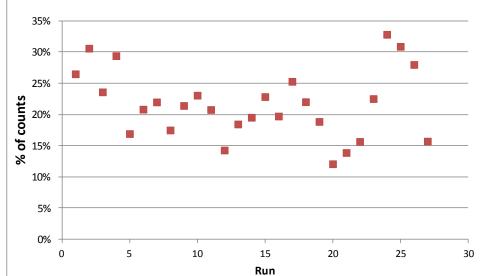
Characterization and Mitigation of Radon and Cosmogenic Influence on Alpha Emissivity Measurements

Brett Clark¹, Stuart Coleman², Brendan McNally²

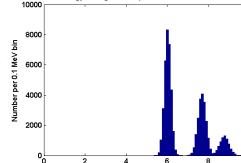
¹Honeywell Electronic Materials, Spokane WA ² XIA, Hayward CA

IEEE SER Workshop October 16, 2014 Honeywell

Alpha Metrology: Current state


- 2.0 cts-khr⁻¹-cm⁻²
 - For 300 mm wafer:
 - 1.4 α/hr or 34 α/day
 - Brazil nuts: 47 cts-khr⁻¹·cm⁻²
 - Challenging to measure even with improved instrumentation
- Small sources of variation can significantly impact results
- Considerable work over past several years to understand sources of variability
- Significant supply chain risk associated with measurement variability in results near specifications
- Everyone is either a supplier or purchaser, or both

Ambient Radon Concerns


- Previously reported
 - Gordon et. al IEEE TNS, VOL. 59, NO. 6, DECEMBER 2012 Energy Histogram of Alphas From ²²⁰Rn and ²²²Rn
 - Rn/Daughter alphas > 6 MeV
- Location/Location variability significant
 - Spokane 15-30 Bq·m⁻³ vs 3 Bq·m⁻³
 - ~1x10⁵ Rn atoms/L

100 Rn atoms = 0.5 cts-khr⁻¹-cm⁻² effect

- 0.1 % ambient Rn deposition
 - >< 2.0 cts·khr⁻¹·cm⁻² samples
 - Samples stored in N₂ purge chamber
 - >1-2 minute exposure time
 - Initial 5 hr rejection
 - 12-33% impact

0 L 0 2 Anode Energy [MeV] Rn/Daughter impact on 72 hr Measurements

5 hours rejection insufficient – but time is money

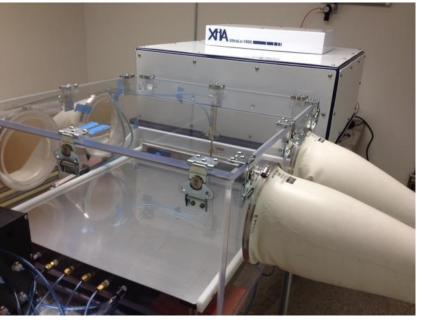
Honeywell

Glove Box Design

Goals for UltraLo Glove Box:

- Radon mitigation

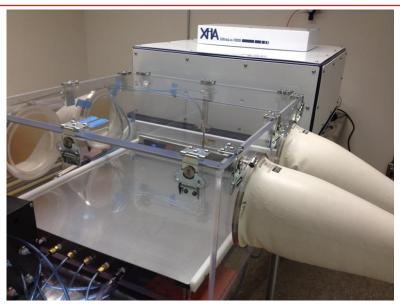
• Reduce exposure to ambient radon so no time cuts needed.

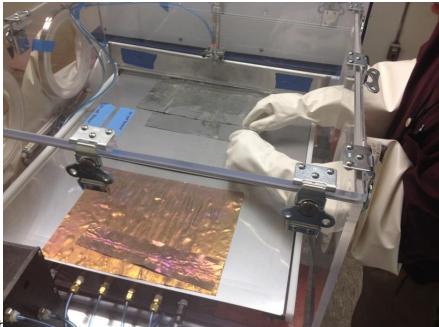

- Moisture mitigation

• Reduce 45-minute purge as much as possible

- Ease of Use

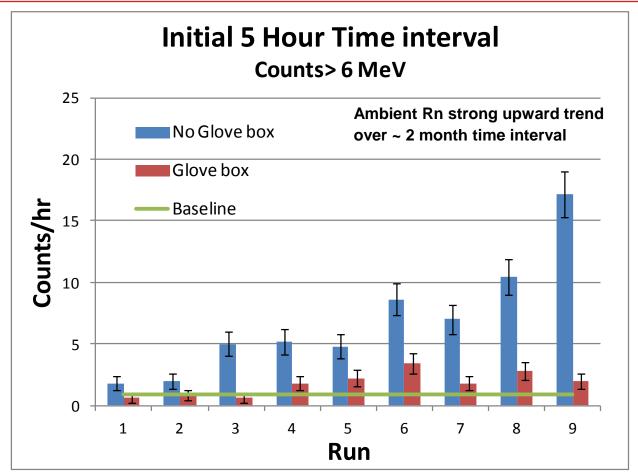
• Make mating to counter and introducing samples easy and convenient.




