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Practical Papers, Articles  
and Application Notes
Kye Yak See, Technical Editor

I hope you enjoyed reading the three papers published in 
the Spring 2011 issue in this section of the EMC News-
letter. For this current issue, I am delighted to present to 

you an additional three quality contributions covering a 
wide range of EMC-related subjects: electrostatic discharge 
(ESD), the concept of electrical dimension, and a causality 
issue in electromagnetic simulation. 

The first paper, “Easy Access to Pulsed Hertzian Dipole 
Fields Through Pole-Zero Treatment,” was contributed by 
Timothy J. Maloney from Intel Corporation. Tim’s rich expe-
riences in ESD protection design for semiconductor devices 
have led to breakthroughs in ESD performance enhance-
ments for a wide variety of Intel products. In this paper, 
based on a Laplace Transform approach, he cleverly derives 
the s-domain radiated field equations for a pulsed current 
source. The result is a pole-zero expression similar to that 
of the ordinary circuit analysis, where time-dependent fields 
at any distance can be calculated through easily accessible 
inverse Laplace Transform software. The time-domain radi-
ated fields are useful for one to assess how the charged device 
model’s ESD radiations can be detected. 

The second paper entitled “Physical Dimensions versus 
Electrical Dimensions” is authored by our regular contribu-
tor, Professor Clayton Paul. With digital circuits operating 
at higher speeds and shorter logic transition times, digital 
circuit designers are confused about the condition in which 
to apply a lumped circuit or transmission line model for 
their circuit analyses. They will find the answer in this pa-

per. Dr. Paul shares with us how to determine the condition 
where the interconnect lines connecting the source and the 
load become electrically long. Hence, the standard lumped-
circuit model is no longer valid and the transmission line 
model is necessary. 

The last paper entitled, “A Simple Causality Checker 
and Its Use in Verifying, Enhancing, and Depopulating 
Tabulated Data from Electromagnetic Simulation,” is joint-
ly authored by Brian Young and Amarjit S Bhandal from 
Texas Instruments USA and UK, respectively. With more 
powerful and accurate EM simulators available in the mar-
ket, they become valuable tools for analyzing complex EMC 
problems. How do you know that the simulated results are 
correct, reliable, and usable? Causality check is one effective 
way to ensure that the simulated results are accurate and 
valid. Brian and Amarjit share with us the implementation 
details of a simple causality checker. The causality checker 
is used to derive an algorithm for selecting sampling rates 
and bandwidth for EM extractions of good interconnects, 
enabling a potentially large reduction in data points and run 
time. The improved extraction data has been shown to sig-
nificantly improve S-parameter data and time domain simu-
lation accuracy. 

In conclusion, your active participation as authors and 
reviewers is needed so as to make this column a quality read. 
I wish you an enjoyable and fulfilling summer and feel free 
to share with me your feedback and comments, preferably 
by email at ekysee@ntu.edu.sg.

Easy Access to Pulsed Hertzian  
Dipole Fields Through Pole-Zero Treatment
Timothy J. Maloney, Intel Corporation, Santa Clara, CA; timothy.j.maloney@intel.com

Abstract: The equations for EM dipole near and far radiation 
fields are formulated for the complex frequency domain with a 
Laplace Transform analysis for Hertzian dipoles. An s-domain 
pulsed current source function from ordinary circuit analysis is 
used in the expressions, and is augmented as needed to refine 
the pulse. This formulation allows a lucid pole-zero treatment 
of the field transfer function, yielding any field at any distance 
through the inverse Laplace Transform. Zeros of these expres-
sions always include the “radiation zeros”, essential properties 
of the dipole fields themselves. Methods for recovery of current 
pulse waveforms from E- and H-field measurements, using 
filter functions, are described. The inverse Laplace Transform of 

pole-zero expressions through Heaviside expansion is more 
accessible than ever through free web applets and commonly 
available software. Study of the small pulsed dipole has become 
important in semiconductor manufacturing, as engineers seek 
to monitor and control charged device model ESD events that 
could destroy components. 

Introduction
Dipole radiation is treated in many physics and engineering 
textbooks on electromagnetism (EM), only a few of which are 
cited here [1–3]. The most familiar treatment results in 
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 expressions for the near and far fields is for the harmonic (sinu-
soidal) source, but that is often generalized to the time-depen-
dent dipole moment source, usually called p(t) for the electric 
dipole and m(t) for the magnetic dipole. The generalized time-
dependent Hertzian (i.e., infinitesimal) dipole in free space will 
be useful for exploring pulsed fields. The complementary fea-
tures of electric and magnetic dipole radiation and their E and 
H fields are well treated in EM textbooks, so we first will cen-
ter the discussion on electric dipoles. Once the impact of the 
electric dipole moment p(t) and its time derivative on the fields 
is better understood, it will be clear how to apply these meth-
ods to magnetic dipole radiation in the same way.

There are numerous motives for studying pulsed dipole 
radiation in free space, not least of which is an existing vast 
literature on antennas for pulsed applications. Many contem-
porary works still refer to a landmark study from Caltech in 
1974 called simply “Pulsed Antennas” [4], with 69 references 
and several lucid examples, beginning with the point source 
or Hertzian dipole. More recently, Schantz [5] studied the 
flow of electromagnetic power for pulsed Hertzian dipoles in 
the context of antenna design, and observed some interest-
ing near and far field phenomena that relate to the present 
work, which will be discussed later. Atmospheric scientists 
who observe and often induce lightning strokes [6] have also 
produced a vast literature on pulsed fields; the present author 
hopes that this one reference could help lead the interested 
reader to more publications. While lightning is not an “infin-
itesimal” source except at very far fields, researchers often start 
with the Hertzian dipole concept and may view lightning as a 
stack of such dipoles.

Another motivation to study pulsed dipole fields is closer 
to the present author’s interests, which include charged device 
model (CDM) electrostatic discharge (ESD) threats to semicon-
ductor components. These phenomena have been known since 
the 1970s, and standardized tests have been formulated [7] to 
simulate the phenomena based on some well-designed equip-
ment from the 1980s [8]. Radiation detection is not part of 
these semiconductor test activities, but it has been used to de-
tect CDM events in the factory as part of a static control pro-
gram [9]. More recently, semiconductor workers have looked 
more closely at the relation between CDM-like events and sig-
nals from a nearby EMI-type antenna [10, 11]. Thus we have 
become highly interested in the fields produced by CDM pulses, 
including the strong near fields that a factory monitor antenna 
could pick up. The CDM test machine [7, 8] provides easy ac-
cess to the current pulse information, so we would like to turn 
this into full, time-dependent near and far field information as 
easily as possible, using a Hertzian dipole approximation.

Figure 1 illustrates a familiar 3-axis scheme for electric di-
pole radiation, showing the dipole (of presumed height dl) at 
the origin, and the names for Cartesian (x, y, z), spherical (r, u, 
f), and cylindrical (r, f, z) coordinates that may be used.

Transforming Dipole Field Equations
If we pick and choose among textbook treatments of electric 
dipole time-dependent fields [1–3], we can formulate an 
expression in “practical” units for the most interesting field for 
electric dipole radiation, in terms of dipole moment p(t) and its 
first two time derivatives, the latter shown as p-dot and p-dou-
ble-dot:

 Eu 1 t 2 5
sin u

4pe0
a 3 p

$ 4
c2r

1
3 p# 4
cr2 1

3 p4
r3 b .  (1)

c is, of course, the speed of light and e0 the permittivity of free 
space. At all times the fields are understood to be delayed by the 
propagation time, so we will not be writing (t-r/c). There is also 
a radial E field and an azimuthal H field, but they do not con-
tain all three terms in p(t), commonly called the static (p), 
inductive (p-dot) and far field radiative (p-double-dot) terms. 
We will treat these fields later. It is now clear that the pulsed 
field Eu is a maximum at the “equator” (sin u 5 1, where Eu and 
Ez are the same magnitude) and that full knowledge of the cur-
rent I(t) plus the dipole moment length dl is sufficient to find 
p(t) and its derivatives, as p(t) 5 Q(t) ? dl, and I(t) 5 dQ(t)/dt.

How do we gain the promised “easy access” to these pulsed 
fields at all distances? Equation (1), in the context of current 
pulses beginning at time zero, is a perfect target for use of La-
place Transforms [12], familiar to practitioners of electrical cir-
cuit theory [13]. The use of Laplace Transforms (when named 
as such; we will avoid a digression on the near-equivalence of 
Fourier Transforms) for pulsed EM field problems seems to fall 
in and out of favor over the years. For example, in 1958 the 
well-respected physicist Paul I. Richards [14] used a Laplace 
Transform method and some very insightful coordinate trans-
formations to look at pulsed EM waves in a conductive medium, 
seawater [15], without significant use of a computer. Despite 
such studies over the years showing the usefulness of Laplace 
Transforms in pulsed EM field problems, the present author has 
not been able to locate a simple Laplace Transform treatment 
of the pulsed Hertzian dipole in a popular EM textbook. But 
the Laplace Transform approach to pulsed (or even continuous 
wave) Hertzian dipole fields offers considerable insight into the 
phenomena and easy access to the fields for the engineer short 
on time and resources, so let us begin.

