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Outline

e Introduction to single event upsets and the need for ultra-low
emissivity materials

e Sources of alpha particles in materials used in semiconductors
e Large-area alpha particle detectors in use

e Requirements for industry-wide low-emissivity a-particle
standard

e Results from the alpha particle consortium and an XIA study
e Working together on an industry standard

e Summary
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Single Event Upsets, Definition and Origin

e Single Event Upsets

—Errors in computer chips (memory & logic) that don’t cause
permanent damage

—Created by passage of energetic ionizing radiation through the
sensitive volume of chips

—This can be a major reliability problem in servers, laptops, smart
phones, pacemakers, electronics near radiation sources

e Sources of single event upsets:

—-Alpha particles from chip packaging (ceramic, underfill,
interconnects, contamination)

—Cosmic rays which create highly ionizing particles when they interact
w/ silicon

—Thermal (slow) neutrons from 19B interactions 1°B(n, «)
o With technology scaling (shrinking dimensions)

operational voltages decrease, the critical charge required to flip a bit
also decreases, however the size of sensitive area decreases too
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Sources of alpha particles

Plastic Package

Solder Bump or C4 — Pb, Sn, Sn-alloys
Copper Wiras Chip Wiring Insulation QL
Contact Studs I
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210pp and 419Po, transition from Pb to Pb-free

Alpha activity increases for ~ 2.5 years for newly refined Pb, then decreases

Evidence of Po in some Sn, diffusivity of Po in Sn under study, ?°Po in decay chain of 238U

Secular equilibrium from 21°Pb 2 210Pg

86
11
1 - ]
0.9 / |
N 0.8 / ———
= 84 2Pl x 07 -
Q 138d \ 206 1t
- 210R; \ﬁdecay 2
5.304 MeV Bi 205 ]
g 5.01d 0.4 ]
© g2 206pp 210pp 0.3 I
c stable 223y 0.2 ]
o 0-1'
= 0
< o 1 2 3 4 5 6 7 8 9 10
80 year
124 126 128 130

Number of neutrons, N

5 | © 2006 IBM Corporation




Atomic number, Z

94

92

90

88

86

84

82

80

| IBM Research Group

238() decay chain > 20Pb (stable)
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232Th decay chain = 298Pb (stable)
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210Po: Brett Clark, SCV SER Workshop 2012

Alpha emissivity increases in time from 21°Po diffusion (not approach to secular equilibrium)
The emissivity increases due to heating
Each heating cycle caused less influence than the previous heating cycle

Emissivity vs. Time: 2'°Po doped Sn
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Alpha emissivity, contamination from U, Th on a Silicon Wafer

0.1 ppb U and 0.2 ppb Th in
a silicon slab causes an alpha
particle emissivity of 0.5 a/khr-cm?

These levels are measurable with
neutron activation or special ICP
techniques

Martinie, et al.
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Alpha component to SEU, scaling data for SRAM
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Alpha component at 40 nm is ~ 40% of total, and emissivity is 0.92 a/khr-cm?
The alpha component is decreasing due to “stringent material selection”

Autran, 2012 IRPS, p. 3C.5.1-9, submitted for publ. IEEE TNS 2014.
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LOD drives need for large area samples, low background detectors

Level of detection

where:

LOD = level of detection

There is a clear benefit to

G B large-area samples, low
t 2 i 2 n=1.64 for 90% confidence background and |arge
. . * G B - - -
LOD=no=n o G, B, sample and background counts | | detection efficiency
&
A=sample area
g=counter efficiency
10 10 ~o
S S~ S N
S N
\ ) - B [~
\\‘ R N N \\\\
8 ~ N T~ | bdckgrmound, cts/hr S ™~ T~ [T
N TS N £ SN NN
G \ \\\ N o \\~ N \\\ \
£ NN \b\‘ SN 5 £ N~ NS N
3 N \\ - \\ 3 ‘\‘ | \\\ N
o) ~. N 7 a NS -
9 B \\ o~ 9 ~ h T~
N1 N1 i N N
il e ""“'”ﬂ“‘?t}_\ \: "~ TT """"""""‘P‘:"j
1| (] TN TR \+
0.1 11102 LM 01 1
1 10 2 days 100 2.5 weeks 1000 1 10 100 1l days 1000
time (hr) time (hr)

300 mm diameter sample

11 |

200 mm diameter sample

© 2006 IBM Corporation




| IBM Research Group

Large-area alpha particle detectors in use by the Semi industry

Pros

cons

Proportional counters

Alpha Sciences
http://www.alphacounting.com/Model_4950.ht

Ordella

http://www.ordela.com/PDF/8600A-LB.pdf

ml

-Large amplitude signal
-Relatively inexpensive

-Simple to operate

-AS, multiple wafers, < 3600 cm?

