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Time-Domain Computation 
of Loop inductance
Edmund K. Miller, Los Alamos National Laboratory (Retired), e.miller@ieee.org

Abstract – The use of a time-domain code for modeling the 
electromagnetic behavior of thin wires is shown to provide an 
alternate way to obtain the DC inductance of wire loops. It 
involves computing the constant current that flows around a 
loop when an excitation whose time integral is non-zero is used 
to excite the loop as an antenna and the high-frequency energy 
has radiated away. Results from the time-domain model are 
found to agree within 0.1% of analytical values.

 Index Terms – Loop inductance, time-domain electromag-
netics, inductance, thin-wire loops, moment-method modeling

1. Introduction
An interesting recent article [1] described the concept of partial 
inductance and demonstrated how it can be used to obtain the 
inductance of loops of arbitrary geometry. Specific examples 
were given for the self inductance of square and triangular loops 
and shown to agree with previously derived results [2].

The purpose of this brief discussion is to show how the DC 
inductance of arbitrary wire loops can be obtained numerically 
using a time-domain computer model. The model, TWTD 
(Thin-Wire Time Domain) [3], is based on the time-dependent 
Maxwell Equations. TWTD is usually employed for modeling 
wire radiators and scatterers excited by impulsive voltages or 
plane waves to obtain their transient behavior or wide-band 
frequency response. But TWTD also provides an alternate ap-
proach for obtaining the inductance of wire loops. This can be 
done by exciting a candidate loop by a voltage whose time inte-
gral is nonzero and computing the current as a function of time 
until it reaches a constant value, Io, around the loop. 

The TWTD model is briefly described in Section 2 below. 
The computational approach for obtaining loop inductance fol-
lows in Section 3, with numerical results for a variety of loop 
geometries included in Section 4.

2. The Thin-Wire Time-Domain 
(TWTD) Computer Model
One version of a time-domain integral equation for a wire 
object in free space has the form [3]
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and where I(s9, t9) and Q(s, t) are the unknown current and 
the charge density at space location s9 and the “retarded 
time” t9 5 R/c, c is the speed of light in the medium and R
is the vector distance between the source at s’ and observa-
tion point at s. Also c and m0 are the speed of light in, and 
magnetic permeability of, free space and the exciting electric 
field is Eex(s,t). The unknown current and charge density on 
the wire can be found as the solution of an initial-value 
problem via a time-stepping procedure using the method of 
moments [3].

The TWTD model employs a nine-term polynomial basis, 
up to and including quadratic space-time variation and delta-
weight functions to satisfy the integral equation (1). It has 
been well-validated by many users, one of which [4] used the 
inductance of a circular loop for this purpose. Since the results 
presented in Section 4 serve to further validate TWTD, no ad-
ditional validation examples are included here.
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Fig. 1. The inductance of a circular loop as a function of its 
circumference as obtained from TWTD and Eq (6).
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Fig. 2. The inductance of a square loop as a function of its 
perimeter length as obtained from TWTD and Eq. (14) of 
reference [1].
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3. Obtaining Loop Inductance Using TWTD
A Gaussian-pulse voltage is a convenient and effective excita-
tion for use in time-domain modeling [3]. It is given by

 V 1 t 2 5 V0 e
32A1t2T24 2 (2)

where V0 is the voltage maximum, A is a width parameter, t is 
the time and T is the time at which the maximum voltage 
occurs. For the computations that follow, these parameters had 
the values:

 Vo 5 1−V,

 A 5 4.2 3 108 sec21,

and

 T 5 1.5 3 1028 sec.

For a loop whose low-frequency inductance is L, he constant 
current IO is then given by [4]

 IO 5
1

L
 3

`

2`

V 1 t 2dt (3)

which results from integrating the defining equation for a loop. 
Using (2) in (3) we then find

 IO 5
p1/2

AL
 . (4)

For the examples that follow a constant current around the loop 
was typically reached in 1,000 or fewer time steps of the time-
domain solution.

Thus, the inductance from the late-time TWTD current is 
simply obtained as

 L 5
p1/2

AIo
 . (5)

which was the test used previously in [4] as a validation check 
on the TWTD model itself.

4. Numerical Results for Loop 
Inductance from TWTD
Three of the loop geometries that are modeled here, circular, 
square and triangular loops, assumed to be perfect electric con-
ductors, have analytical expressions for their inductance. For 
the circle it is [6]

 Lcircle 5 rloop mo c Ina8rloop

rwire
b 2 2 d  (6)

with the loop and wire radii denoted by r
loop

 and r
wire

. For the 
square and triangle the inductances are given respectively by 
[1]

 Lsquare 5
2mo hside

p
 c Inahside

rwire
b 2 0.774 d  (7)

and 
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mo

2p
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with the side length of the square and triangle given by hside. 
The results that follow were obtained from TWTD models that 

used 20 spatial samples, or segments, per meter. For simplicity, 
the wire radius was scaled to maintain a fixed ratio between the 
loop radius and side length in the above expressions. For the 
circle rwire = 2prloop/103. For the square and triangle rwire 5
lside/50.