Equation (1) is transformed into to the Laplace (complex fre-
quency; s 5 s 1 jv) domain by recalling [12] that the time 
derivative d/dt operator is s, and the integration operator is 1/s. 
This means that p(t) as above transforms to I(s)/s in the Laplace 
domain, and the time derivatives in (1) become s and s2. The 
propagation time to radius r is t 5 r/c so it can be a “constant” 
at a particular radius for the sake of an s-domain field equation. 
Eq. 1 can thus be expressed, very unusually, with 1/r3 factored 
out, and transformed into the s-domain as

 Eu 1s2 5
I 1s2 sin u

4pe0sr3 dl # 11 1 st 1 s2t22 ,  t 5
r
c
. (2)

z

x

y

r

dl

θ

θ
∧

^

φ

φ
ρ

r

dl

θ

θ
∧

^

φ

φ
ρ

Fig. 1. Coordinates for dipole radiation fields.
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The radius becomes a scaling factor and it now simply remains 
to use circuit theory to express I(s) for the pulse source. That is 
not difficult; in the simplest approximation of the CDM source, 
it is a two-pole series RLC circuit responding to a step (collaps-
ing dipole of a charged device touching ground through one pin) 
as in Figure 2. Numerous works on CDM begin with this kind 
of circuit [16].

In a collapsing dipole, the capacitor begins with charge and 
ends with no charge (step-down), which in linear circuit theo-
ry is equivalent to a step-up. The current expression emerges 
from the admittance Y(s) 5 1/Z(s) of the series RLC loop and, 
through standard methods, is found to be

I 1 s 2 5 V 1 s 2Y 1 s 2 5
V0

s
# Cs

LCs2 1 RCs 1 1
5

CV0

LCs2 1 RCs 1 1
.

 (3)

This is our two-pole RLC pulse source that, depending on cir-
cuit model values, may or may not include ringing. It is now 
clear that Eu(s) becomes a pole-zero expression and that a 
time domain solution Eu(t) is available through the Heaviside 
expansion method of obtaining an inverse Laplace Transform 
in terms of a series of exponentials [12]. 

 Eu 1 s 2 5
CV0

# dl

4pe0r
3
# 11 1 st 1 s2t2 2
s 11 1 RCs 1 LCs2 2  sin u. (4)

There are several things to notice about Eq. (4). The s factor in 
the denominator means the field is some kind of step function, 
which makes sense given that the step in voltage and charging 
or discharging of the capacitor means that a static field either 
appears or disappears. However, if the step is differentiated 
(finite width pulse for voltage) and the polarization begins and 
ends at zero, the s disappears from the denominator and the 
field also begins and ends with zero. This resembles the case of 
the Gaussian polarization pulse for a Hertzian dipole in [4], 
only now there is a defined t 5 0 and the ability to construct a 
slightly underdamped pseudo-Gaussian pulse [17] to represent 
how a real Gaussian-like Hertzian dipole would behave, with-
out requiring infinite time. There is also the freedom to add 
some high-frequency poles to I(s) to produce a gradual rise of 
the pulse and make it even more like a Gaussian. In retrospect, 
there may have been too much reliance on Gaussian pulse 
examples in the antenna literature over the years, while this 
pole-zero alternative was not recognized.

The numerator of Eq. (4) contains the essentials of the dipole 
radiation field in the compact expression 11st1s2t2

, 
also an 

unchanging feature of (2) and (4). For a given radius r such that 

t 5 r/c, this expression gives the complex frequency zeros of the 
Eu field (let’s call them radiation zeros or field zeros) as

 z1,2 5
21 6 j "3

2t
. (5)

These, along with the poles (roots of the denominator of (4)) 
play a role in the Heaviside inversion to the time domain [12], 
and have the general effect of sharpening the field compared to 
the current, as will be seen below. But the student of circuit 
theory looks at (4) and is immediately likely to ask about the 
curious case of pole-zero cancellation, where in this case, we 
would have RC 5 "LC 5 t 5 r/c, possibly true at a particu-
lar radius r. This leaves only the s term in the denominator, 
meaning that for a collapsing dipole there is a sharp drop in the 
static field at that radius, nothing more. Is this a paradox?

It turns out that this unusual case of dipole field collapse was 
lucidly described by Schantz [5], although not called pole-zero 
cancellation. Figure 3 is from [5], showing energy density and 
flow and a stationary sphere at the expected radius. No energy 
crosses the radius where there is pole-zero cancellation. 

Figure 4 shows the sort of I(t) pulse that results in pole-zero 
cancellation as described above for Eq. (4). This one was done 
for t 5 500 psec because it is closer to a CDM pulse that will 
interest us. All such pulses for Eu look the same; only the time 
scale changes. The damping factor (D 5 RC/2!LC) is 0.5, un-
derdamped as is the case when the two poles are complex con-
jugates. In this case, the dark sphere as in Fig. 3 would occur at 
15 cm or about 6 inches.

In discussion of the material in Fig. 3, above, Schantz notes 
that since no energy crosses the dark sphere, the stored energy 
outside it must escape to infinity (i.e., be radiated), and the en-
ergy inside it must of necessity collapse back into the dipole as 
the pulse finishes, as it cannot escape. Such a boundary is thus 
unusually definitive because of pole-zero cancellation. Mean-
while, we suspect Schantz is correct about no energy crossing 
the sphere boundary at any time, but the Laplace Transform 
method gives us good tools to confirm this rigorously, particu-
larly for t 5 01. To do so we must know the H field, and then 
confirm there is no impulse (delta function) at t 5 0. 

For the electric dipole, the H field is entirely azimuthal, or-
thogonal to Eu and thus produces inward or outward flow of en-
ergy through the Poynting vector. The H expression to go with 
Eq. (1) has no static field component and is as follows [1–3]:

Hf 1 t 2 5
c sin u

4p
a 3 p
$ 4

c2r
1
3 p# 4
cr2b . (6)

Using the same methods as above, the s-domain expression is

Hf 1s2 5
cI 1s2 # dl

4psr3
# st 111 st2 sin u 5

I 1s2 # dl # 111 st2
4pr2  sin u.

 (7)

Note the cancellation of s-terms, now that there is no static 
field, and of an r since ct 5 r. Hf 1 t 2  can thus be seen as a 
mixture of I(s) and its derivative. The two-pole I(s) of Eq. (3) 
starts at 0 and has a finite derivative (as in Fig. 4), so clearly 
Hf 1 t 2  is finite at t 5 0 (i.e., no impulse due to differentiating 
a perfect step), so we agree that, for pole-zero cancellation, there 
is no energy flow through the dark sphere even at t 5 0. The 
radiation zero for Hf is real and negative, at 21/t, but there 

L

RC

V(s) ≈ Vo/s

Fig. 2. Simple RLC model of a pulse source caused by a 
collapsing dipole, current beginning and ending at zero.
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was also a zero at zero, cancelling the s of electric polarization 
I(s)/s. The complementary Ef expression for the magnetic 
dipole also has a zero at zero, but recall that the magnetic 
dipole moment m(t) goes as I(s) times an area.

For completeness, we should record the last electric dipole 
field component, radial E-field. This component goes as cos u
(peaks at polar regions) and has only static and inductive com-
ponents, no 1/r fields radiated to infinity:

Er 1 t 2 5
cos u

2pe0
a 3 p

# 4
cr2 1

3 p4
r3 b . (8)

The cross product of Er with H is necessarily in the u direction, 
so it does not produce radial energy flow. The s-domain expres-
sion for Er is 

Er 1 s 2 5
I 1 s 2 # dl

2pe0r
3
# 11 1 st 2cos u

s
. (9)

Due to the static field, the s is back in the denominator. Er has 
the same radiation zero as Hf, at 21/t. The radiation zeros are 
shown in the complex plane in Figure 5. Students of circuit 
analysis will recognize that the field equations have been turned 
into transfer functions, and that a pole-zero plot expresses all the 
amplitude and phase information at once. The radiation zeros as 
in Fig. 5 are always the starting point, and the field problem is 
essentially solved once the current-related poles join the plot. 

