Tools for Thermal Analysis: Thermal Test Chips

TOM TARTER, PRESIDENT, PACKAGE SCIENCE SERVICES LLC
IEEE/CPMT SCV EVENING TECHNICAL DINNER
DECEMBER 10, 2014

PACKAGE SCIENCE SERVICES LLC 3287 Kifer Rd. Santa Clara, CA 1-408-969-2388 www.pkgscience.com

Introduction

- Most products today need some knowledge of the cooling solution, often before the device or system is complete
- Many times prior to having working silicon or complete system information the thermal components must be identified, procured and evaluated
- ► Estimations based on experience, models, supplier input, data sheets, etc. guide the design team to the most cost-effective solution
- With decreasing gate length and pitch, many more functions can be placed in smaller regions, creating hot spots and temperature gradients

Test Chip Study

- Thermal models are generated to illustrate an application of an array of unit cells
- Meant to simulate a typical flip-chip attached microprocessor or ASIC chip on a package
- Shows the capability to produce hot spots and the versatility of a typical array
- Quarter symmetry

#					
	Component	Geometry	Description		
	Chip array	20.32mm, square	8x8 (1002), 20x20 (1001)		
	Bump 24x165um bumps		100um standoff height,		
	per unit cell		underfill		
	TIM	20.32mm x 0.1mm	Between chip backside		
			and heat sink		
	Heat sink	27mm, 2.54mm	Cu, 1mm pitch		
	base, 5mm fin				
	Substrate	27mm x .5mm	BGA package		

Table 2. Power Density (PD) T _J ≤125°C					
Parameter	2.5mm	1mm	Unit		
$I_{ m IM}$	0.89	0.55	A		
R	7.5	10	Ω		
Pd (per R)	5.9	3.0	W		
Area (min)	0.018	0.00606	cm ²		
PD_{MAX}	330	499	W/cm ²		

#	Table 3. Power Mapping (20mm square die size)						
	Cell Size	No. Resistor	Pd/ Cell	Pd/ Hotspot*	No. Hotspot	Pd Total	
	2.5mm	128	0.5		0	64	
	2.5mm	127	0.5	5	1	68.5	
	2.5mm	127	0.5	5	2	73.5	
	1mm	800	0.08		0	64	
	1mm	798	0.08	1.66	1	65.5	
	1mm	796	0.08	1.66	2	67	
	*Power density is equivalent for both chip sizes						

Table 4. Power Calculations, smallest area in cell						
Cell Size	Cell R Area (cm²)	Pd/ R (W)	PD (W/cm²)	Cell R Dim (mm)		
2.5mm	0.0182513	0.5	27.39525	1.986 x .919		
1mm	0.0060613	0.08	13.19845	.678 x .447 (2)		
2.5mm	0.0182513	5	273.9525	1.986 x .919		
1mm	0.0060613	1.660	273.8677	.687 x .447 (2)		

Table 5. Min, Max, Average Array Model Results						
Tjmin	2.5mm	ΔT	1mm	ΔT		
uniform	93.75		94.36			
1 hot spot	105.9	12.15	98.4	4.04		
2 hot spot	119.7	25.95	102.6	8.24		
Tjmax	2.5mm	ΔT	1mm	ΔT		
uniform	98.1	-	97.7			
1 hot spot	135.8	37.7	114	16.3		
2 hot spot	150	51.9	119.2	21.5		
Tjavg	2.5mm	ΔT	1mm	ΔT		
uniform	95.925	-	96.03			
1 hot spot	120.85	24.925	106.2	10.17		
2 hot spot	134.85	38.925	110.9	14.87		

Model Summary

- ▶ Shows versatility of test chip for evaluating thermal behavior
- ▶ Can create hot spots, sections with varied power dissipation
- ▶ Very high power density, allows simulation of extreme chips
- ► Can array into any size, up to ~100mm square

Why Use Test Chips?

- ▶ EASE OF USE
- ► ACCURACY
- ▶ ARRAYABLE ADDRESSABLE VERSATILE
- ▶ LOOK AHEAD
- ▶ STACKED, MCM, 2.5 or 3D packaging
- ▶ Reduces Time-to-Market
- ▶ COOLING SOLUTION AT THE RIGHT TIME, RIGHT COST

THANK YOU!

WWW.PKGSCIENCE.COM

WWW.THERMENGR.NET

PACKAGE SCIENCE SERVICES LLC 3287 Kifer Rd. Santa Clara, CA 1-408-969-2388 www.pkgscience.com

Acknowledgements

- ▶ Thanks to Bernie Siegal of Thermal Engineering Associates
- ► A 30 Year Retrospective on Dennard's MOSFET Scaling Paper, Mark Bohr, Intel Corporation
- Precision Materials to Meet Scaling Challenges Beyond 14nm, Semicon 2013, Adam Brand, SSG Transistor Technology Group, Applied Materials
- ▶ B. Siegal, J. Galloway, "Thermal Test Chip Design and Performance Considerations", 24th Annual SEMI-THERM Symposium, 2008.
- "Ball Grid Array Technology", J. H. Lau, Editor, Mcgraw-hill, Inc. 1995, ISBN 0-07-036608-X
- K. Matsumoto; K. Sakuma; F. Yamada; Y. Taira, "Investigation of the thermal resistance of a three-dimensional (3D) chip stack from the thermal resistance measurement and modeling of a single-stackedchip", International Conference on Electronics Packaging, p.478, 2008

References

- ▶ T.-Y. Chiang; K. Banerjee; K. C. Saraswat,. "Analytical thermal model for multilevel VLSI interconnects incorporating via effect", IEEE ELECTRON DEVICE LETTERS, vol.23, p.31, 2002.
- ▶ B. Zhan, "Evaluation of Simplified and Complex Thermal Fnite Element Models for a 3-die Stacked Chip Scale Ball Grid Array Package", 29th IEEE/CPMT/SEMI International Electronics Manufacturing Technology symposium, July, 2004.
- Z. Celik, "Thermal Characterization of Various 2.5 and 3D Package Configurations for Logic and Memory Applications", MEPTEC 2.5D, 3D and Beyond: Bringing 3D Integration to the Packaging Mainstream seminar, MEPTEC/SEMI, November, 2011.
- M. Janicki, A. Napieralski, J. H. Collet and A. Louri, "Hot Spots and Core-Core Thermal Coupling in Future Multicore Architectures", 26th Annual IEEE SEMI-THERM Symposium, March 2010.
- ► Thermal Engineering Associates, Inc. Technical Briefs, www.thermengr.net/TechBrief/.