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Abstract – The continuous evolution of high performance mixed–
signal integrated circuits requires to use increasingly sophisticated
measurement and testing procedures, whose cost may currently cover
almost 50% of the overall production budget [1]. This major in-
crement is due to several reasons such as the increasing complexity
and duration of the tests, the high cost and the quick obsolescence of
the external Automatic Test Equipment (ATE) and, last but not least,
the implementation of quality assurance programs in compliance with
ISO 9000 series of standards. In this paper a method for determining
the degree of stability of∆–Σ harmonic resonators is described.
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I. INTRODUCTION

A valuable solution to reduce considerably both testing
times and instrumentation costs is provided by Built–In Self–
Test (BIST) schemes. Generally speaking, a BIST scheme con-
sists of both stimulus generation and measurement–oriented
on–chip components. Of course, in order to make the BIST
effective, such a scheme must be programmable, flexible and,
above all, inexpensive in terms of integration resources. As
analogue–to–digital Converters (ADCs) are usually the keyde-
vices of mixed–signal integrated circuits, the ability of char-
acterizing accurately their metrological performances isone
of the most important tasks in designing a BIST scheme. To
this purpose, many different solutions have been presentedand
various kinds of test stimuli have been used [2], [4]. Among
them, high–quality, programmable sine waves are probably
the most suitable test signals because they are commonly em-
ployed in many standard ADC testing procedures [5]. More-
over, sinusoidal oscillators based on a∆–Σ topology, i.e. digi-
tal resonators exploiting 1–bit delta–sigma properties, are par-
ticularly suitable for BIST purposes because they can be im-
plemented without hardware multipliers and with a minimum
amount of analogue circuitry (i.e., a 1–bit DAC followed by

a low–order filter). Also, they are able to generate an output
sinusoidal signal of elevated spectral purity [6]–[9]. Unfortu-
nately, most∆–Σ–based resonators have proved to work cor-
rectly only under certain conditions, while exhibiting serious
stability problems when some circuit parameters are changed
[10]. Up to now, these phenomena have not been properly in-
vestigated during the design phase. In fact, all published re-
sults rely mostly on rules of thumb and extensive computer
simulations. Hence, the aim of this paper is to provide a gen-
eral insight about the stability issue of this kind of devices,
thus determining a stabilization criterion. To this purpose, in
the following, a method for determining the degree of stabil-
ity of ∆–Σ harmonic resonators is described. Eventually, this
method is applied to the specific oscillator presented in [7].

II. DESCRIPTION OF STABILITY ANALYSIS

In general, harmonic digital resonators are based on the cas-
cade of two discrete–time integrators in a loop, with the sign
of one integrator being positive and the other negative. In these
structures, the oscillation frequency depends on one or two
multiplicative coefficients [7].

In order to avoid the use of hardware multipliers and
multi–bit D/A converters, a 1–bit∆–Σ modulator is inserted
in the loop as shown in Fig. 1. The increment in circuital com-
plexity due to the introduction of this modulator is partially
counterbalanced by the benefit of generating a high–quality,
single–bit output signal that can be multiplied by a constant
coefficient simply by means of a multiplexer. Obviously, the
implementation cost as well as the spectral quality of the gen-
erated signal depend on the architecture of the∆–Σ modulator
employed. In particular, using the well–known additive white
noise model to represent the behavior of the 1–bit quantizer,
the modulator should be designed so that the Noise Transfer
Function (NTF) exhibits an in–band Signal–to–Noise Ratio