Before we leave Fig. 5 and do some pole-zero expansions to 
calculate time-dependent fields, it is useful to view Fig. 5 in the 
context of the “radiansphere” as described by Harold Wheeler 
in 1959 [18]. Wheeler was also concerned with small dipoles 
but with continuous wave (cw) harmonic signals (s 5 jv), and 
marked the boundary between near and far fields as the sphere 
with a radius of one radian of wavelength, i.e., vt 5 1. Fig. 5 
is thus seen as the case where poles 6jv would be plotted at 6j 
for the radiansphere boundary. At closer distances, the zeros are 
further out (they start at infinity at the dipole source) and have 
much stronger influence, but then they cross the unit circle at 
the radiansphere, as described, and continue on at larger dis-
tances toward the origin in a straight line, as the far field comes 
to dominate. Wheeler also recognized (what we call) 1 1 st 1 
s2t2

 
in the context of a transfer impedance between dipoles at a 

distance defined by our t 5 r/c, and in terms of an RLC network 
with values based on EM properties of free space. If Wheeler had 
been more interested in complex frequencies and pulsed dipoles, 
the analysis could have been extended to a pole-zero treatment as 
we have here, and the history might be different.

Time-Domain Dipole Fields
As noted previously, inversion of the above s-domain equations 
into the time domain involves Heaviside expansion of a ratio of 
polynomials, as described in [12] and in a host of college-level 
calculus texts. Essentially, if f 1s2 5 p 1s2 /q 1s2 ,  q 1 s 2 51s2 a12 1s2a22c1s2am2 ,  p 1 s 2  a polynomial of degree , m,

 F 1 t 2 5 a
m

n51

p 1an 2
q r 1an 2 e

ant. (10)

A simple example with no zeros would be two complex conjugate 
poles following Eq. (5) for t 5 500 psec and a normalized (inte-
grating to 1) version of the current (3) as plotted in Fig. 4, or
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Fig. 3. from Schantz [5], © 2001, IEEE. Energy density and 
flow at t = 3 nsec (Fig. 3a) and t = 4 nsec (Fig. 3b) for a 
damped harmonic with poles matching the zeros in Eq. (5) 
and t = 1 nsec or 30 cm. Note the stationary sphere at 30 cm, 
regardless of time. 
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  I 1s2 5
1

110.5s10.25s2 1 I 1t25 4

"3
e2t sin 1"3t 2 . (11)

Here the time is in nanoseconds and s in GHz. Note that for 
“ordinary” passive circuit elements describing the pulse source 
as in Eq. (3), the polynomial coefficients of q(s) will be positive 
and real, thus giving poles that are negative and real, or com-
plex conjugates with negative real parts. In [5], Schantz solved 
for the polarization of a collapsing dipole (our I(s)/s or inte-
grated current) and its derivatives for the case of a current 
source producing stationary dark sphere at 30 cm (t 5 1 nsec), 

as described above, and found the expected participation of !3 
in the natural frequencies and precisely the same current wave-
form as Fig. 4, aside from the time scale set by t. The appear-
ance of the dark sphere as discussed above is, again, explained 
by pole-zero cancellation at a critical radius. Now let us try 
some field calculations.

Inverting Laplace Transforms through Heaviside expansion 
can be done with one- or two-line commands on a computer. 
Many software packages do this (the present author uses Math-
ematica) but this paper has promised “easy access” to field solu-
tions for the reader, and that should mean free software with a 
very short learning curve. There is indeed a free Java applet for 
the inverse Laplace Transform, available on the Internet [19]. 
The user need only type in numerator and denominator polyno-
mials in s (our p(s) and q(s)) and push a button, which certainly 
amounts to a lower barrier to this kind of computational assis-
tance than was the case in years past. It is why the author thinks 
that these highly accessible tools are what students and working 
engineers need to acquire a feel for pulsed and cw dipole radia-
tion in any environment, and without wanting to gloss over the 
dreaded near field effects when r # l/2p. 

Let us look at a few current and E-field profiles of CDM-like 
events with realistic parameters. Spark resistance for CDM is 
around 25 ohms [16] and there is usually some mild under-
shoot after the main pulse so that D 5 0.5–0.7 is appropriate. 
External capacitance to ground for ICs could be 5 pF for a fairly 
small to mid-size package and 10 pF for a larger one. Package 
inductance varies, but it should scale with trace length (roughly 
square root of area) while capacitance should scale with area. 
Thus D should increase by 21/4

 
for the larger package (D goes 

from 0.5 to 0.595), so the normalized (integrates to unity) cur-
rent expressions become (s in GHz, coefficients in nanoseconds)

I 15pF 2 5
1

1 1 0.125s 1 0.15625s2,  and

I 110pF2 5
1

1 1 0.25s 1 0.044s2. (12)

These would be current profiles for equal amounts of charge, 
although in the factory, one may expect CDM-induced charge 
quantities to scale with area. This is what Gauss’ Law gives for 
a fixed electric field, or for area-scaled accumulation of tribo-
electric charge by a package. These two normalized CDM cur-
rent profiles are plotted in Figure 6.

The normalized (reaching a final value of unity, the static 
field) equatorial E-field Ez at 15 cm (t 5 500 psec) for these 
cases is taken from Eq. (4), 

 Ez 1 s 2 5
1 1 st 1 s2t2

s 11 1 RCs 1 LCs2 2 , (13)

where RC and LC are the values in Eq. (12). These are plotted 
in Figure 7.

Notice that while the current scales by the expected factor of 
two for the two cases, the maximum field scales by about 3x; also 
there is sharpening, and there is an unrealistic sudden step at t 5 
0, owing to the finite second derivative at t 5 0 for a two-pole 
pulse. But the CDM spark itself is expected to have a rise time of 
at least 60 psec, so it is easy to insert a double 30 psec real pole 
pair into Eq. (13), for a more realistic field expression:
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Fig. 5. Complex plane plot of the radiation zeros for all field 
components of electric dipole.
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Fig. 6. Normalized current profiles of two possible CDM 
events, one for 5 pF package capacitance (Fig. 6a) and the 
other for 10 pF (Fig. 6b). Spark resistance is 25 ohms; package 
inductance scaled with the square root of package area.
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Ez 1 s 2 5
1 1 st 1 s2t2

s 11 1 0.03s 2 2 11 1 RCs 1 LCs2 2 . (14)

These easily calculated CDM E-fields are shown in Figure 8. 
As noted earlier, the charge-up case is equivalent to charge-

down, so CDM pulse fields would ordinarily be shifted down 
(by 21 for these normalized pulses) to show zero field at 
steady state. 

In the more realistic case of Fig. 8, the E-field amplitude 
swing is still about 3x more for the faster device, which has 
2x the peak current and equal charge compared to the other. 
Because of the derivatives (in the radiation polynomials of 
Eqs. 13–14), fields are definitely sharper and of shorter time 
duration than the current of Fig. 6, even after the spark rise 
time is added; the spark rise time affects the startup phase of the 
pulses. At 15 cm, the slower 250 psec 5 RC pulse in Fig. 8b is 
clearly more in the near field zone because of its lower frequency 
content, meaning that the final static field Ez 5 1 is fairly large 
compared to transient fields.

Before we look at field measurement, let us calculate a tran-
sient magnetic field. Going back to the collapsing dipole exam-
ple of Schantz [5] at the dark sphere at 30 cm, we decided that 
ExH integrated over time has to be zero at that radius, although 
there is a finite magnetic field as the electric field steps down 
suddenly. Now employing the radiation zeros for Hf, the nor-
malized equatorial field, following Eq. (7) and with GHz units 
for s and nanoseconds for t, is

Hf 1 s 2 5
I 1 s 2

s
# s 11 1 st 2 5

1 1 st

1 1 st 1 s2t2 5
1 1 s

1 1 s 1 s2, 

 for t 5 1 nsec. (15)

Hf 1 t 2  is plotted in Figure 9, calculated from the inverse 
Laplace Transform web Java applet [19].

Because of the finite second derivative of I(t) in the two-pole 
form, the Hf field has a pure step at t 5 0. But because the finite 
ExH lasts for zero time, no energy is transmitted across the dark 
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sphere. However, the E-field at all radii also has a t 5 0 step as in 
Fig. 7, which led us to the spark rise time poles of Eq. (14) and the 
more realistic fields of Fig. 8. Such rise time poles would remove 
the pure steps from E and H fields at the dark sphere and introduce 
a small but finite ExH energy flow during the spark rise time.

Field Measurement and the 
Goal of Current Imaging
We will now briefly discuss transient field detection, and how 
it applies to the foregoing calculations and some related practi-

cal situations for EMC and ESD engineers. E and H field detec-
tion is of course a vast subject, so we will cover only a few high 
points here, and defer a more complete discussion of transient 
field measurements to a future article.

