IMTC 2007 — IEEE Instrumentation and Measurement
Technology Conference
Warsaw, Poland, May 1-3, 2007

A Stability Criterion for High—Accuracy Digital Resonator s based on
A=Y Schemes

D. Macii!, F. Pianegiarii P. Carbong D. Petr?

I Department of Electronic and Information Engineering,
University of Perugia,
via G. Duranti, 93 — 06125 Perugia, Italy
Phone: +39 075 5853629, Fax: +39 075 5853654, E—mail: ca@aliei.unipg.it.

2Department of Information and Communication Technology
University of Trento,
Via Sommarive, 14 — 38050 Trento, Italy
Phone: +39 0461 883902, Fax: +39 0461 882093, E—mail: pditi@itn.it.

Abstract —The continuous evolution of high performance mixed-a low—order filter). Also, they are able to generate an output
signal integrated circuits requires to use increasinglylsisticated sinusoidal signal of elevated spectral purity [6]-[9]. Orifi-
measurement and testing procedures, whose cost may dyrcener  nately, mostA—Y—-based resonators have proved to work cor-
almost 50% of the overall production budget [1]. This major i rectly only under certain conditions, while exhibiting iseis
crement is due to several reasons such as the increasinglerityp stability problems when some circuit parameters are chéinge
and duration of the tests, the high cost and the quick obsetez of [10]. Up to now, these phenomena have not been properly in-
the external Automatic Test Equipment (ATE) and, last buteast, ’ L : :

: . . ; o vestigated during the design phase. In fact, all publisieed r
the implementation of quality assurance programs in coamgié with It | tl | f thumb and ext . ¢
ISO 9000 series of standards. In this paper a method for deteng s_u S re_ y mostly on ru es_ 0 um an e_x ensive _compu er
the degree of stability ah—X harmonic resonators is described. Slmu!atlpns. Hence, the alr.n. of _th's paper ,'S t‘? provide a. gen-

eral insight about the stability issue of this kind of degice
Keywords -BIST, digital resonator, root locus, delta—sigma. thus determining a stabilization criterion. To this purpos
the following, a method for determining the degree of stabil
ity of A—> harmonic resonators is described. Eventually, this

. INTRODUCTION method is applied to the specific oscillator presented in [7]

A valuable solution to reduce considerably both testing Il. DESCRIPTION OF STABILITY ANALYSIS
times and instrumentation costs is provided by Built—Irf-Sel '

Test (BIST) schemes. Generally speaking, a BIST scheme con-

sists of both stimulus generation and measurement—odente In general, harmonic digital resonators are based on the cas
on—chip components. Of course, in order to make the BlSTade of two discrete—time integrators in a loop, with thesig
effective, such a scheme must be programmable, flexible arif,one integrator being positive and the other negativehése
above all, inexpensive in terms of integration resources. Astructures, the oscillation frequency depends on one or two
analogue—to—digital Converters (ADCs) are usually thedeey multiplicative coefficients [7].

vices of mixed—signal integrated circuits, the ability dfac- In order to avoid the use of hardware multipliers and
acterizing accurately their metrological performancesng multi-bit D/A converters, a 1-bifA—Y. modulator is inserted

of the most important tasks in designing a BIST scheme. Tia the loop as shown in Fig. 1. The increment in circuital com-
this purpose, many different solutions have been presamed plexity due to the introduction of this modulator is patijal
various kinds of test stimuli have been used [2], [4]. Amongounterbalanced by the benefit of generating a high—quality
them, high—quality, programmable sine waves are probab$ingle—bit output signal that can be multiplied by a conistan
the most suitable test signals because they are commonly emoefficient simply by means of a multiplexer. Obviously, the
ployed in many standard ADC testing procedures [5]. Moramplementation cost as well as the spectral quality of the ge
over, sinusoidal oscillators based or\aY: topology, i.e. digi- erated signal depend on the architecture otAk&. modulator

tal resonators exploiting 1-bit delta—sigma propertiespar- employed. In particular, using the well-known additive t&hi
ticularly suitable for BIST purposes because they can be inmoise model to represent the behavior of the 1-bit quantizer
plemented without hardware multipliers and with a minimunthe modulator should be designed so that the Noise Transfer
amount of analogue circuitry (i.e., a 1-bit DAC followed byFunction (NTF) exhibits an in—band Signal-to—Noise Ratio



