Power Packaging for Computer Applications

Dr. Raj Pulugurtha, Dr. Himani Sharma, Prof. Rao Tummala

Matt Romig and Saumya Gandhi (Texas Instruments)
Agenda

- Objectives

- Trend in power modules
 - Prior Art

- GT’s advances:
 - 3D (Doubleside)
 - Panel fan-out integration

- Advanced Components

- Shielding
Objectives

- Modules
 - 1-250 W
 - Single-stage power conversion:
 - 400 V to 1V; 48 V – 1V
 - 1- 140 MHz and beyond
 - Power density:
 - 1-5 W/mm³
 - 1 W/mm²
 - <1% losses from passive components
 - Module thickness: <0.5 mm

- Thinfilm-integrated passives for IVR:
 - Inductors:
 - L/R: 20000 nH/ohm
 - 1-150MHz
 - 1-2 A/mm²
 - 200-400 microns for composite films
 - 75 microns for sputtered films on glass
 - Capacitors:
 - 1000 nF/mm² at 1-10 MHz
 - 100 nF/mm² at 10-150 MHz
 - ESR: 25-50 milliohms
 - <75 microns
 - Substrate-embedded transformers:
 - > 1W/mm³
 - <2% losses from the component
Technology Trends and Drivers

- Minimize stages of power conversion to suppress losses
- Integrated power conversion with the load:
 - Suppress I^2R losses
 - Minimize the need for decoupling capacitors
- Integration of storage elements that won’t offset the benefits or interconnection losses
- Better Power distribution network designs

- Short PDN path
- Low impedance
- Less voltage drop
- Less voltage variation
- Less de-caps
- More efficiency

Component Density vs. Interconnection Length

Discrete Modules

- PCB
- Inductor
- Cap
- Processor
- Substrate

Embedded Actives and Passives

- EMBEDDED ACTIVES
- EMBEDDED ACTIVES AND PASSIVES
- EMBEDDED ACTIVES
- EMBEDDED ACTIVES AND PASSIVES

- IC
- L
- C

Embedded in IC

Minimize stages of power conversion to suppress losses

Integrated power conversion with the load:

- Suppress I^2R losses
- Minimize the need for decoupling capacitors

Integration of storage elements that won’t offset the benefits or interconnection losses

Better Power distribution network designs
Fully Integrated Voltage Regulator (FIVR) from Intel

Strategy

- Package embedded air core inductors
- Air core inductors with low DC resistance below ICs for low parasitic losses
- FIVR for high frequency applications (140 MHz)

Components

- Air core inductors with various topologies
 - Solenoids, plated through holes (PTHs)
- Die-side and land-side MLCCs

Metrics

- Inductance: $1 - 6.7$ nH
- Current handling: $5 - 20$ A
- R_{dc}: $6 - 36$ mΩ
- Area: ~ 2.4 mm2
- Thickness: $200 - 700$ μm

Cons

- Air core inductors only have DC loss
- DC loss can be adjusted by changing the DC resistance

Pros

- For high inductance, air core inductors need more space and larger number of turns resulting high DC resistance
Fan-out Voltage Regulator (VR) from TSMC & Ferric

Strategy
- InFO™ with SoC and VR
- Silicon-integrated inductors

Components
- Magnetic thin-film inductors
 - Single inductors
 - Coupled inductors

Metrics
- Inductance: ~300 nH/mm²
- Current handling: ~1.5 A for single inductors
- Current handling: > 12A/mm²
- L/Rdc: > 200 nH/Ω for L > 100 nH
- L/Rdc: ~ 120 nH/Ω for L~ 10 nH
- Rdc: < 100 mΩ

Pros
- Magnetic cores can provide more inductance with less number of turns resulting in low DC resistance
- Low hysteresis and eddy current loss

Cons
- Magnetic saturation limits current handling
- Thicker films – reduce throughput and increase cost
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Inductors</td>
<td>L comes for free</td>
<td>Good properties</td>
<td>Good properties</td>
<td>Good properties and</td>
</tr>
<tr>
<td></td>
<td>MLCCs getting</td>
<td>and performance</td>
<td>Power losses</td>
<td>performance</td>
</tr>
<tr>
<td></td>
<td>thinner</td>
<td></td>
<td></td>
<td>Low cost</td>
</tr>
<tr>
<td>Large footprint</td>
<td>Cost</td>
<td>Process-integration</td>
<td>IPD assembly or embedding</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Power handling</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Power Converters with high volumetric density

ECP (AT&S)
- Embedded component packaging (ECP™)
- Discrete components embedded in substrates

