
65©2011 IEEE

The Remarkable Inverse 
Distance-Squared Law
Clayton R. Paul, Mercer University, Macon, GA (USA), paul_cr@Mercer.edu

Abstract – Numerous fundamental physical laws depend on 
inverse distance as distance squared. The reason for why this 
distance must be PRECISELY SQUARED is examined. 

I. Physical Laws That Depend 
on Inverse Separation Distance Squared
A large number of physical laws depend on inverse distance 
squared as 1@R2 : NOT 1@R1.999, NOT 1@R2.001, etc. There is a 
reason why this precise squared integer power of the distance 
in these laws is required. This reason will be explained.

Perhaps the most famous inverse distance-squared law is the 
law of gravity where the force exerted on one body by the pres-
ence of a nearby body varies as the product of the masses of the 
two bodies and as the inverse of the square of the distance R
between them: 1@R2. Another of the inverse distance-squared 
laws in electromagnetics is that of Coulomb’s law for the vector 
force exerted by one stationary point charge on another nearby 
stationary point charge [1]:
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as illustrated in Fig. 1 where aR is a unit vector on a line 
between the charges and pointing away from the charges if the 
charges have the same sign.

The electric field produced by a stationary point charge is 
obtained by dividing out the second charge in Coulomb’s law 
which remains an inverse distance-squared law as shown in 
Fig. 2:
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The corresponding law for determining the magnetic field 
due to a linear, DC differential current element is the Biot- 
Savart law [1]:
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which is illustrated in Fig. 3.

Fig. 1. Coulomb’s law for two stationary point charges.
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Note that this is also an inverse distance-squared law. The dif-
ferential magnetic field, d B, is perpendicular to the plane 
containing the differential current and the vector from the cur-
rent to the point where the field is to be determined. Its direc-
tion is determined according to the right-hand rule. Hence the 
magnetic field forms closed loops in the circumferential direc-
tion around the current, I, that produced it.

II. Vector Mathematical Principles
The key to why the inverse distance, 1@R2, in the many physi-
cal laws must be precisely squared and not some other approx-
imately square law power of distance such as 1@R1.999 or 
1@R2.001 depends on the vector mathematics involved. All vec-
tor problems require a coordinate system. A useful coordinate 
system in electromagnetics problems is the spherical coordi-
nate system shown in Fig. 4 which also shows the differential 
surfaces [1]. Each differential surface is perpendicular to the 
coordinate axis. For example, dsr is a differential surface that 
is perpendicular to the radial distance from the origin of the 
coordinate system, r.

The physical electromagnetics laws are frequently used in 
integrals over a closed surface s for the purposes of determining 
the net flux of the law out of (leaving) the closed surface (much like 
light flux through a window) as

Flux of the Law out of the closed surface s 5 "
S

Law d ds

This is referred to as a surface integral and represents the sum-
mation of the products of the differential surfaces, ds, and the 
components of the vector Law that are perpendicular to (leaving) 
the closed surface. Note in Fig. 4 that the differential surface 
through which the flux of the Law penetrates and flows away 
from the origin of the coordinate system is

dsr 5 r2sinu du df

which involves the square of the distance from the origin of the coor-
dinate system. Observe that neither of the other differential sur-
faces, dsf and dsu, are distance squared.

III. Examples Where The Inverse Square 
Distance Must Be Present In The Law 
or The Result Would Make No Sense
An important example that shows the need for the inverse 
distance-squared law is the computation of the total average 
power radiated into space by an antenna as shown in Fig. 5.

