Inkjet Printing for Advanced Semiconductor Packaging: *Pillars and Through-silicon Vias (TSVs)*

Jacob Sadie, Vivek Subramanian

Department of Electrical Engineering and Computer Sciences University of California, Berkeley

"Smaller, faster, lighter, cheaper..."

CMOS scaling drives the need for denser, higher performance, and higher reliability packaging

The Future of BEOL Packaging

Next Generation Packaging Approaches

FUNDAMENTAL PACKAGE PERFORMANCE METRICS:

Pin Density
Pin Count
Transistor Density

Copper post and solder cap

Fan-in and fan-out design Through-silicon vias (TSVs)

Novel approaches are needed to meet demands of new applications that require higher density and thinner packages.

Conventional Post Processes

Passivation / Under Bump Metallization / Cu Electroplating / Solder Reflow

Complex Process Prone to Intermetallics Pb-free solders still problematic

4

Conventional TSV Processes

Liner Deposition / Cu Electroplating / CMP / Wafer Thinning

Pattern-sensitive Expensive Keyholes and Stress Concerns Difficult Scaling

Inkjet-Printed Electronics

5

Research-Grade Inkjet Printing

Inkjet Printing for Packaging Applications

- ✓ Additive
- Adjustable-on-the-fly
- Vacuum-independent
- Mask-independent
- ✓ Scalable
- Diverse material set
- New substrate technologies
- Inkjet critical dimension smaller than projected packaging scaling trends

Inkjet printing positioned as a viable long-term solution for packaging materials deposition, but materials and processes still require development

Nanoparticle inks offer compatible processing temperatures, improved material and substrate selection, and reduced cost for interconnects

Kubelka-Prag, Zuchr. Elektrochem., 38 (8a), pp. 611-614 (1932)
 Buffat and Borel, Phys. Rev. A, 13 (6), pp. 2287-2298 (1975)
 Huang *et al.*, J. Electrochem. Soc., 150 (7), pp. G412-G417 (2003)

9

The Challenges:

How can we inkjet-print metal nanoparticle inks in three dimensions?

How does sintering alter the material properties of these structures?

How do these structures compare to conventional materials/processes?

Pillars

3D Printing Technique

Using a drop-wise printing on heated substrates, we are able to fabricate freestanding pillars. <u>Drop frequency</u> and <u>substrate temperature</u> are primary controls₁₂

13

14

High Aspect Ratio Pillars

Adjusting substrate temperature and jetting frequency allows us to achieve pillars with very high-aspect ratios

Material Properties of Importance

In these relatively large nanoparticle-based structures, how does sintering proceed/determine the ultimate material properties?

Pillar Resistance Model

Thin-film nanoparticle inks commonly use **Resistance Model:** resistance as metric to indicate degree of 1. Pillar is perfect cylinder $R_{pillar} = \frac{\rho_{pillar}h}{$ sintering. 2. After taper regime: How do we do the same for our pillars? $h \propto drops$ $R_{pillar} \propto h \rightarrow R_{pillar} \propto drops$ 3. Resistivity a function of sinter condition: - 1 hour 3 hour $\rho_{pillar} \rightarrow \rho_{pillar}(t,T)$ 8 4 hour 7 Average Resistance (Ohm) 8 Incomplete sintering after 1 hour 5 Nearly complete around 3 hours 4 3 When sintering complete, resistivity should be constant 2 as drop number increases and 1 resistance should be 0 proportional to drop count 100 120 140 160 180 D 20 40 60 80 Drops 16

Pillar Resistance Model

Thin-film nanoparticle inks commonly use

Pillar Resistance as a Function of Sintering

Highest extracted conductivity outperforms conventional eutectic solder but still requires higher thermal treatment

Highest extracted modulus (29 GPa) comparable to conventional eutectic solders

20

Pillar Shear Strength

- Printed arrays of pillars (nominally 20 pillars per array)
 Oven-sintered each array for one hour
- Performed shear testing with Dage 4000 at 100
- μm/s shear rate
 SEM images used to characterize failure mechanisms
- Observed Failure Mechanisms:
 Interfacial failure
 Sloped Ductile failure
 Flat Ductile failure