- Comparative reduction: Glove box vs Standard procedure
 - Ambient Rn 15-30 Bq/m³
 - Ultra Low Activity samples (<2 cts·khr⁻¹·cm⁻²)
 - ~ 2 minute exposure for standard procedure
 - Samples in glove box minimum of 48 hours prior to counting
 - Sample exchange inside purge box utilized
 - 45 minute instrument Ar purge prior to measurement start
- Examine events >6 MeV over initial 5 hours to assess Rn reduction
- Data collected over 8 weeks
- Evaluate data vs baseline reference
 - Baseline 0.89 cts/hr on average in the 6-10 MeV range

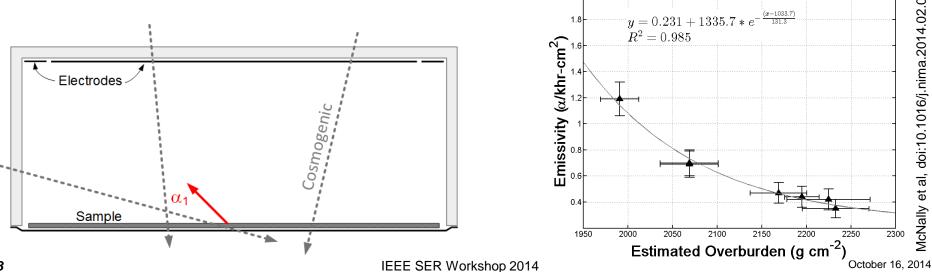
Glove Box Operation

Honeywell



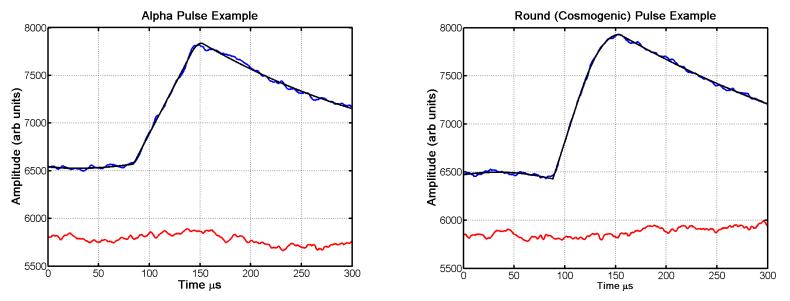
R Worksh

Field Testing Results



- Rn reduction factor 2-9x depending on ambient
- Residual effect from air gap most likely contributor

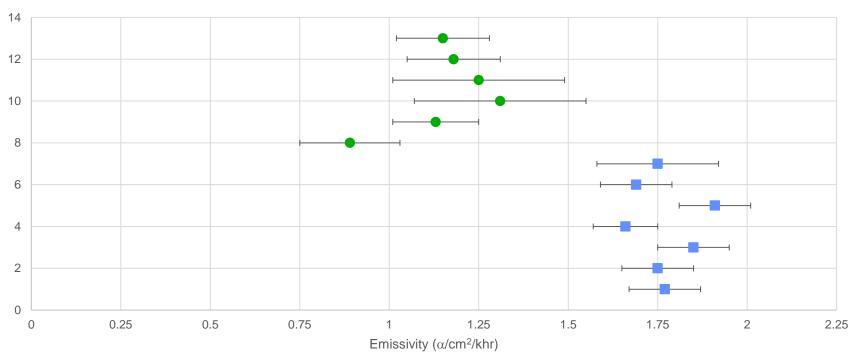
Glove box effectively removes Rn to near baseline


Cosmogenic Effects on Alpha Counters

- Historically, gas-filled detectors were most commonly used for measuring fluxes of cosmic radiation
- Proportional counters make two measurements and subtract, hoping to sufficiently account for this effect
- Detailed studies recently conducted with UltraLo-1800 which has some cosmogenic discrimination built in Overburden vs Emissivity (SULA-Si-1)