-Background controlled by counter materials
(ultra-low emissivity materials)

-Thin, AE counter (no energy into)

-Fragile window (Alpha Sciences)

-High background (> 2 a/khr-cm?)

-Need to measure background often due to
fluctuations

-Sensitive to EMI noise, vibration

-Poor signal/ noise for ULA samples

-Single sample (Ordella)

lonization counters
XIA LLC

http://www.xia.com/UltraLo/index.html
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-Active signal discrimination
-Very low background

(~0.3 a/khr-cm?)

-Energy information available
-Insensitive to noise, vibration
-Can accommodate large sample
(1800 cm?).

-Small amplitude signal
-Somewhat expensive
-Single sample
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Results from Alpha Consortium, Aluminum alloy, first round

Selected ﬁA Results
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Variability is large, what is the “correct” emissivity?

Jeff Wilkinson, SCV SER Workshop 2012, Wilkinson, et al. IRPS, 2011, pp. 5B3.1-5B3.10
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Results from Alpha Consortium, ceramic, second round
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Variability is large, what is the “correct” emissivity?

Wilkinson, et al. IEEE TNS, Vol. 61, No. 4, 1516, (2014)
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Results from Alpha Consortium, 2307 point source, second round
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Variability is large, this time we_know the “correct” emissivity for this source

Wilkinson, et al. IEEE TNS, Vol. 61, No. 4, 1516, (2014)
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Results from XIA controlled study Huge variation and

‘negative” emissivities
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McNally, et al., Nucl. Instr. Meth. A, 750, 96, (2014)
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Results from XIA controlled study

17

Location

UltraLo-1800 ULA Sample Results

SULA-S;
— 0 —

‘altitude’ effect

0.5 1 1.5
Emissivity (oa/khr-cm?)
McNally, et al., Nucl. Instr. Meth. A, 750, 96, (2014)

-Gordon, et al., IEEE TNS
_VoI. 59, No. 6, 3101, (2012).
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Requirements for an industry-wide standard

e In the first alpha-particle consortium, the lab to lab variability was larger than the
current alpha-particle specification

e JEDEC 221 standard
— Describes best practices for accurate low level measurements
— Lacks standard for inter- or intra-lab comparison

e Large-area source requirements
— Thick source (to mimic most samples with Th & U), 4 MeV < Ea < 8.8 MeV
— Emissivity ~2 a/khr-cm? up to ~20 a/khr-cm?
— “Known” emission rate (hard to know)
— Stable emission with respect to time, energy
— Robust for shipping/ handling
— Material should be difficult to contaminate
— Emissivity should be uniform within ~ 1 cm? area
— Ideally we would have several NIST-traceable standards available
— Minimize contamination by radon (or handling)

e Concerns
- ‘altitude’ effect- results from SULA and some ULA samples will depend on altitude/ shielding
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Gordon, et al., IEEE TNS, Vol 59, No 6, 3101, (2012)

Radon daughters plate out on samples exposed to air

Number of neutrons, N
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Radon Issues- data
Sample stored in dry N,
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Possible material for a large-area, ultra-low emissivity standards

e Titanium sheet (from consortia measurements)
e Oxygen free copper sheet
* Sn sheet

e Electrically-conductive material on substrate

“low-alpha particle emission electrically conductive coating”
US Patent 8815725, Gaynes, Gordon, Lewandski

e S/ wafer

e Point sources, 239Th,147Sm
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147Sm, a low-energy a-source
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http://www.nndc.bnl.gov/chart/
Chart of the Nuclides, GE, 13t ed.
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Summary

e The semiconductor industry needs material certified at the
ULA (2a/khr-cm?) level, with lower levels in the foreseeable
future, to ensure proper operation of alpha particle detectors.

* A new class of detectors is capable of making measurements
of ULA materials reliably.

e We need a stable calibration source to routinely assess the
performance and repeatability of measurements of our alpha
particle detectors and to compare samples measured at
different sites.

e We have requested the help from NIST to add creditability to
this work, and to provide certification/ calibration.

e We have several possible candidates for standards.
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