Probing Interfacial Contact via MEMS-based Microinstrumentation

Roya Maboudian

Department of Chemical & Biomolecular Engineering
Berkeley Sensor and Actuator Center (BSAC)
Center of Integrated Nanomechanical Systems

Center for Interfacial Engineering of MEMS (CIE

University of California at Berkeley

(COINS)

Outline of the Talk

- Surface-related reliability issues in MEM
 - adhesion (stiction); friction; wear; corrosion
- Test structure development
- Surface modifications
 - self-assembled monolayer
 - hard inorganic coatings
- Environmental effects
 - fluidic; temperature; relative humidity

Accelerometer

Micromirror Display

Instrumentation Needs

- MEMS-based instruments can provide information on:
 - material systems of interest to MEMS following the appropriate processing sequence;
 - length scales not easily accessible with other techniques.

Characteristics of OTS-Coated MEMS

- Work of adhesion: W= 0.012 ± 0.004 mJ/m²
 cf., ~ 20 mJ/m² for oxide-coated surfaces
- W unchanged even in 99% relative humidity
 cf., 140 mJ/m² for oxide-coated surfaces

$$W_{vdW} = \frac{A}{12\pi d_{eff}^2} \approx 0.01 \, mJ/m^2$$
 apparent contact area
$$d_{eff} = \frac{A}{12\pi d_{eff}^2} \approx 0.01 \, mJ/m^2$$

• Static friction coefficient: μ_s = 0.07 \pm 0.005 - cf., ~ 1 for oxide-coated surfaces

Effects of Repetitive Contact

Accelerated Life-time Testing

Motivation:

- MEMS devices designed for repeated contact often fail due to wear;
- It is desirable to understand and predict the failure mechanisms.

Sliding sidewall-contact microinstrument

(W.R.Ashurst et. al. Tribology Letters 2004)

Microinstrument Design

Planned Operation

- Cyclic contact between two MEMS surfaces
- 2. Separation of the surfaces
- In situ Analysis of surfaces
- 4. Repeat steps 1-3

Design Constraints

- Surfaces must be capable of repeated contact (out-ofplane)
- Surfaces must be capable of temporary separation at large enough distances to permit analysis (in-plane)

Interrogation Methodologies

Evolution in contact region probed via:

- I-V measurements: Contact resistance
- AFM/KPFM: Surface topography, surface potential

Effects of Relative Humidity in Presence of High Electric Field

Effect of Relative Humidity

- Ubiquitous presence of water vapor makes the study of relative humidity (RH) effects on the performance and reliability of M/NEMS devices crucial.
- Due to reduced dimensions, M/NEMS devices operate under high fields (> 10⁶ V/m).
- Combination of relative humidity and electric field during device operation results in electrochemical reactions affecting the life time of M/NEMS devices.

Conclusions

- MEMS-based microinstruments allow for tribological studies under conditions and materials systems of direct technological interest, and over a fundamentally interesting length scale.
- CBA analyses highlight the intriguing effect of surface chemistry and roughness on adhesion between polysilicon surfaces.
- 2AM-DC analyses suggest that the wear processes involving polysilicon surfaces may be differentiated into three phases.
- SAMs and SiC are effective in reducing the tribological challenges in MEMS technology.