(SNR) higher than a given value [9]. However, the additive
noise model is too coarse to cope with stability issues. Indeed,
even if this kind of circuits seems to be stable, it has been
shown that, under certain initial conditions, the amplitude of
the internal signals may diverge suddenly [8]. The reasons of
this behavior can be understood more clearly if an analysis of
the dynamics of the resonator is performed by modeling the
1–bit quantizer with a time–varying gain [10]. This parameter,
which in the following will be referred to asλ, results from
the ratio between the constant unit output amplitude of the
modulator and the variable input amplitude of the quantizer.
Using this model, it follows that any nonlinear resonator
can be regarded as a sequence of parametric linear systems
depending on different values ofλ. Furthermore, the order
N of each system is equal to the sum between the orderM

of the ∆–Σ modulator inserted in the loop and the orderK

of the digital resonator. As a typical harmonic oscillator is a
second–order device, it usually results thatN = M + 2. Thus,
by assuming thatx[·] is a Nx1 state variable vector and that
F (λ) is theNxN state transition matrix of each linear system,
it results that the 1–step updating law for the state variables is:
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x[n + 1] = F (λ) · x[n] (1)

Accordingly, it can be easily shown that thez–transform of the
free evolution of the system is given by [11]:

X(z) = z[zI − F (λ)]−1
· x[0] =

N(z, λ, x[0])

P (z, λ)
, (2)

whereI is aNxN unit matrix,x[0] is the vector represent-
ing the initial values of the state variables,P (·, ·) is the charac-
teristic polynomial of the matrixF (·), andN(·, ·, ·) is a vector
of polynomials depending on the initial conditionsx[0]. Ob-
serve that both system eigenvalues, i.e. the zeros of the char-
acteristic polynomial, and the mode amplitudes depend on the
parameterλ. Since the system stability is related to the position
of the poles on the complex plane, the root locus technique isa
valid method to investigate the degree of stability of paramet-
ric ∆–Σ structures [12]. Generally speaking, the positive root
locus associated with aN−th order feedback system consists
of N curves representing the positions of the system poles on
the complex plane for different values of the loop gainλ ≥ 0.
Therefore, even though the sequence ofλ values, which de-
pends on the chaotic dynamics of the internal∆–Σ modulator,
cannot be predicted analytically, it is at least possible tode-
termine which modes are liable of possible malfunctions and
whether the existing limit cycles are stable. Limit cycles oc-
cur when the poles of the system exhibit a module equal to 1,

i.e. when the root locus intersects the unit circle. The fun-
damental radian frequency of each limit cycle is given by the
angle of these intersection points in polar coordinates. The sta-
bility of each limit cycles depends instead on how the module
of the corresponding pole varies for different values ofλ. In
fact, if the pole module tends to move out of the unit circle
whenλ decreases (i.e. when the amplitude of the internal sig-
nal increases) it means that the considered limit cycle is always
critically stable, i.e. the amplitude of the system internal state
is destined to diverge. Conversely, if the pole position tends
to move into the unit circle whenλ decreases, the growing
amplitude of the state signals tends to produce stable modes
(i.e. poles whose module is lower than 1), thus leading to a
stable oscillation. In the final paper a more complete explana-
tion about the influence of multiple time–varying modes on the
overall stability of∆–Σ resonators will be provided. Actually,
in order to clarify the proposed approach, the results of a sta-
bility analysis carried out on a particular kind of resonator is
presented in the following.
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III. SIMULATION RESULTS

Suppose to insert in the general∆–Σ resonator scheme
shown in Fig. 1, the fourth-order loop filterH(z) displayed in
Fig. 2. The resulting structure is a6−th order system, in which
every state variablexi, i = 1, ..., 6 represents the content
of a different register. The multiplicative coefficients ofthe
filter H(z) have been set toA3 = 2−6, A4 = A5 = −2−4,
A6 = 2−7, B3 = 214, B4 = −210, B5 = −29, B6 = 26

in order to optimize the spectral purity of the output signal
[7]. By manipulating the algebraic definition of each state
variable of the system, after some algebraic steps, it results
immediately that the state transition matrix is equal to: where
the eigenvalues are a function ofλ and depend on the parame-
tersk0 andk1. In Fig. 3(a) and 3(b) the full root locus of the
system and a zoomed part of the plot around the point(1, 0)
are shown, by assuming thatk0 = 9.15 · 10−6 andk1 = 2−14.
Observe that the branches of the root locusb, b∗, c, c∗ intersect
the unit circle in two couple of symmetric points. A spectral
analysis revealed that the radian fundamental frequency ofthe
output signal coincides with the absolute value of the angle
associated with the intersection points between the branchesc,
c∗ and the unit circle. Further numerical analyses also proved
that whenλ → 0 the poles related to the branchesc andc∗