This results in the inductance for all three loops varying lin-
early with the loop size, as is shown in Figs. 1–3. The agree-
ment between the TWTD values and the analytical results is 
within 0.1% or so. This outcome serves primarily to validate 
the use of TWTD for obtaining the inductance of a loop, as the 
analytical expressions have been independently validated.

Three other loop configurations were also modeled. The first 
is a square loop 0.3-m on a side having a wire radius of 6 3
10-4 m and bent into a V shape. The inductance of this loop is 
shown as a function of the angle in degrees between the two 
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Fig. 3. The inductance of a triangle loop as a function of its 
perimeter length as obtained from TWTD and Eq. (19) of 
reference [1].
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Fig. 4. (a) A square loop bent into a V-shape. (b) The 
inductance of the bent loop as a function of the rotation 
angle obtained using TWTD.
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halves of the loop in Fig. 4. The inductance of the bent loop 
is seen to vary over a range of nearly 2:1 over the 172.5-degree 
variation of the included angle.

Another loop arrangement consisted of two square loops 0.5 
and 0.4-m on a side with wire radii of 1023-m and having a 
common center. The loops are concentric when co-planar with 
the inductance of the larger, outer loop determined as a function 
of the rotation angle of the inner loop relative to it. The result 
of this variation is shown in Fig. 5, varying by a little less than 
10% as the inner loop varies from co-planar to orthogonal rela-
tive to the outer loop.

The last example shown here is for a square loop that is ini-
tially 0.5-m on a side and wire radii of 1023-m. Its inductance is 
determined from TWTD as the upper half of the loop is system-
atically offset from the lower half while remaining joined to it by 
two orthogonal wires. The result for this experiment is shown in 
Fig. 6 where the inductance varies by more than 2:1 up to the 
maximum offset of 1-m, essentially increasing in proportion to 
the offset, essentially as might be expected from Eq. (7).

5. Concluding Comments
A possibly unanticipated use of an electromagnetics, time-
domain computer model, TWTD, has been demonstrated 
here for determining the DC inductance of wire loops of 

fairly arbitrary geometry. Application of a Gaussian voltage 
pulse to excite the loop as an antenna results in a constant 
current around the loop after the higher frequency energy 
has radiated away. This constant current provides a straight-
forward way to then determine the inductance, the current 
being inversely proportional to it. While an analytical for-
mula is preferable when available, the TWTD approach 
represents an independent way to obtain the inductance of a 
given loop as well as to confirm the validity of an analytical 
result. Furthermore, a more general time-domain model, 
e.g. FDTD, that permits a more complex electromagnetic 
environment to be handled, could be employed for printed 
circuit boards and other configurations that involve dielec-
tric media.
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Fig. 6. The inductance of the offset loop as a function 
of the offset length obtained using TWTD. (a) An 
offset loop.
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Fig. 5. (a) An inner loop rotated from the plane of a larger 
outer loop.(b) The inductance of the outer loop as a function 
of the rotation angle of the inner loop from their common 
plane at 0 degrees obtained using TWTD.
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The Remarkable Inverse 
Distance-Squared Law
Clayton R. Paul, Mercer University, Macon, GA (USA), paul_cr@Mercer.edu

Abstract – Numerous fundamental physical laws depend on 
inverse distance as distance squared. The reason for why this 
distance must be PRECISELY SQUARED is examined. 

I. Physical Laws That Depend 
on Inverse Separation Distance Squared
A large number of physical laws depend on inverse distance 
squared as 1@R2 : NOT 1@R1.999, NOT 1@R2.001, etc. There is a 
reason why this precise squared integer power of the distance 
in these laws is required. This reason will be explained.

Perhaps the most famous inverse distance-squared law is the 
law of gravity where the force exerted on one body by the pres-
ence of a nearby body varies as the product of the masses of the 
two bodies and as the inverse of the square of the distance R
between them: 1@R2. Another of the inverse distance-squared 
laws in electromagnetics is that of Coulomb’s law for the vector 
force exerted by one stationary point charge on another nearby 
stationary point charge [1]:

F 5
1

4p e0

 
Q1 Q2

R2  aR

as illustrated in Fig. 1 where aR is a unit vector on a line 
between the charges and pointing away from the charges if the 
charges have the same sign.

The electric field produced by a stationary point charge is 
obtained by dividing out the second charge in Coulomb’s law 
which remains an inverse distance-squared law as shown in 
Fig. 2:

E 5
F
q

5
Q

4p e0 R2 aR

The corresponding law for determining the magnetic field 
due to a linear, DC differential current element is the Biot- 
Savart law [1]:

d B 5
m0 I

4p R2 d l 3 aR

which is illustrated in Fig. 3.

Fig. 1. Coulomb’s law for two stationary point charges.
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