

TCB Local Reflow Process Options				
Process		Advantages	Disadvantages	UPH
Pre-applied Underfill	Paste (NCP)	Die is underfilled during TCBMature process	 Potential tool contamination Void-free underfill requires dwell Longer bond times to ensure curing 	Current 1000+ Future 1500
	Film (NCF)	 Die is underfilled during TCB Less chance for tool contamination than paste Hot transfer at 150C is now possible for high UPH 	 Void-free underfill requires dwell Large temperature changes required 	• Current 1100+ • Future 2000+
No Pre-applied Underfill	Dip Flux	 No chance of tool contamination Very short bonding process times Low forces even for high bump counts 	 Requires flux cleaning Requires post-bond CUF More stress on bonds before CUF Cooling to < 80C at fluxing station 	Current 900+ Future 1500
	Substrate Flux	 Fluxing processes demonstrated Very fast and very limited bond head temp changes per cycle 	 Requires flux cleaning Requires post-bond CUF More stress on bonds before CUF 	 Prototyped 1000+ Future 2500+
High UPH process capability has been demonstrated for both NCF and Substrate Flux processes				
IEEE CPMT SCV - 25 Feb 2016 11				