MicroSIP (TI)
- Low-power DC-DC converters with embedded IC

Shinko
- Discrete inductors
- Discrete capacitors

TDK-EPC
- Capacitor
- Inductor
- Capacitor
- PCB
- IC
- Solder Ball
- MicroSIP™ Module Cross-Section (Courtesy of System Plus Consulting)
Competitiveness of GT Approach with Embedding Si Integrated Ta Capacitors

<table>
<thead>
<tr>
<th></th>
<th>• Discretes</th>
<th>• Embedded ICs</th>
<th>• 3D Packages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inductors</td>
<td>• Ferrites;</td>
<td>• Embedded or</td>
<td>• Thinfilm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SMDs</td>
<td>inductors</td>
</tr>
<tr>
<td>Capacitors</td>
<td>• MLCCs</td>
<td>• MLCCs</td>
<td>• Thinfilm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>capacitors</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>EFFICIENCY</th>
<th>POWER HANDLING</th>
<th>SIZE</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yellow</td>
<td>Green</td>
<td>Red</td>
<td>Yellow</td>
</tr>
</tbody>
</table>
LC Integration with Film Capacitors and Inductors

- Both capacitors are inductors are made as large-area free-standing films
- Can be pre-tested for yield and performance
- Laminated onto substrate or wafer
 - (Or Diced into IPDs and embedded or surface-assembled)

Capacitor Layer at panel scale

Inductor layers at panel scale

Large panel LC integration process
Silicon-Integrated Nanoscale Ta Capacitors

Component Manufacturer (Ex. AVX)

Ta foil

Anode Cathode

TI Wafer

Use standard infrastructure with “next-generation” standard materials
Competitiveness of GT capacitors

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Si deep trench</th>
<th>Discrete MLCC</th>
<th>Foil Capacitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component thickness (µm)</td>
<td>~ 200-300</td>
<td>200</td>
<td>75</td>
</tr>
<tr>
<td>Capacitance (µF/mm²)</td>
<td>1-2</td>
<td>2-3</td>
<td>2-3</td>
</tr>
<tr>
<td>Frequency (MHz)</td>
<td>-</td>
<td>150</td>
<td>1 - 150</td>
</tr>
<tr>
<td>Leakage current (µA/µF)</td>
<td>0.1</td>
<td>0.01</td>
<td>0.01</td>
</tr>
</tbody>
</table>

![Image of GT capacitors](image_url)
Capacitor Reliability

65°C/95%RH for 500 hours

- Capacitance response to frequency similar before and after exposure to elevated temperatures and moisture
- Improved ESR after testing
- Parylene sufficient hermetic seal that removes need for casing

65°C/95%RH for 1000 hours

- 1.15 µF/mm² at 1 MHz
- 1.34 µF/mm² at 1 MHz
- 1.19 µF/mm² at 1 MHz
- 1.09 µF/mm² at 1 MHz

80 kA-8V
200 nm Parylene
GT Program in Silicon-Integrated Foil Capacitors

Component Manufacturer (Ex. AVX)

Ta foil

H.C. Starck

Heraeus

Power modules with passive-active integration

Anode

Cathode

Wafer or substrate
Why high-voltage and high-temp capacitors:

High-power inverter and battery chargers:

- DC link capacitors;
 supress noise from pulsed inverter current and stray DC bus inductance

Key challenges:
- Higher voltage (200-900 V)
- High-temperature stability (115-175)
- Higher volumetric density for miniaturization
High-Temperature and High-Voltage Capacitors

<table>
<thead>
<tr>
<th>Operating voltage</th>
<th>Capacitance</th>
<th>Case-size (in mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 V</td>
<td>120μF</td>
<td>Diameter: φ25 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Length: 30 mm</td>
</tr>
<tr>
<td>400 V</td>
<td>68μF</td>
<td>Diameter: φ20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Length: 30 mm</td>
</tr>
</tbody>
</table>

AMS’ metallized polymer film capacitors

700 V; 625 A current;
68 mm x 34 mm x 30 mm

Safron’s polymer film capacitors

EPCOS: MLCCs with PLZT
11 microfarad/cc; 350 V

400 V formed dielectric

Electrolytic caps Vishay
Theoretical versus Achieved Volumetric Density for 450 V Applications

<table>
<thead>
<tr>
<th>Material</th>
<th>Capacitance Density (nF/mm³ or microfarad/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polymer film</td>
<td>10,000</td>
</tr>
<tr>
<td>Al Foil</td>
<td>40,000</td>
</tr>
<tr>
<td>Cu with hybrid</td>
<td>70,000</td>
</tr>
<tr>
<td>HV MLCC (CZT)</td>
<td>50,000</td>
</tr>
<tr>
<td>HV MLCC (PLZT)</td>
<td>30,000</td>
</tr>
</tbody>
</table>

Technology Gap (between current status and theoretically achievable)
Thin Planar HV and HT Capacitors

