chain
- Extended to interposer embedded substrate
- Potentially lower cost

Challenges

- Looser design rule than Si interposer
- Innovation needed to create robust tight L/S
- Manufacturing and reliability challenges
- Limited suppliers

Glass Interposer

Source: Corning (2013 IMAPS)

- Formed by fusion process
- Applicable for roll to roll process with Cu via filling process
- Material properties can be tailored (CTE: 3~9 ppm/C)
- Via formation processes: Laser or Wet etch
- Similar assembly process steps to Si interposer

Glass Interposer Assembly Process

Chip to Singulated I/P Completed I/P → Top D/A & UF Attach I/P on PKG Sub

Similar to C2C process flow
Attach top die on singulated I/P
Require T/C bonding for thin I/P

Chip to Wafer Via & RDL \rightarrow Top D/A & UF on I/P Wafer Wafer Thinning & C4 → Attach to PKG Sub

- Similar to C2W process flow
- Mass reflow for die attach
- Challenge for glass wafer thinning

Glass Interposer Summary

Advantages

- Use low cost material
- Process rectangular panel format
- Potentially applicable for roll to roll process
- Material properties can be tailored

Challenges

- Supply chain
- Looser design rule than Si interposer
- Cost effective via formation
- Warpage control for large panel

Low Cost Interposer Comparison

	Thin Si Interposer	Organic Interposer	Glass Interposer
Process Format	Wafer	Panel	Panel
Design Rule (L/S & Via Diameter)	Very Tight	Loose	L/S: Under development Via: Loose
Assembly Process	C2W	C2SI	C2GI
Supply Chain	Si Fab or Si Fab → OSAT	Substrate → OSAT	Not defined yet

- Current interposer cost is too high
- The cost should be reduced to enable for high volume production
- We need innovation from the industry (Foundries, OSATs, Material/Equipment Suppliers) to implement 2.5D for HVP