No discussion of ESD-created transient fields as created by 
Hertzian dipoles would be complete without citing Wilson 
and Ma [20], a work now over 20 years old. Using a broad-
band horn antenna for E-fields, and an ESD pulser gun resem-
bling one that would now be compliant with IEC 61000-4-2, 
the authors measured and compared pulse currents and radi-
ated fields. Field results seemed most successful for measure-
ments at 150 cm distance from the pulser gun and, to this 
reader, the minor discrepancies in theory vs. experiment were 
largely cleared up by some work published in 2007 [21] that 
included Microwave Studio (MWS) computer simulations. 
Caniggia and Maradei [21] found substantial effect of the re-
turn path of the current, which depends on gun strap place-
ment and is even frequency-dependent. Nonetheless, at 150 
cm distance from the source, there is now some case for view-
ing the current pulse as, primarily, a magnetic dipole. Note 
that with a magnetic dipole, the dipole moment goes as I(s) 
instead of I(s)/s, and that, mirroring the H field for electric 
dipole radiation, there is no long-term static electric field. In 
short, the extra derivative of the magnetic dipole model leads 
to a reasonably good fit of the E-field profile as measured at 
150 cm in [20], including the undershoot, when combined 
with a simple model (double exponential plus step) for the 
current as measured at the target. The foregoing is a nearly 
ideal application of the Laplace Transform field calculation 
methods described above, and would make a fine homework 
assignment for students and engineers trying to learn about 
transient fields. We hope the authors of [20] understand that 
this is the benefit of hindsight, and the much later efforts of 
[21] and a result of perhaps other works that led to a more 
complete understanding. Even so, it appears that the dipole 
radiation model is still meaningful.

We do not always have a broadband TEM horn antenna 
with flat frequency response for measuring E-fields, as in [20]. 
Something smaller is needed in practical manufacturing situa-
tions, where a small near field antenna is required [9]. Conve-
niently, Caniggia and Maradei [21] also discuss basic E-field 
and H-field probes and their agreement with simple theory. 
The E-field monopole probe (coaxial cable with extended center 
conductor) agrees remarkably well with a two-pole, one zero 
RLC model for the transfer function. Using the notation of the 
present article, the measured signal as compared to vertical E-
field is essentially

Vm 1 s 2
Ez 1 s 2 5

lmZ0Cms

1 1 Z0Cms 1 LmCms2, (16)

for which Z0 is cable impedance (usually 50 ohms), Cm and Lm 
are the inductive and capacitive equivalents of the probe wire, 
and lm is the length of the probe wire. Model parameters can 
be calculated as described in [21] and cited earlier references 
[22], although it has long been known that the exact solution 
is a little more complicated [23]. The result for a 6 mm 
monopole probe as in [21] is a very good dE/dt probe up to 1 
GHz or so, and not too severe a departure from the simple 
model of Eq. (16) beyond that. Such models enhance our pros-
pects for recovering the current I(s) and I(t) (i.e., current 
imaging) through filtering of the measured field signal. For 
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Fig. 10. Normalized filter function impulse response, as in 
Eq. (17), for a small E-probe. Z0Cm = 25.2 psec, LmCm = 541.6 
(psec)2 , r = 15 cm. For these values, there is also a very small 
Dirac delta function (0.002) at the origin that brings the 
integral to unity. This function would be convolved (e.g., with 
free tools as in [24]) with the measured field signal Vm(t) to 
produce an image of the time-dependent source current I(t).
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Fig. 11. Normalized E-field signals, predicted for 
measurement at 15 cm using the E-probe transfer function 
in Eq. (16) as described for Fig. 10. For equal charge, the 
smaller device (5 pF, Fig. 10a) has about 3x the peak-peak 
voltage swing (Vp-p) of the larger (10 pF) device. 
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example, if (normalized) Eq. (16) is combined with (normal-
ized) Eq. (2) at the equator, we find that

I 1 s 2 5 Vm 1 s 2 1 1 Z0Cms 1 LmCms2

s
# s

1 1 st 1 s2t2

5 Vm 1 s 2 1 1 Z0Cms 1 LmCms2

1 1 st 1 s2t2 . (17)

This means that we transform our signal V(t) by the filter func-
tion described by the last factor of Eq. (17), and then multiply 
by the appropriate constants as listed in Eqs. (2) and (16), and 
we have a time-dependent image of the current I(t). The filter-
ing can be done through direct convolution [13] and there are 
also free software tools for that, downloadable from the Internet 
[24]. A time-dependent impulse response for the filter function 
in (17) is found through the inverse Laplace Transform as usual 
(it involves a Dirac delta function when numerator and denom-
inator are of equal order, but Mathematica can handle this—it 
just means that the original function is copied with no time 
lag, to form a portion of the convolved function) and then con-
volved with the measured field signal, a very quick spreadsheet 
operation. It is also clear from (17) that the E-field and its mea-
sured signal are generally sharper than the source current pro-
ducing them, as we’re using a low-pass filter function to 
recover the current pulse from the field. A view of such a filter 
function is in Figure 10, calculated for 15 cm and with param-
eters calculated for a 6 mm E-field monopole probe as described 
in [21], with extra capacitance due to the practice of protecting 
the probe wire with dielectric cap. Network analyzer measure-
ments of the E-probe antenna should be done to confirm this 
model, as we will want a reasonable fit to high frequency.

It is interesting to take the parameters for the small E-probe as 
described for Fig. 10 and apply them to our examples of calculat-
ed realistic fields as in Fig. 8, in order to see what kind of signal 
is expected for CDM events of that sort. These predicted signals, 
in normalized form following Eq. (16), are shown in Figure 11.

Fig. 11 is our predicted measurement at 15 cm for the CDM 
pulse currents for the two devices of Fig. 6. Equal charge results 
in about 2x difference in peak current (Fig. 6) but about 3x the 
Vp-p for the dE/dt-like measurement. However, other low-pass 
filtering of the raw signals pictured in Fig 11 could take place. 
First is the coaxial cable itself, which must respond to these fast 
signals, where the first half cycle takes less than 150 psec. If the 
cable is good, the oscilloscope or pre-amplifier must also be fast or 
it will smooth out these pulses; good models of scope response are 
discussed in [17]. But we do want a certain amount of smooth-
ing, as shown by the filter function of Fig. 10. It turns out that 
Fig. 10 is fairly close to the impulse function of a 350 MHz 
two-pole filter, even one with D < 0.7 as suggested for oscil-
loscope in [17]. In this case (note that it applies to a particular 
probe design and a particular distance from the source, 15 cm), 
the correct completion of the measurement channel will pro-
duce a good current image, with expected current scaling. In 
this way, the entire measurement channel, plus the effect of the 
radiation zeros, can be tuned to a particular distance from the 
dipole to give a current image. With enough low-pass filtering, 
only an indication of the charge Q will remain, but for the case 
here, the filter would have to be well below 100 MHz for the 
two pulses to look nearly the same.

With a tuned measurement channel as described above for 
current imaging, the last factor in Eq. (17) has, in effect, been 

absorbed into the measurement channel to achieve complete 
pole-zero cancellation. But note that if the measurement channel 
including probe is not quite right at a particular distance, soft-
ware filtering can complete the process to give a current image. 
For practical situations in the factory or laboratory—anywhere 
outside controlled conditions in an anechoic chamber, one would 
think—the true current image may last only the first few nano-
seconds at most, before reflections, resonances and other effects 
intrude. Even so, in the presence of a known current source loca-
tion, Eq. (17) inspires us to produce “equivalent small dipole cur-
rent source” waveforms from our field measurement data, once 
we decide between electric and magnetic dipole for the source.

Conclusions
Pulsed radiation has been with us for a long time, but a relatively 
recent motive to study it in semiconductor manufacturing has 
been the importance of charged device model ESD and the need 
to avoid damage to sensitive components. Thus there is renewed 
incentive to study, measure, and analyze the fields of a small or 
Hertzian dipole, including at near and intermediate range.

The equations for EM dipole near and far radiation fields 
were presented in this work for the complex frequency domain 
with a Laplace Transform analysis of the Hertzian dipole case. 
Expressions in the s-domain for the pulsed current source are 
then built up from ordinary circuit analysis, and the result is a 
pole-zero expression for the field, startling in its simplicity. Sin-
gularities and abrupt steps can be removed by refining the pulse 
expression to capture such real effects as spark rise time. There 
is easy access to these fields at any distance through the inverse 
Laplace Transform, and access to the latter is easier than ever 
through software and free web applets. The concept of using 
these simple models to recover current pulse waveforms, or at 
least their main features, from E- and H-field measurements, is 
also viable once the properties of the measurement instruments 
are known. The field calculation methods thus lead to simple 
extraction of filter impulse functions that can be used with con-
volution methods (also deployable through free software) to find 
the time-dependent waveform of the source current at a given 
distance from the detector. In some cases, an amplifier, hard-
ware filter, or well-chosen slow oscilloscope (e.g., 350 MHz) can 
be part of the measurement channel to achieve much the same 
filtering, thus producing a current image in hardware.