are slightly inside the unit circle, whereas whenλ → ∞ such
poles lie outside the unit circle, thus leading to the conclusion
that the corresponding limit cycle is stable. Nevertheless,
repeated simulation sessions pointed out that the system is
not always stable as expected. In fact, even if the resonator
works correctly under certain conditions [7], the amplitude of
the internal state signals may suddenly diverge when different
initial values for the state variables are set. For instance, if the



initial register valuesx1[0] = 0.0055 andx2[0] = 3.51 · 10−6

and xi[0] = 0, i = 3, ..., 6 are chosen, the peak–to–peak
amplitude of the internal state signals tends to infinity after
about8 · 107 iterations. Root locus of the∆–Σ resonator after
modeling the 1–bit quantizer as a time–varying gain when
k0 = 9.15 · 10−6 andk1 = 2−14. In (a) the full root locus is
shown, while in (b) a zoomed portion of (a) is plotted around
the point(1, 0) of the complex plane. The arrows highlight
the direction along which the gainλ grows. This is clearly
recognizable in Fig. 4(a), where the curves representing the
envelope of absolute values of the time–varying state variables
are plotted as a function of the number of iterations on a
logarithmic scale. In this way, the chaotic pattern of some state
variables does not hide the information about the amplitude
of the internal signals. According to the root locus analysis,
the possible unstable behavior is due to the critical modes
associated with the locus branchesb, b∗. Indeed, the limit
cycle corresponding to the intersection points between such
branches and the unit circle is clearly unstable because when
λ → 0 the poles tend to move out of the unit circle, thus
further stressing the incoming instability. The system will be
certainly stable only if the amplitude of the quantizer input,
namely the sequence ofλ values, is maintained higher than the
critical parameterλc corresponding to the intersection points
mentioned above. If this condition is not met, the behavior of
the resonator becomes unpredictable, thus making the whole
device unreliable. Of course,λc depends on the chosen values
for circuital parameters. In the case considered, for instance,
λc is equal to about 0.47. In order to verify the validity of this
assumption, the minimum values ofλ have been recorded.
The collected results as well as the maxima of the most critical
state variablex6, chosen as reference, are shown in Fig. 4(b).
Observe that as soon as the sequence ofλ values becomes
lower than the critical thresholdλc = 0.47, the amplitude
of x6 increases abruptly. From this analysis it follows that
onceλc is known, the stability of oscillators based on a∆–Σ
topology can be obtained simply by assuring thatλ > λc.
However, since a simple clipping of the state variables would
deteriorate excessively the spectral purity of the generated
waveform, a different approach has to be followed. Good
results in terms of output accuracy have been achieved by
clipping only minima and maxima of the resonator internal
signals, which are recognized as the main responsible of an
incoming instability. This strategy is justified by the factthat
not all signals increase simultaneously at the same rate. In
particular, the state variablex6 exhibits an almost linear trend
which is higher than the trend of the others state variables so
that it seems to anticipate the actual breakdown. Therefore, a
proper monitoring and a careful clipping of the more rapidly
increasing state variables is sufficient to keep under control the
values ofλ, thus assuring system stability. A more complete
explanation about this approach as well as a description of
the stabilization results will be provided in the final paper.

figura3 (missing from disk!)

figura4 (missing from disk!)

IV. CONCLUSIONS

The correct operation of∆–Σ harmonic resonators for BIST
purposes depends on the stability of the self–generated limit
cycles. In this paper, by modeling the 1–bit quantizer inside
the ∆–Σ modulator as a time–varying gain, the stability of
this kind of oscillators is analyzed using the root locus tech-
nique. The obtained results not only provide useful guidelines
to understand whether a certain structure is critically stable, but
also promote the implementation of a flexible clipping strategy
which increases the stability of the resonator without deterio-
rating the spectral purity of the output signal.
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