(SNR) higher than a given value [9]. However, the additivée. when the root locus intersects the unit circle. The fun-
noise model is too coarse to cope with stability issues.ddde damental radian frequency of each limit cycle is given by the
even if this kind of circuits seems to be stable, it has beesngle of these intersection points in polar coordinateg. sta-
shown that, under certain initial conditions, the ampl@wf bility of each limit cycles depends instead on how the module
the internal signals may diverge suddenly [8]. The reasdns of the corresponding pole varies for different values\ofin

this behavior can be understood more clearly if an analyfsis €act, if the pole module tends to move out of the unit circle
the dynamics of the resonator is performed by modeling th@hen\ decreases (i.e. when the amplitude of the internal sig-
1-bit quantizer with a time—varying gain [10]. This paraeret nalincreases) it means that the considered limit cyclenays
which in the following will be referred to as, results from critically stable, i.e. the amplitude of the system intéistate

the ratio between the constant unit output amplitude of this destined to diverge. Conversely, if the pole positiordten
modulator and the variable input amplitude of the quantizeto move into the unit circle when decreases, the growing
Using this model, it follows that any nonlinear resonatomamplitude of the state signals tends to produce stable modes
can be regarded as a sequence of parametric linear systdires poles whose module is lower than 1), thus leading to a
depending on different values of Furthermore, the order stable oscillation. In the final paper a more complete exaglan

N of each system is equal to the sum between the akder tion about the influence of multiple time—varying modes an th

of the A-> modulator inserted in the loop and the ordér overall stability ofA—> resonators will be provided. Actually,

of the digital resonator. As a typical harmonic oscillaterai in order to clarify the proposed approach, the results oha st
second—order device, it usually results that= M + 2. Thus, bility analysis carried out on a particular kind of resomaso

by assuming that[-] is a Nx1 state variable vector and that presented in the following.

F()\) istheNxN state transition matrix of each linear system,
it results that the 1—step updating law for the state vaemts: locus (missing from disk!)

figural (missing from disk!)

lll. SIMULATION RESULTS

figura2 (missing from disk!) Suppose to insert in the generAI—Z resonator scheme
shown in Fig. 1, the fourth-order loop filtéf () displayed in
Fig. 2. The resulting structure igsa-th order system, in which
every state variable:;, i = 1,...,6 represents the content

a[n +1] = F(A) - z[n] (1) of a different register. The multiplicative coefficients tb
Accordingly, it can be easily shown that thetransform of the  filter H(Z)7 have beelg set tds = 1%76' Ay = Ags = *2746,
free evolution of the system is given by [11]: Ag = 27", By = 2%, By = =27, Bs = =2, By = 2
in order to optimize the spectral purity of the output signal
N(z, A\, z[0]) [7]. By manipulating the algebraic definition of each state

_ -1 _
X(z) = z[zI = F)]7" - 2[0] = Pz, N (@) Variable of the system, after some algebraic steps, it tesul

immediately that the state transition matrix is equal toereh

wherel is a NxN unit matrix,z[0] is the vector represent- the eigenvalues are a function ®and depend on the parame-
ing the initial values of the state variabld¥,, -) is the charac- tersk, andk;. In Fig. 3(a) and 3(b) the full root locus of the
teristic polynomial of the matri¥’(-), andN (-, -, -) is a vector system and a zoomed part of the plot around the pdin)
of polynomials depending on the initial conditionf)]. Ob- are shown, by assuming thiaf = 9.15- 10~ andk; = 2714,
serve that both system eigenvalues, i.e. the zeros of thre ch@bserve that the branches of the root logus', ¢, ¢* intersect
acteristic polynomial, and the mode amplitudes depend en tthe unit circle in two couple of symmetric points. A spectral
parameteh. Since the system stability is related to the positiomnalysis revealed that the radian fundamental frequentyeof
of the poles on the complex plane, the root locus technigae iutput signal coincides with the absolute value of the angle
valid method to investigate the degree of stability of paam associated with the intersection points between the besach
ric A=Y structures [12]. Generally speaking, the positive root* and the unit circle. Further numerical analyses also proved
locus associated with & —th order feedback system consiststhat when\ — 0 the poles related to the brancheand c¢*
of N curves representing the positions of the system poles ame slightly inside the unit circle, whereas wher- oo such
the complex plane for different values of the loop gaitx 0.  poles lie outside the unit circle, thus leading to the cosicl
Therefore, even though the sequence\ofalues, which de- that the corresponding limit cycle is stable. Nevertheless
pends on the chaotic dynamics of the interAad: modulator, repeated simulation sessions pointed out that the system is
cannot be predicted analytically, it is at least possiblelde not always stable as expected. In fact, even if the resonator
termine which modes are liable of possible malfunctions andorks correctly under certain conditions [7], the ampléuaf
whether the existing limit cycles are stable. Limit cycles o the internal state signals may suddenly diverge when éiffer
cur when the poles of the system exhibit a module equal to itial values for the state variables are set. For instaifitkee