- Porous copper electrodes with hybrid dielectrics
- Layering with high thermal conductivity adhesives
- High thermal-stability adhesives
- Vias and metallization
- Solder termination with through-vias
- 3D stacking for unlimited scaling up in capacitance

8-9 microfarad/cm³
450 V
85-115 C

40 microfarad/cm³
450 V
>175 C

Porous copper Electrode

Conformal counter electrode
Inductors - Prior Art

<table>
<thead>
<tr>
<th>Parameters</th>
<th>On-chip inductor</th>
<th>Discrete inductor</th>
<th>GT-PRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>L/R (nH/mΩ)</td>
<td>0.18</td>
<td>23</td>
<td>~20</td>
</tr>
<tr>
<td>Overall losses</td>
<td><1%</td>
<td><1%</td>
<td><1%</td>
</tr>
<tr>
<td>Current handling (A/mm^2)</td>
<td>3-4</td>
<td>0.6</td>
<td>2</td>
</tr>
<tr>
<td>DC resistance (mΩ)</td>
<td>1200</td>
<td>5.2</td>
<td>5</td>
</tr>
<tr>
<td>Thickness (μm)</td>
<td>~100</td>
<td>900</td>
<td>100-700</td>
</tr>
</tbody>
</table>

Sputtered nanomagnetic on Si

Ferrite inductors- Discrete

TSMC on-chip inductors

Coilcraft inductors
Advanced Magnetic Substrates

Graph:
- Sheet A
- Sheet B
- Sheet C
- Sheet D

Table:

<table>
<thead>
<tr>
<th>Sample</th>
<th>Frequency [MHz]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Sheet A</td>
<td>182</td>
</tr>
<tr>
<td>Sheet B</td>
<td>141</td>
</tr>
<tr>
<td>Sheet C</td>
<td>92</td>
</tr>
<tr>
<td>Sheet D</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td><0.2</td>
</tr>
</tbody>
</table>

Nitto Denko Corporation

Diagram:
- Polymer insulation
- Magnetic sheets
- Copper winding
- Laminate substrate
- Substrate
- IC

Micrograph:
- Magnetic film
- Copper winding
Inductors IPDs with Nanomagnetic Films on 50 microns glass

Solenoid inductors

Potcor or racetrack inductors

Nanomagnetic film
: T=0.2um

Inductor: T=10um

Oxide: T=0.1um

Glass: T=100um

3 layers at the top
: 3 nanomagnetic films & 3 Oxides

1 layer at the center
: 1 nanomagnetic film

3 layers at the bottom
: 3 nanomagnetic films & 3 Oxides

Inductance (nH)

Magnetic inductors

~10X enhancement in inductance

Permeability
Frequency (MHz)
Component- and Package-Level Shielding

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shielding</td>
<td>60 - 120 dB</td>
</tr>
<tr>
<td>Frequency</td>
<td>1 MHz – 40 GHz</td>
</tr>
<tr>
<td>Distance of separation</td>
<td>0.1 – 10 mm</td>
</tr>
<tr>
<td>Shield metal thickness</td>
<td>~5-50 um</td>
</tr>
</tbody>
</table>

Component-level shielding:
- Plated copper
- Multilayered metallic structures

External shielding:
- Spray-coated, plated, sputtered

Materials beyond copper are needed to shield magnetic fields

Field patterns for TL

Field patterns for circular loop
Package-Level Shielding Beyond Copper and Mu metal

Shielding effectiveness
1. Absorption loss (A)
2. Reflection loss (R)

Multilayered shields
- Multiple reflections inside the shield
 - More effective shielding lower shield thickness
 - Effective at lower frequencies when absorption is not effective

- Magnetic films and magnetic absorption materials
Better EMI isolation Over Cu with Cu-Magnetic structures

(a) NiFe+Ti
Cu(7)NiFe(3)
Cu(3)NiFe(7)Ti
NiFe
Cu
No shield

(b) Isolation (dB) vs. Separation Distance (mm)

Port 1
Port 2

(b) Isolation (dB) vs. Separation Distance (mm)

Port 1
Port 2

NiFe+Ti
Cu(7)NiFe(3)
Cu(3)NiFe(7)Ti
NiFe
Cu
No shield
Summary

GT-PRC is innovating power packaging technologies and also creating an industry ecosystem of material suppliers, component manufacturers and end-users:

• Capacitors in consumer power modules:
 • Silicon-integrated nanoscale tantalum capacitors

• High-temperature and high-voltage capacitors with:
 • Porous copper electrodes
 • Nanoscale inorganic – organic hybrid dielectrics

• Inductors and capacitors in integrated voltage regulators:
 • Low-cost polymer nanocomposite inductors
 • Panel-scale inductor and capacitor integration

• Integrated shielding at component and package-level
 • Materials beyond copper