The zeros of the pole-zero expressions for fields always in-
clude the “radiation zeros”, which are essential properties of 
the dipole fields themselves. Pure numbers like exp(jp(1 6 
1/3)) appear to have a deep physical significance, as they are 
the roots of (1 1 x 1 x2) and include information about all 
the fields (static, inductive, radiative) of the radiating dipole. 
Indeed, as Schantz [5] points out, this complex conjugate pair 
was found by J.J. Thomson in 1884 [25] to describe the natural 
frequency of “electrical oscillations” of a perfectly conducting 
metal sphere, normalized to radius r 5 ct. Thomson summa-
rized that study in a longer 1893 work that is available on the 
Internet [26], and the conducting sphere problem was also later 
treated by Sommerfeld [27]. But the dipole radiation equa-
tions are seldom if ever reduced to a Laplace Transform-inspired 
pole-zero expression as done here. Doing so yields simple cal-
culation methods, quick solutions, and, for the student, deep 
insight to the physical phenomena. As the limiting case of 
the infinitesimal Hertzian dipole has always been a college or 
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graduate  student’s starting point for serious consideration of ra-
diation, good interactive tools for developing insight are help-
ful. Now that we find the small pulsed dipole has remarkable 
significance for observed CDM radiation, as above, we also need 
simple, accessible tools for busy working engineers to use for 
comprehending these practical problems, and thus the methods 
described in this work were developed.

The author always found the use of “jv” in EM-related books 
to be a bit restrictive, having learned the “secret” of the La-
place Transform and complex frequencies as a college sopho-
more. He felt free to let jv 5 s on most occasions when reading 
those books, as the expressions would seem a bit simpler, while 
also becoming more general. The s-domain expressions in this 
paper are a good example of that practice, one that brought 
unusual clarity to the subject under study. The author contin-
ues to cross-check as many EM problems as possible with the 
s-domain approach, using field equations as expressed in this 
work. Somehow, the “bookkeeping” of the various fields and 
their r-dependence is more tractable. Consider, for example, the 
physics examples of Prof. K.T. McDonald of Princeton Univer-
sity [28]. If, like the author, you have often searched the Inter-
net for information on EM problems, you have undoubtedly 
encountered Prof. McDonald’s examples and articles, multiple 
times. Some of his EM examples are admittedly incomplete, 
i.e., works in progress. Reformulating the EM dipole equations 
and current sources in Laplace Transform format can be quite 
revealing, at least when there is a defined beginning at t 5 0. 
Indeed, it was not a field problem but an incomplete capacitor 
problem posed by McDonald and solved by both of us in 2008 
[29] that convinced the author that more Laplace Transform 
analysis is needed to understand and solve ESD problems. After 
all, ESD is a pulse that begins at time zero.
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Physical Dimensions vs Electrical 
Dimensions
Clayton R. Paul, Mercer University, Macon, GA (USA), paul_cr@Mercer.edu

Abstract – With the operating frequencies of today’s high-
speed digital and high-frequency analog systems increasing, 
previous lumped-circuit analysis methods will no longer be 
valid and will give incorrect answers. When the maximum 
physical dimensions of the system are electrically large (greater 
than a tenth of a wavelength) the system cannot be reliability 
analyzed using Kirchhoff’s voltage and current laws and 
lumped-circuit methods.

I. Deficiencies With The Exclusive Use 
of Kirchhoff’s Laws and Lumped-Circuit Models
The spectral (frequency) content of modern high-speed digital 
waveforms today is extending into the GHz regime. Similarly, 
the operating frequencies of analog systems are extending well 
into the GHz range. A digital clock waveform has a trapezoidal 
shape as illustrated in Fig. 1:

Since a digital clock waveform is a periodic, repetitive 
waveform, according to the Fourier series their time-domain 
waveforms can be alternatively viewed as being composed of an 
infinite number of harmonically related sinusoidal components 
as [1]

x 1 t 2 5 c0 1 c1 cos 1v0t 1 u12 1 c2 cos 12v0t 1u22
1 c3 cos 13v0t 1 u32 1c

5 c0 1a
`

n51

cn cos1nv0t1un2  (1)

The period T of the periodic waveform is the reciprocal of the 
clock fundamental frequency, f0, and the fundamental radian 
frequency is v0 5 2p f0. The rise/fall times are denoted as tr

and tf, respectively, and the pulse width (between 50% levels) 
is denoted as t. As the fundamental frequencies of the clocks, 
f0, are increased, their period T 5 1@f0

 decreases and hence the 
rise/fall times of the pulses must be reduced commensurately in 
order that pulses resemble a trapezoidal shape rather than a 
“saw tooth” waveform thereby giving adequate “setup” and 
“hold” time intervals. Reducing the pulse rise/fall times has 
had the consequence of increasing the spectral content of the 
wave shape. Typically this spectral content is significant up to 
the inverse of the rise/fall times, 1@tr

. For example, a 1 GHz 
digital clock signal having rise/fall times of 100ps has signifi-
cant spectral content at multiples (harmonics) of the basic clock 
frequency (1 GHz, 2 GHz, 3 GHz, …..) up to around 10 GHz.

In the past, clock speeds and data rates of digital systems 
were in the megahertz (MHz) range with rise/fall times of the 
pulses in the nanosecond (1ns 5 1029s) range. Prior to that 
time, the “lands” (conductors of rectangular cross section) that 
interconnect the electronic modules on printed circuit boards 
(PCBs) had little effect on the proper functioning of those elec-
tronic circuits. The time delays through the modules domi-
nated the time delay imposed by the interconnect conductors. 

Today, the clock and data speeds have rapidly moved into the 
low gigahertz (GHz) range. The rise/fall times of those digital 
waveforms have decreased into the picosecond (1ps 5 10212s) 
range. The delays of the interconnects have become the domi-
nant factor.

Although the “physical lengths” of the lands that intercon-
nect the electronic modules on the PCBs have not changed sig-
nificantly over these intervening years, their “electrical lengths” 
(in wavelengths) have increased dramatically because of the in-
creased spectral content of the signals that the lands carry. To-
day these “interconnects” can have a significant effect on the 
signals they are carrying so that just getting the systems to 
work properly has become a major design problem. Remember 
that it does no good to write sophisticated software if the hard-
ware cannot faithfully execute those instructions. This has gen-
erated a new design problem referred to as Signal Integrity. Good 
signal integrity means that the interconnect conductors (the 
lands) should not adversely affect the operation of the modules 
that the conductors interconnect. Because these interconnects 
are becoming “electrically long”, lumped-circuit modeling of 
them is becoming inadequate and gives erroneous answers. The 
interconnect conductors must now be treated as distributed-
circuit transmission lines.

II. Traveling Waves, 
Time Delay and Wavelength
In the analysis of electric circuits using Kirchhoff’s voltage and 
current laws and lumped-circuit models, we ignored the connec-
tion leads attached to the lumped elements. When is this per-
missible? Consider a lumped-circuit element having attachment 
leads of total length l shown in Fig. 2. Single-frequency, sinusoi-
dal currents along the attachment leads are in fact traveling 
waves which can be written in terms of position z along the 
leads and time t as

i 1 t, z 2 5 Icos 1vt 2 bz 2  (2)

where the radian frequency v  is written in terms of cyclic 
frequency f as v 5 2p f radians@s and b is the phase constant in 

x (t )

A
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A

τr τf 1
f0

T =
t
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Fig. 1. A typical digital clock/data waveform.
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units of radians@m. (Note that the argument of the cosine must 
be in radians and not degrees.) In order to observe the move-
ment of these current waves along the connection leads, we 
observe and track the movement of a point on the wave in 
the same way as we observe the movement of an ocean wave 
at the seashore. Hence the argument of the cosine in (2) 
must remain constant in order to track the movement of a 
point on the wave so that vt 2 bz 5 C where C is a con-
stant. Rearranging this as z 5 1v/b2 t 2 1C/b 2  and differen-

tiating with respect to time gives the velocity of propagation 
of the wave as

 v 5
v

b
  

m
s

 (3)

Since the argument of the cosine, vt 2 bz, in (2) must re-
main a constant in order to track the movement of a point on 
the wave, as time t increases so must the position z. Hence the 
form of the current wave in (2) is said to be a forward-traveling 
wave since it must be traveling in the +z direction in order to 
keep the argument of the cosine constant for increasing time. 
Similarly, a backward-traveling wave traveling in the –z direction 
would be of the form i 1 t, z 2 5 I cos 1vt 1 bz 2  since as time t 
increases, position z must decrease in order to keep the argu-
ment of the cosine constant and thereby track the movement of 
a point on the waveform. Since the current is a traveling wave, 
the current entering the leads, i1 1 t 2 , and the current exiting the 
leads, i2 1 t 2 , are separated in time by a time delay of

 TD 5
l
v
  s (4)

as illustrated in Fig. 2. These single-frequency waves suffer a 
phase shift of f 5 bz radians as they propagate along the leads. 
Substituting (3) for b 5 1v/v 2  into the equation of the wave 
in (2) gives an equivalent form of the wave as

i 1 t, z 2 5 I cosav Qt 2
z
v Rb  (5)

which indicates that phase shift is equivalent to a time delay.
Figure 2 plots the current waves versus time. Figure 3 plots 

the current wave versus position in space at fixed times. As we will 
see, the critical property of a traveling wave is its wavelength
denoted as l. A wavelength is the distance the wave must travel in 
order to shift its phase by 2p radians or 360o. Hence bl 5 2p or

 l 5
2p

b
  m (6)

