

Advantages				
Miniaturization	 Footprint reduction, z-height reduction Higher component integration (additional assembly layer 3 vs 2) 			
Electrical Performance	 Improved signal integrity Reduction of parasitic influence (higher data rates) 			
Mechanical Performance	 Higher durability and reliability through copper-to-copper connections (with copper filled micro vias) Package functions as protective enclosure High drop, shock and vibration tolerance 			
Thermal Management	 Improved heat dissipation through direct copper connection Improved heat dissipation FR4 versus air (compared to SMD) 			
Additional functions - Reduction of overall cost - EMV Shielding	EMV shielding (partial or full shielding of a package) Package is the housing no additional molding required			
Supporting the trend toward modularization	 Lower set-up costs compared to other packaging technologies (packaging versus substrate processes) Customization of module variants accomplished with digital imaging – no expensive tooling necessary (e.g. QFN,) 			
Anti-Tamper / Security	Hidden electronics preventing reverse engineering and counterfeiting			

Test Item	Specification/Requirement	Samples size	Result Passed			
Reflow Sensitivity (RS)	IPC/JEDEC J-STD-020; MSL2 cond. 3 x Reflow; no delaminations	5 Arrays (7500 single cards)				
Temperature cycling test (TCT) (-55 /+125*C /1,000 cycles)	Jedec JESD22-A104C: Increase of resistance not more than 10%	5 Arrays (7500 single cards)	Passed			
Drop Test (DT)	Jedec JESD22-B111, B104	9 Drop Test boards	Passed (Stopped at 1000 Drops)			
Temperature humidity storage (THS) (85°C/85%RH /1,000h)	IPC-TM-650 2.6.3. Increase of resistance not more than 10%	5 Arrays (7500 single cards)	Passed			
High temperature storage THS (150°C – 1,000 hrs)	JEDEC JESD22-A103, Increase of resistance not more than 10%	5 Arrays (7500 single cards)	Passed			
HAST Electrochemical migration (130°C/85%RH – 96hrs7)	JEDEC JESD 22-A110-8 No events with resistance below 1E07 Ohm	9 EM Testboards	Passed			
Solder float test (288°C, 10sec)	IPC J-STD-003, Solderbath	Q-Lot, Process control	Passed			
Solder Dip Test (270°C, 10sec)	IPC J-STD-003, Solderbath	Q-Lot, Process control	Passed			
Solderability Test (250°C)	IEC 60068-2-69, IPC J-STD-003, Must II wetting balance methode	Q-Lot, Process control	Passed			
Glas Transmision Point	IPC-TM-650 2.4.25	Q-Lot, Process control	Passed			

Reliability test board for embedded actives – Results Image: Temperature Cycle Test per JEDEC JESD22-A104 -40°C/+125°C					Failure modes
Sample ID	Cerd	Structure No.	failed at cycle	Surface/Embedded	
TE2000_58_so 4	18		584	5	
162000,20,406	20		264		
122000_20_001	26		286		and the second
122000 15 1416	15	6	AUX	5	A CONTRACTOR
H2000,28,104	20		418	5	Annual Property of the
112000,11,496	11		835	- s	
TE2000, 14, sp.4	34	i.	853	5	
112000_25.004	19	4	900	81	and the second second
162000_15_994	15		999	161	

