

Agenda

- Advanced Packaging Market Trends
- Flexibility of the APAMA Bonder Systems
- High Accuracy Flip Chip Die Placement
- FOWLP Die Placement Capability for C2W

IEEE CPMT SCV - 25 Feb 2016

2

IEEE CPMT SCV - 25 Feb 2016

11

TCB Local Reflow Process Options				
Process		Advantages	Disadvantages	UPH
Pre-applied Underfill	Paste (NCP)	Die is underfilled during TCB Mature process	Potential tool contamination Void-free underfill requires dwell Longer bond times to ensure curing	• Current 1000+ • Future 1500
	Film (NCF)	Die is underfilled during TCB Less chance for tool contamination than paste Hot transfer at 150C is now possible for high UPH	Void-free underfill requires dwell Large temperature changes required	• Current 1100+ • Future 2000+
No Pre-applied Underfill	Dip Flux	No chance of tool contamination Very short bonding process times Low forces even for high bump counts	Requires flux cleaning Requires post-bond CUF More stress on bonds before CUF Cooling to < 80C at fluxing station	• Current 900+ • Future 1500
	Substrate Flux	Fluxing processes demonstrated Very fast and very limited bond head temp changes per cycle	Requires flux cleaning Requires post-bond CUF More stress on bonds before CUF	• Prototyped 1000+ • Future 2500+
High UPH process capability has been demonstrated for both NCF and Substrate Flux processes				

Substrate Fluxing UPH Improvement

- Flux application to the substrates has been validated with a unique printing method developed by Kulicke & Soffa
- Method applies the flux immediately prior to bonding and enables patterned flux printing
- Similar flux volume to that used in a conventional flux dip process
 - Limited flux volume ensures effective flux cleaning after bonding
- Process capability has been verified thorough SEM cross-section and bump metallurgy for several key factors in the process.
 - Flux volume applied to the substrate
 - Contact temperature of the die to the substrate
 - Die time at temperature prior to contact
 - Substrate time at temperature prior to bonding
- Two factors improve TC-CUF process UPH
 - Removing the sequential flux dip process
 - Enabling higher die transfer temperature

300°C Bond Temp

IEEE CPMT SCV - 25 Feb 2016

15

APAMA Platform Flexibility - FOWLP

- Demonstrated capability for C2W for FOWLP
 - Market requirement for both face up and face down die placement with higher accuracy
 - eWLB process face down (Infineon process)
 - TSMC InFO (and others) face up
 - 4500 UPH possible (linked to accuracy)
- Tools in evaluation with multiple Taiwan customers

Face-up FOWLP Demonstration

Wafer Info:

- Wafer type: glass
- Wafer size: 300mm
- Wafer thickness: 700mm
- Die spacing: 250um

IEEE CPMT SCV - 25 Feb 2016

24

Summary

- K&S has developed the next generation thermocompression bonder to enable cost-effective, high performance packaging
- High accuracy inherent in the equipment design enables use of the equipment for HAFC and FOWLP processes
- Equipment with the flexibility for field conversion reduces capex risk
- HAFC demonstrated for mass reflow of 30mm pitch Cu pillars
- Accurate FOWLP die placement is possible with APAMA C2W system
 - Global alignment capability
 - Face up or Face down defined by recipe

Advanced Packaging with Adaptive Machine Analytics

IEEE CPMT SCV - 25 Feb 2016

27