Substituting the result in (3) for b in terms of the wave veloc-
ity of propagation v gives an alternative result for computing 
the wavelength:

l 5
v

f
  m (7)

Table 1 gives the wavelengths of single-frequency sinusoidal 
waves in free space (essentially air) where v0 > 3 3 108. (The 
velocities of propagation of current waves on the lands of a PCB 
are less than in free space which is due to the interaction of the 
electric fields with the board material. Hence wavelengths on a 
PCB are shorter than they are in free space.) Observe that a wave 
of frequency 300 MHz has a wavelength of 1m. Note that the 
product of the frequency of the wave and its wavelength equals 
the velocity of wavelength of the wave, fl 5 v. Wavelengths 
scale linearly with frequency. As frequency decreases, the wave-
length increases and vice-versa. For example, the wavelength of 
a 7 MHz wave is easily computed as

 l 0 @7 MHz 5
300 MHz

7 MHz
3 1 m 5 42.86 m

Similarly, the wavelength of a 2GHz cell phone wave is 15cm 
which is approximately 6in.
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Fig. 2. Current waves on connection leads of lumped-circuit 
elements.
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Now we turn to the important criterion of physical dimen-
sions in terms of wavelengths, i.e., “electrical dimensions”. In 
order to determine a physical dimension, l in terms of wave-
lengths (its “electrical dimension”) we write l5 kl and deter-
mine the length in wavelengths as

k 5 l@l 5 1l@v 2 f
where we have substituted the wavelength in terms of the fre-
quency and velocity of propagation as l 5 v/f. Hence we obtain 
an important relation for the electrical length in terms of fre-
quency and time delay:

 
l

l
5 f 

l
v

5 f TD (8)

so that a dimension is one wavelength, l@l 5 1, at a frequency 
that is the inverse of the time delay:

f 0l51l 5
1

TD

 (9)

A single-frequency, sinusoidal wave shifts phase as it travels a 
distance l of

f 5 b l5 2p 
l

l
 radians 5

l

l
3 360o degrees (10)

Hence if a wave travels a distance of one wavelength, l5 1l, 
it shifts phase by f 5 360o. If the wave travels a distance of 
one-half wavelength, l5 1/2 l, it shifts phase by f 5 180o. 
This can provide for cancellation for example when two anten-
nas which are separated by a distance of one-half wavelength 
transmit the same frequency signal. Along a line containing the 
two antennas, the two radiating waves being of opposite phase 
cancel each other giving a result of zero. This is the essential 
reason why antennas have “patterns” where a null is produced 
in one direction, whereas a maximum is produced in another 
direction. Phased-array radars electronically “steer” their beams 
using this principle rather than by mechanically rotating the 
antennas. Next consider a wave that travels a distance of one-

tenth of a wavelength, l5 1/10 l. The phase shift incurred in 
doing so is only f 5 36o, and a wave that travels one-one hun-
dredth of a wavelength, l5 1/100 l, incurs a phase shift of 
f 5 3.6o. Hence we say that

for any distance less than, say, l , 1/10l, the phase shift is said to 
be negligible and the distance is said to be electrically short.

For electric circuits whose maximum physical dimension 
is electrically short, l , 1/10l, Kirchhoff’s voltage and cur-
rent laws and other lumped-circuit analysis solution methods 
work very well. For physical dimensions that are not electrically 
short, Kirchhoff’s laws and lumped-circuit analysis methods 
give erroneous answers! For example, consider an electric circuit 
that is driven by a 10 kHz sinusoidal source. The wavelength at 
10 kHz is 30km (18.641 mi)! Hence at this frequency any cir-
cuit having a maximum dimension less than 3km (1.86 mi) can 
be successfully analyzed using Kirchhoff’s laws and lumped-
circuit analysis methods. Electric power distribution systems 
operating at 60 Hz can be analyzed using Kirchhoff’s laws and 
lumped-circuit analysis principles so long as their physical di-
mensions such as the transmission line length are less than some 
310 mi! Similarly, a circuit driven by a 1 MHz sinusoidal source 
can be successfully analyzed using lumped-circuit analysis 
methods if its maximum physical dimension is less than 30 m! 
On the other hand, cell phone electronic circuits operating at a 
frequency of around 2 GHz cannot be analyzed using lumped-
circuit analysis methods unless the maximum dimension is less 
than around 1.5 cm or about 0.6 in! We can alternatively de-
termine the frequency where a dimension is electrically short in 
terms of the time delay from (8):

f 0l5
1

10
l 5

1

10TD

 (11)

Substituting l f 5 v into the time delay expression in (4) 
gives the time delay as a portion of the period of the sinusoid, T:

 TD 5
l
v

5 al
l
b a1

f
b 5 al

l
b  T (12)

where the period of the sinusoidal wave is T 5 1/f. This shows 
that if we plot the current waves in Fig. 2 that enter and leave 
the connection leads versus time t on the same time plot, they will 
be displaced in time by a fraction of the period, l/l. If the 
length of the connection leads l is electrically short at this 
frequency, then the two current waves will be displaced from 
each other in time by an inconsequential amount of less than 
T/10 and may be considered to be coincident in time. This is 
the reason why Kirchhoff’s laws and lumped-circuit analysis 
methods work well only for circuits whose maximum physical 
dimension is “electrically small”.

This has demonstrated the important principle in electro-
magnetics that “physical dimensions” of structures don’t mat-
ter: their “electrical dimensions in wavelengths” are important.

III. An Example
Consider the typical source-load circuit shown in Fig. 4. A 
single-frequency, sinusoidal source, VS 1 t 2 5 VS cos 1vt 1 uS 2 , 
having a source resistance RS sends a signal to a load repre-
sented by a load resistance RL. The source and load are sepa-
rated by a parallel pair of wires or a pair of lands of length l. 

TABLE 1. FREQUENCIES OF SINUSOIDAL WAVES IN 
FREE SPACE (AIR) AND THEIR CORRESPONDING 
WAVELENGTHS

Frequency (f  ) Wavelength (l)

60 Hz 3107 miles (5000 km)

3 kHz 100 km

30 kHz 10 km

300 kHz 1 km

3 MHz 100 m ( < 300 feet)

30 MHz 10 m

300 MHz 1 m ( < 3 feet)

3 GHz 10 cm ( < 4 inches)

30 GHz 1 cm

300 GHz 0.1 cm
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The lumped-circuit model ignores the two interconnect conduc-
tors of length l. Analyzing this configuration as a lumped 
circuit gives (using voltage division and ignoring the intercon-
nect conductors) the ratio of the source and load voltage mag-
nitudes as

VL

VS

5
RL

RS 1 RL

and the phase angles are identical: uS 5 uL. These, according to 
a lumped-circuit model of the line, remain the same for all 
source frequencies!

Consider a specific configuration shown in Fig. 5. The pa-
rameters are RS 5 10V, RL 5 1000V for a line of total length 
of l5 0.3m (or about 12 inches). Ignoring the interconnect 
conductors gives VL/VS 5 0.99 and the phases are related as 
uL 2 uS 5 0o.

The exact solution is obtained by including the two intercon-
nect conductors of length l as a distributed-parameter trans-
mission line. The circuit analysis computer program, PSPICE, 
contains an exact transmission line model of the interconnect 
conductors [1]. Figure 6 shows the exact ratio of the voltage 
magnitude, VL/VS, and voltage angle, uL 2 uS, versus the fre-
quency of the source as it is swept in frequency from 1MHz 
to 1GHz. Model the interconnect conductors as a distributed 
parameter, transmission line having a characteristic impedance 
of ZC 5 50V and a one-way delay of the interconnect line of 
TD 5 1l5 0.3m 2 / 1v0 5 3 3 108 2 1m/s 2 5 1ns. The entire 
configuration is analyzed using PSPICE. Figure 6 shows that 
the magnitudes and angles of the transfer function voltages, VL@VS

 
and uL 2 uS, begin to deviate rather drastically from the low 
frequency, lumped-circuit analysis result of VL@VS

5 0.99 and 
uL 2 uS 5 0o above about 100 MHz.

The line is one-tenth of a wavelength (electrically short) at 
f 0l5 11/102l 5 11/10TD 5 10 ns 2 5 100 MHz (denoted by the 

vertical line at 100 MHz in both plots). This is evident in the 
plots in Fig. 6. Hence the interconnect line is electrically long 
above 100 MHz. The interconnect line is one wavelength at 
1 GHz: f 0l5l 5 11/TD 5 1 ns 2 5 1 GHz Observe that the 
magnitude plot in Fig. 6(a) shows two peaks of 250 MHz and 
750 MHz where the interconnect line electrical length is l/4 and 
3/4l, respectively, and the magnitude of the transfer function 
increases to a level of 4. There are two minima at 500 MHz and 1 
GHz where the interconnect line electrical length is l/2 and l, 
respectively. Above 1 GHz (the last frequency plotted) the pat-
tern replicates which is a general property of transmission lines.