Shear Strength and Failure Rates

Pillar Compaction 1. 2. 140 Width World eight 120 100 2 (ind) Change 80 30 60 Parcent 20 Array ID Sinter Temperature (*C)

Using confocal 3D microscope, measured pillar height and width as a function of sintering conditions

Key Results:

Highly uniform printing (fig 1) with height and width tolerances within 1.5 µm each Pillars exhibit both lateral AND vertical compaction Extracted volume compaction of 53% in highest sintering condition Compaction primarily driven by substrate temperature as opposed to sinter time

Properties \Leftrightarrow Structure/Composition

- All observed dynamic properties must correlate to change in structure or composition of printed features
- During sintering, de-encapsulation and outdiffusion of nanoparticle encapsulant will cause shifts in electrical and mechanical response of pillars
- Ideal situation is complete removal of all carbonbased encapsulant, but highly likely carbon becomes trapped inside structures
- Tests to investigate these questions include focused ion beam (FIB) and energy-dispersive x-ray spectroscopy (EDX)

FIB Milling of Sintered Pillars

FIB Milling and Sample Preparation:

1. Sample placed on 45° and placed into tool

2. Sample tilted 7° to align axis along FIB beam for milling down center of pillar (beam current in nA range)

3. Sample tilted 45° to polish small section of milled pillar to prepare for EDX scans (beam current in pA range)

FIB Milling of Sintered Pillars

FIB of pillars sintered to varying degrees result in extremely varied milled surfaces:

Waterfall effect: Effect whereby milled surfaces exhibit a curtain-like appearance; often attributed to highly disparate atomic masses in material composition (e.g. C and Au)

- Observed in 150 C and 175 C condition but not 200 C condition
 - \rightarrow Evidence of waterfall effect is qualitative measure of quantity of residual carbon content in pillars

Cracking:

٠

· Cracks seen in mildest sintering condition only

EDX Scans of Polished Pillars

Require smooth surfaces to more confidently assess material → Only able to perform reliable scans on 200 C sintered structures (after 10 pA polishing prep)

Results:

.

- Compare C and Au peaks throughout pillar
- In base and center scans (a.-c.), Au is predominant element observed, with C signal roughly half of Au signal
- At top of pillar (d-e), C and Au signals comparable and C primarily located at center of pillar

Sintering front moving from bottom to top of pillar and carbon at center has potential to remain trapped in structure (longer path for outdiffusion)

Putting it All Together: A Cross-Sectional View of Sintering Front

Pillar Review

- Uniform/reliable 3D-printing process of functional inks
- High conductivity pillar structures at sinter temperatures not to exceed 200 °C
- Elastic modulus comparable to conventional eutectics
- Shear strength comparable to conventional eutectics at eutectic process temperatures and comparable to bulk properties at 300 °C

Through-silicon Vias (TSVs)

Inkjet-Printed TSVs: Fill and Bump

Leverage existing solder bump process to establish TSV nanoparticle process

The ability to both fill AND bump in the same process is a highly impactful and unique capability of inkjet-printed TSVs 31

Complete arrays of filled and bumped TSVs fabricated by tuning the printing parameters: substrate temperature, drop delay, and total drop count 32

Keyhole-free Via Fill and Bump

*All scale bars represent 20 μm *All TSVs sintered at 200 °C for 60 min

33

TSV Bonding Schemes and Test Structures

Electrical and Mechanical Performance

Sample bonded and prepared for electrical testing

	Extracted Resistance (Ω)	Conductivity (S/cm)
TSV	3.5E-02	3.34E03
Pillar	1.2E-02	7.58E04
Bulk Gold	N/A	4.54E05

Extracted resistance less than 1 Ω , but conductivity still much lower than printed pillars and bulk gold

Metal nanoparticle-based inkjet-printed TSVs show much promise for future TSV filling and bumping applications.

TSV Review

- Successfully transitioned solder bump inkjet processes to TSV filling and bumping process
- Demonstrated complete process flow for flip-chip bonded TSV die including reflow-like behavior during bond
- TSV mechanical and electrical properties show much initial promise. Plenty of room to improve performance with optimized sintering and bonding processes.

Acknowledgements

- Ultratech, Inc.
- DARPA
- Berkeley Sensor and Actuator Center (BSAC)
- The Printed Electronics Group at Berkeley
- Marvell Nanolab