Cosmogenic Differentiation Challenge

Examples of alpha & round pulses @ ~ 2 MeV

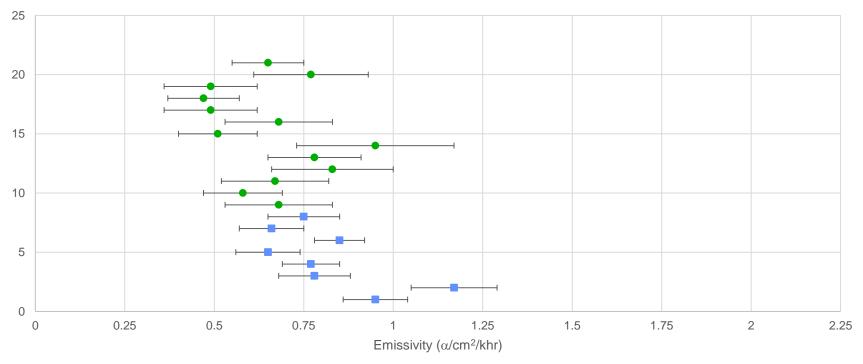

- Alpha vs round event discrimination 'efficiency' decreases with energy (i.e. lower S/N)
 - Pulse Noise + curve fitting error = misclassification
 - On the order of 3-4% Round pulses misclassified
- Spokane Hourly Round rate = 15.4/hr (1800 cm²)
 - Hayward 7.5 (1800 cm²)

Lab/Lab Characterization and correction necessary

Cosmogenic Effect: 600 M Elevation

EULA Measurements: Spokane

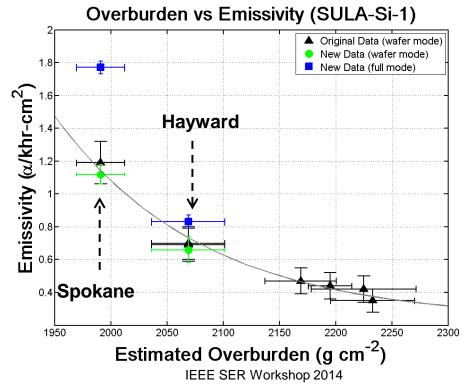
Full Configuration
Wafer Configuration



- EULA Reference Sample <0.3 cts-khr⁻¹·cm⁻²
- Average emissivities:
 - 1800 cm² = 1.8 cts·khr⁻¹·cm⁻²
 - 707 cm² = 1.2 cts·khr⁻¹·cm⁻²

Cosmogenic Effect: 50 M Elevation

EULA Measurements: Hayward



Average Emissivities:

- 1800 cm² = 0.83 cts·khr⁻¹·cm⁻²
- 707 cm² = 0.66 cts·khr⁻¹·cm⁻²
- Consistent with previously reported wafer mode data

Overburden Model revision

- Additional data consistent with previous observations
- 1800 and 707 different response vs overburden
 - Discrepancy due to different solid angle effects
 - Effect amplified with altitude
- Error in model warrants site specific cosmogenic factor determination

Honeywell

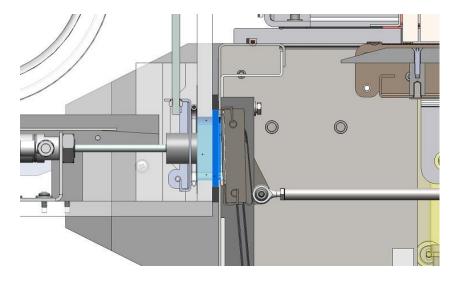
Conclusions

- Improvements in 2 key areas identified to enable timely, accurate data
- Radon mitigation
 - Increasingly important in elevated Rn environments
 - Glove box effective at reduction
 - Eliminate necessity to count longer

Cosmogenic bias

- Estimated 3-4% of cosmic events registered as alpha events
- Extensive characterization at multiple sites completed
- Overburden model updated
- Site specific correction factor required to normalize results between laboratories

Acknowledgements


Honeywell

- IBM Use of the EULA activity large area sample
- Honeywell: Taylor Johnston, Sam Weber

Glove Box Testing at XIA

- XIA's ambient Rn levels are low, ~10 Bq/m³.
 - Tests run comparing standard desiccator box to mating glove box showed improvement: 2.08 vs. 1.48 α/kh/cm², respectively.
 - Difference is noticeable but acceleration would help.
- Accelerate testing with Uranium ore.
 - Put ore in sealed container, use that to introduce high-activity (~1kBq/m³) air into gap between counter and glove box.
 - Test with no purge and with a purge of that volume.
 - Results: 31.7 vs 2.11 α/kh/cm².
 - Moisture results good.
 - Reduces purge time from 45 to 7 minutes.