Finally we investigate the time-domain response of the line 
where we drive the line with a clock signal of 10 MHz funda-
mental frequency (a period of 100 ns), an amplitude of 1 V, rise/
fall times of 10 ns, and a 50% duty cycle as shown in Fig. 7. It 
is typical for the rise/fall times of digital waveforms to be cho-
sen to be around 10% of the period T in order to give adequate 
“setup” and “hold” times.

Figure 8 shows the comparison of the load voltage waveform, 
VL 1 t 2 , and the source voltage waveform, VS 1 t 2 , for this source 
waveform over two cycles of the source. The source voltage and 
load voltage waveforms are virtually identical, and the intercon-
nect line clearly has no substantial effect. From the frequency 
response of the waveform in Fig. 6 we see that the first 10 har-
monics of this waveform (the bandwidth of the waveform is 
BW=1/tr 5 100 MHz), 10 MHz, 20 MHz, 30 MHz, 40 MHz, 
50 MHz, 60 MHz, 70 MHz, 80 MHz, 90 MHz, 100 MHz, all 
fall below the frequency where the line ceases to be electrically 
short: 100 MHz. This is what we expect when the major har-
monic components of the waveform (its BW) fall into the fre-
quency range where the line is electrically short for all of them.

Figure 9 shows the same comparison when the source pa-
rameters are changed to a 100 MHz fundamental frequency (a 
period of 10 ns), having an amplitude of 1 V, rise/fall times of 

Source Load

RS

RLVS cos(ωt + θS) VL cos(ωt + θL)+
−

−

+

l

Fig. 4. A general source-load configuration.

Source Load

RS = 10 Ω

RL = 1,000 Ω
ZC = 50 Ω

VS cos(ωt + θS) VL cos(ωt + θL)+
−

−

+

TD = 1 ns

l = 0.3 m (11.81 in)

Fig. 5. A specific example treating the connection lands as a transmission line.
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1ns, and a 50% duty cycle. From Fig. 6, this waveform contains 
the first 10 harmonics that constitute the major components 
in its bandwidth (BW=1/tr 5 1 GHz): 100 MHz, 200 MHz, 
300 MHz, 400 MHz, 500 MHz, 600 MHz, 700 MHz, 
800 MHz, 900 MHz, 1 GHz. The line length is l/10 at the 
fundamental frequency of it, 100 MHz, and 1l at its tenth har-
monic of 1 GHz. Observe that the load voltage waveform bears 
no resemblance to the source waveform. From the frequency-
response of the system in Fig. 6, we see that all of these har-
monics fall in the frequency range where the interconnect line 
is electrically long (>100 MHz) so this is expected.

The plots in Figure 8 and 9 were both plotted using PSPICE. 
The load voltages, VL 1 t 2 , can be manually plotted using the 
simple method described in [2]. This solution for the VS 1 t 2  for 
the waveform of Fig. 9 is shown in Fig. 10 as the superposition 
of the scaled and delayed versions of VS 1 t 2 . This shows how the 
final waveform is composed of the sum of the scaled and delayed 
VS 1 t 2  as [2]:

VL 1 t 25 ZC

ZS1ZC

111GL2 SVS1t2TD21 1GSGL 2  VS 1t 23TD21
1GSGL2 2 VS 1 t 25TD21 1GSGL 2 3 VS 1 t 27TD21cT

5 1.59 VS1t21 ns220.96  VS1t23 ns210.58 VS 1t25 ns2
2 0.35 VS 1 t 2 7 ns2 1 0.21 VS 1 t 2 9 ns21c

where ZC/ 1ZS 1 ZC 2 11 1 GL 2 5 1.59 and 1GSGL 2 5 2 0.6 and 
the source and load reflection coefficients are GS 5 1RS 2 ZC 2
/ 1RS 1 ZC2520.667 and GL 5 1RL2ZC2 / 1RL 1ZC2 5 0.905.
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This simple manual solution method described in [2] clearly 
shows how the various parameters (particularly the relation of 
the pulse rise/fall times versus the line one-way time delay) affect 
the final waveform. For example, Fig. 10 shows that because the 
rise/fall times of the source for Fig. 9 is the same as the  one-way 
delay of the line of 1ns, the various individual waveforms com-
bine to give a complex final waveform. On the other hand, the 
rise/fall times of the source voltage for the solution in Fig. 8 are 
10ns such that tr 5 10 ns 5 10TD. Hence the waveforms to be 
superimposed in Fig. 8 are widely separated whose sum give a 
smooth and reduced amplitude final waveform. This confirms a 
previously obtained criterion that tr . 10TD implies that the 
line is electrically short for all the frequency components that 
the source waveform contains in its BW (BW 5 100 MHz for 
tr 5 10 ns but not for the case of BW 5 1 GHz for tr 5 1 ns).

IV. Summary
This article has shown that as the frequencies of the sources 
increase to the point where the interconnect lines connecting 
the source and the load become electrically long, the standard 
lumped-circuit models are no longer valid and give erroneous 
answers. The requirement to model electrically long intercon-
nects requires that we master transmission line modeling. 
Although the analysis is more difficult for electrically large 
circuits, we have no choice as the frequencies continue to 
increase, seemingly without bound.
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Simulation
Brian Young and Amarjit S. Bhandal, ASIC Package Design Texas Instruments, Austin, TX, USA; 
Northampton, UK, brian.young@ti.com; a-bhandal@ti.com

Introduction
Electromagnetic (EM) simulators are very powerful, flexible, 
and accurate. They are also necessarily somewhat complex to 
setup, requiring user inputs on materials and material models, 
ports, boundary conditions, meshing frequencies, bandwidth, 
convergence tolerance, and other required and optional vari-
ables. The simulators are in use by the full spectrum of engi-
neers, from new college graduates with little formal EM 
training to highly experience engineers with advanced degrees 
in EM and numerical methods. Issues can range from poorly 
conceived setups to simple typos. All users face the same prob-
lem: How do you know that the computed results are correct, 
reliable, and usable? In transient simulations, low quality 
computed results can easily result in non-causal models and 
simulation artifacts, such as faster-than-light signal propaga-
tion [1][2][3].

For the most part, the decision on usability of computed 
results is based on the user’s judgment of the “quality” of the 
results from inspection, on whether the results match expecta-
tions, and on the convergence error numbers produced by the 
simulator. Such an experienced-based approach needs to be aug-
mented by a quantified quality check to help ensure the consis-
tent development of high-quality models.

All data must be causal to be usable, and a causality check 
of the data is a strong test of data quality that is quantifiable. 
Many causality tests have been proposed and discussed [4][5]
[6][7]. The causality checker presented in [7] is reviewed and 
demonstrated here to show that a good causality checker is rela-
tively simple to implement and can produce powerful observa-
tions on the quality of data while guiding its enhancement.

Causality Checker
Causal data must satisfy the Hilbert Transform, so a direct 
calculation of the Hilbert Transform produces a check of causal-
ity. Assuming that the S-parameters are split into real and 
imaginary parts as S 1v 2 5 U 1v 2 1 jV 1v 2 , then the Hilbert 
Transform is

 U 1v 2 5
1
p 3

`

2`

V 1v r 2
v 2 v r

dv r1 K (1)

V 1v 2 5 2
1
p 3

`

2`

U 1v r 2
v 2 v r

dv r (2)

The integrals are defined according to the Cauchy principal 
value, and K is an unknown constant. The main difficulties 

in executing the integration are manually extracting the 
singularity, extending the integration to infinity from 
bounded data, extrapolation to zero frequency, and determin-
ing K.

A causality checker can be implemented by simply calculat-
ing an estimate for U 1v 2  from the original V 1v 2  data using (1) 
and finding the error between the original and estimated data. 
Similarly, (2) can be used to estimate V 1v 2  from the original 
U 1v 2 . In this work, rather than view the errors of the real and 
imaginary parts, the magnitudes and phases are compared. In-
terpretation of error plots is sometimes eased by averaging the 
errors over a rolling 1/220% bandwidth, and the plots using 
averaging are labeled with the averaging bandwidth. For multi-
port data, the causality checker is applied independently to each 
port at a time.