initial register values:; [0] = 0.0055 andz3[0] = 3.51 - 10~°

and z;[0] = 0, ¢ 3,...,6 are chosen, the peak-to—peak
amplitude of the internal state signals tends to infinityeaft
abouts - 107 iterations. Root locus of thA—Y resonator after
modeling the 1-bit quantizer as a time—varying gain when
ko = 9.15-107% andk; = 274, In (a) the full root locus is
shown, while in (b) a zoomed portion of (a) is plotted around
the point(1,0) of the complex plane. The arrows highlight
the direction along which the gaik grows. This is clearly
recognizable in Fig. 4(a), where the curves representiag th

envelope of absolute values of the time—varying state bkasa ) )
are plotted as a function of the number of iterations on a TNe correctoperation ai— harmonic resonators for BIST

logarithmic scale. In this way, the chaotic pattern of sotages PUrPoses depends on the stability of the self-generated lim

variables does not hide the information about the amplitud@/cles. In this paper, by modeling the 1-bit quantizer iesid
of the internal signals. According to the root locus analysi the A—> modulator as a time—varying gain, the stability of

— figura3 (missing from disk!)

figurad (missing from disk!)

IV. CONCLUSIONS

the possible unstable behavior is due to the critical modd@is kind of oscillators is analyzed using the root locushtec

associated with the locus branchesb*. Indeed, the limit

nigue. The obtained results not only provide useful guicki

cycle corresponding to the intersection points betweem suf? Understand whether a certain structure is criticallplstebut
branches and the unit circle is clearly unstable because wh@lSoO promote the implementation of a flexible clipping sigyt
A — 0 the poles tend to move out of the unit circle thudvhich increases the stability of the resonator without dete

further stressing the incoming instability. The system \d
certainly stable only if the amplitude of the quantizer ipu
namely the sequence afvalues, is maintained higher than the
critical parameten. corresponding to the intersection points [1]
mentioned above. If this condition is not met, the behavfor o
the resonator becomes unpredictable, thus making the whole
device unreliable. Of course,. depends on the chosen values [2]
for circuital parameters. In the case considered, for imcsta

Ac is equal to about 0.47. In order to verify the validity of this [3]
assumption, the minimum values af have been recorded. ]
The collected results as well as the maxima of the most afitic
state variable:s, chosen as reference, are shown in Fig. 4(b).
Observe that as soon as the sequence whlues becomes 5]
lower than the critical threshold. 0.47, the amplitude

of x¢ increases abruptly. From this analysis it follows that[6]
once)\. is known, the stability of oscillators based om\a>:
topology can be obtained simply by assuring that> ..
However, since a simple clipping of the state variables doul
deteriorate excessively the spectral purity of the gepdrat 8]
waveform, a different approach has to be followed. GoooI
results in terms of output accuracy have been achieved bF/
clipping only minima and maxima of the resonator internal 9
signals, which are recognized as the main responsible of an
incoming instability. This strategy is justified by the faloat  [10]
not all signals increase simultaneously at the same rate. In
particular, the state variablg; exhibits an almost linear trend [11]
which is higher than the trend of the others state varialies §2
that it seems to anticipate the actual breakdown. Thergéore
proper monitoring and a careful clipping of the more rapidly
increasing state variables is sufficient to keep under obtite
values of), thus assuring system stability. A more complete
explanation about this approach as well as a description of
the stabilization results will be provided in the final paper

(7]

rating the spectral purity of the output signal.
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