Surround the antenna by a closed, spherical surface of radius 
R. The total power radiated by the antenna is the power out of 
the closed surface. The time-varying radiated electric field QV@mR 
and radiated magnetic field QA@mR in the far field of the antenna 
both depend on the distance from the origin of the coordinate 
system as 1@R [1]. Hence the power density in the radiated wave 
is dependent on 1@R2:
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Fig. 2. Electric field of a point charge.
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Fig. 3. The Biot-Savart law.
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+ Fig. 4. The differential surfaces in a spherical coordinate 
system.
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Fig. 5. Computation of the radiated power from an antenna.
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and is directed in the radial direction. The surface integral for 
computing the total average power radiating into space from 
the antenna through any closed surface that encloses the antenna 
becomes:
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Therefore the 1@R2 in SAV and the R2 in the differential surface 
cancel and the integrand is independent of R. Hence the total power 
radiated into space (never to return),PAV, would be a constant 
independent of the size or shape of the closed surface! If this 
cancellation of R2 were not the case, the integrand of the integral 
would be a function of R and we could change the radius of the closed 
surface thereby changing the total power radiated from the antenna. But 
the total average power radiated into space by an antenna must be 
a constant! Hence the absence of the complete cancellation of R 
would make absolutely NO SENSE! In order for the power of R2 
in the differential surface, dsr to cancel, the power of R2 in SAV

must be precisely 2.000000c. Powers of approximately 2 such 
as 1.999 and 2.001 in SAV will not work since these will not 
cancel with the R2 in the differential surface, and this fact is a 
vector algebra property and is not approximatable.

There are several other cases that show this dependence on 
the inverse-square law. First consider Gauss’ law for the electric 
field [1]. Gauss’ law provides that if we perform a surface integral 
of the electric field over a closed surface that surrounds some charge, we 
would obtain as the result the net positive charge contained within that 
closed surface irrespective of the shape of the closed surface so long as the 
surface is closed:
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as illustrated in Fig. 6 where D 5 e0 E and e0 is the permittiv-
ity of free space. Electric field lines that begin on a positive 
charge must end on a corresponding negative charge as illus-
trated in Fig. 6. Hence electric field lines that begin on posi-
tive charge within the closed surface must terminate on 
corresponding negative charge which exists either within the 
closed surface or outside it. If the negative charge exists within 
the closed surface, the associated field line does not penetrate 
the closed surface. If the associated negative charge exists out-
side the closed surface, the associated field line must penetrate 
the closed surface.

For example, consider a point charge shown in Fig. 7.
Placing a sphere of radius r around the charge, the net flux out 
of the closed surface is obtained with a surface integral as
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Hence the 1@r2 in D (or E) cancels the r2 in ds and the result 
would be independent of the size of the enclosing sphere which 
makes sense. If this cancellation did not occur, i.e., the inte-

grand did not contain 1@r2 in D (or E) and r2 in ds, the flux 
of the result (the charge contained within the sphere, Q) 
would be different for different sizes of the sphere (dependent on r) 
which does not make sense!

The corresponding law for the magnetic field is Gauss’ law 
for the magnetic field as illustrated in Fig. 8 [1]. Gauss’ law 
provides that a surface integral of the magnetic field over any 
closed surface yields a result of zero:

"
S

B d ds 5 0

Hence all magnetic field lines must form closed loops or, in other 
words, unlike the electric field due to a stationary charge, there 
are no known sources or sinks of the magnetic field. As we saw 
earlier, the DC magnetic field B depends on distance as 1@R2 as 
does the electric field both of which completely cancel the R2
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Fig. 6. Gauss’ law for the electric field.
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Fig. 7. Electric field of a point charge.
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Fig. 8. Gauss’ law for the magnetic field.
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in dsr. The result would be independent of the size or shape of the 
enclosing surface which makes sense.

If the law being considered did not contain the inverse 
squared-distance, 1@R2, it would not cancel the R2 in the dif-
ferential surface dsr on the closed surface and the result would 
not be independent of the size of the closed surface which would 
again make no sense. A power of R of other than exactly two, 
2.000000c, such as 1.999 or 2.001 would also not provide 
cancellation and would also not make any sense.

IV. Summary
Since I started studying science and, in particular electromagnetics, 
some 48 years ago I was always profoundly impressed at how the 
physical laws and their mathematical formulations are so precise and 
none are arbitrary. These are examples of that observation. It also 
seems to indicate that the creation of this universe was not accidental 
or random but was the result of planning by some higher power.
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