The integrals can be computed using a piece-wise linear ap-
proximation. To keep the implementation simple, the data is 
mirrored to negative frequencies, where the real part is an even 
function of frequency and the odd part is an odd function. The 
implementation is further simplified by deleting the data at 
zero frequency and letting the even/odd properties synthesize 
the data at zero. The piece-wise linear approximation is 

 U| 1v 2 5 mUk v 1 bUk, vk , v , vk11 (3)

V| 1v 2 5 mVk v 1 bVk, vk , v , vk11 (4)

where the slopes m and the intercepts b are calculated from the 
tabulated data. Inserting (3) into (2) and (4) into (1) results in a 
reconstruction of the original data as

 U 1v 2 5
1
pa

N21

k50
3

vk21

vk

mvkvr1 bvk

v 2 vr
dvr1 K

1
1
p 3

v0

2`

V 1v r 2
v 2 v r

dv r1
1
p 3

`

vN

V 1vr 2
v 2 vr

dvr (5)

 V 1v 2 5 2
1
pa

N21

k50
3

vk21

vk

mUkvr1 bUk

v 2 v r
 dv r

2
1
p 3

v0

2`

U 1v r 2
v 2 v r

dv r2
1
p 3

`

vN

U 1vr 2
v 2 vr

dvr, (6)

where k 5 0 . . . N covers all tabulated discrete frequencies, 
both positive and negative, from smallest to largest. The gen-
eral linear integration term is given by
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3

vk11

vk

mkv r1 bk

v 2 v r
dv r

5µ
2mk 1vk112vk 22 3mkv1bk 4lnavk11 2 v

vk 2 v
b , 

2mk 1vk112vk 22 3mkvk1bk 4ln 1vk112 vk2 , v5vk

2mk 1vk112vk213mkvk111bk 4ln 1vk112vk2 , v5vk11

 (7)

To solve the special case where v 5 vk, the integration is per-
formed for the intervals vk21 to vk 2 e and vk 1 e to vk11, 
then let e S 0. The result is then split over the two intervals.

The integration terms from negative infinity and to positive 
infinity must be approximated since the actual data does not 
exist. It is assumed that the data is simulated to very high fre-
quencies so that simple extrapolation is sufficient. For the real 
part, an even function is required, and the simplest available is 

a constant function matching the value at the highest available 
frequency. As before, the positive and negative frequency inter-
vals are solved together. For V 1v 2  in (6),

3

v0

2`

U 1vr 2
v 2 vr

dvr1 3

`

vN

U 1vr 2
v 2 vr

dvr

 > 3

2vN

2`

U 12vN 2
v 2 vr

 dvr1 3

`

vN

U 1vN 2
v 2 vr

 dvr

5 U 1vN 2 lnavN 2 v

vN 1 v
b . (8)

For the imaginary part, an odd function is required, and the 
simplest available with a decreasing magnitude with increasing 
frequency is 1/v. For U 1v 2  in (5), 

 3

v0

2`

V 1vr 2
v 2 vr

 dvr1 3

`

vN

V 1vr 2
v 2 vr

 dvr

> 2 3

2vN

2`

V 1v
 N 2v  N

v r 1v 2 v r 2 dv r1 3

`

vN

V 1vN 2v  N

v r 1v 2 v r 2 dv r

 5 V 1vN 2vN

v
lnavN 2 v

vN 1 v
b . (9)

The special cases when v 5 v0 and v 5 vN do not signifi-
cantly enhance a causality check, so they are omitted for sim-
plicity.

The constant K in (1) is determined by simply shifting in  
U 1v 2  amplitude so that U 1vmin 2 5 U 1vmin 2 , where vmin is 
the smallest positive frequency.

Test on Causal Data
To demonstrate the level of accuracy expected from the 
described causality checker, a set of 2-port S-parameters are 
generated for the causal lumped circuit shown in Fig. 1. S

21

magnitude and phase reconstructions and errors are shown in 
Fig. 2. The results show that the methodology is good to about 
a 1% error at 80% bandwidth, a level good enough for a causal-
ity checker. Reconstruction errors at the bandwidth limits are 
normal and ignored.

Using the Causality Checker
This section demonstrates a few modeling and extraction issues 
that can be clarified and/or fixed through the use of a causality 
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Fig. 1. Lumped circuit for causality test.
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checker. The examples are based on multiple 3D EM extrac-
tions of an organic package differential pair or coupled pairs, 
where the single pair is shown in Fig. 3. In the first extraction, 
the vendor-supplied dielectric constant and loss tangent at a list 
of frequency points are used. Fig. 4(a) shows the magnitude of 
S

11
 of one trace, where it can be readily identified that some-

thing is wrong from the unrealistic behavior above 25 GHz. 
The causality checker is applied to the data, with the results 
plotted in Fig. 4(b) showing very high reconstruction error not 
only at the problematic high frequencies but also at midrange 
frequencies where the data show no obvious problems.

The extraction is re-run with the vendor-supplied dielectric 
constant data augmented by an additional data point to elimi-
nate the non-physical behavior above 25 GHz, and the results 
are shown in Fig. 5(a). The results are quite plausible, but are 
the data completely fixed, reliable, and usable? The causality 
check in Fig. 5(b) shows much improvement, but the errors 
are still quite high, indicating that the results are not yet good 
enough for use even though they appear good from visual in-
spection.

It is known that small sets of tabulated dielectric constant 
and loss tangent data are generally incapable of supporting 
causal modeling. One causal dielectric model is described 
in [8], the Djordjevic´-Sarkar or D-S model. The 3D EM 
extraction is repeated with the causal D-S model, and the 
results are shown in Fig. 6, where just the combined data 
and causality check are shown. The causality error is greatly 
improved at all frequencies. Around 0.1 GHz, the error rises 
as the magnitude becomes very small, so the causality error 
is inconsequential. At frequencies above 30 GHz, the error 
increases, highlighting the fact that the data is aliased above 
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Fig. 5. The package extraction from Fig. 4 is repeated with 
an additional data point describing the properties of the 
dielectrics. (a) magnitude and (b) magnitude reconstruction 
and reconstruction error.

Fig. 3. Package differential pair for extraction studies.

Fig. 4. 3D EM extraction of a package trace in an organic 
flip chip ball grid array package showing suspicious results. 
(a) magnitude and (b) magnitude reconstruction and 
reconstruction error.
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40 GHz, where the linear frequency spacing increases from 
10 MHz to 5 GHz steps.

Data depopulation can be systematically explored using a 
causality checker [9][10]. Continuing the examination of the 
example data set computed with the D-S dielectric model, S

31
 

is shown in Fig. 7 with the full data density and progressively 
depopulated data along with causality checks. The error pro-
gressively increases with depopulation, enabling the modeler to 
select the smallest data set consistent with a given causality er-
ror. The full data set is highly over-sampled with 10 MHz linear 
sampling steps, while sampling at 500 MHz intervals greatly 
reduces the size of the data set while maintaining the causal-
ity error to about 5%. Depopulation at 1000 MHz intervals is 
clearly too sparse. Bandwidth can similarly be explored with a 
causality checker, with an example shown in Fig. 8.

A strategy for finding a minimum number of data points to 
model a good, wide-band interconnect is developed in [10]. To 
achieve a 5% causality error, the algorithm is
• Calculate Dfmax 51/ 18td 2
• Use 1.1 3 log frequency spacing until Df  $ Dfmax

• Then switch to linear spacing using Dfmax

• Set fmax after 230 dB rolloff if causality check is used to 
 validate data

where td is the interconnect delay, Dfmax is the high-frequency 
linear sampling interval, and fmax is the maximum model band-
width. Applying the algorithm to depopulate the example data 
enables a 35X reduction in the size of the original data set, with 
the before-and-after results shown in Fig. 9.
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Fig. 6. The package extraction from Fig. 4 is repeated using 
the causal Djordjević-Sarkar dielectric model.
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Fig. 7. Progressively higher data depopulation leads to higher causality errors. Linear sampling rates are shown.

Fig. 8. Bandwidth reduction leads to higher causality errors.
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Time-domain simulations are strongly affected by the level 
of causality of the interconnect data. Fig. 10 shows a differential 
time-domain reflectometry (TDR) simulation using the non-
causal S-parameter data set from the simulations for Fig. 4 vs. 
the causal data set using the D-S model from Fig. 5. The trace 
starts at about 310 ps as indicated by the red arrow. Measure-
ments and 2D EM extraction show that the impedance should 
be 100 V. The non-causal data causes several Ohms of error in 
the simulated trace impedance.

The negative impact of non-causal data is further demon-
strated in Fig. 11 using the same data sets as Fig. 10 to calculate 
the impulse response of the interconnect including the back-
plane. The non-causal data exhibits a large undershoot preced-
ing the actual rise in the data and a similar overshoot before the 
fall. These flaws are not observed in the results using the D-S 
model. Note that the package models have the same bandwidth 
and data density and that the same backplane data is used for 
both impulse response calculations.
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Conclusion
The implementation details of a simple causality checker are 
reviewed, and the checker is used to demonstrate that it can 
effectively identify flawed extraction data, weak material sets, 
and under-sampled data. The causality checker is used to derive 
an algorithm for selecting sampling rates and bandwidth for 
EM extractions of good interconnects, enabling a potentially 
large reduction in data points and run time. Improved extrac-
tion data is shown to significantly improve S-parameter data, 
time domain modeling accuracy, and time-domain system-level 
channel simulations.
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