IEEE PES General Meeting June 23-27, 2007, Tampa

Lightning Flashover Rate of an Overhead Transmission Line Protected by Surge Arresters

Juan A. Martinez Univ. Politècnica Catalunya Barcelona, Spain Ferley Castro-Aranda Universidad del Valle Cali, Colombia

Introduction

- Surge arresters improve the lightning performance of lines with a poor shielding or with very high tower footing impedances
- Arresters must be selected taking into account energy discharge stresses
- Aim of this paper: analyzing the lightning performance improvement of a shielded transmission line after installing surge arresters
- The study will be also aimed at estimating the energy absorption capability of arresters
- A statistical approach must be used due to the random nature of lightning

Contents

- Description of the test line
- Modeling guidelines
- Features of the Monte Carlo based method
- Line and lightning parameters
- Lightning flashover rate without arresters
- Arrester energy study
- Lightning flashover rate with arresters

Test line (400 kV)

Modeling guidelines

- Line span model
- Line termination
- Insulator strings
- Towers
- Footing impedance
- Power frequency phase conductor voltages
- Line surge arresters
- Return stroke Waveform, parameters

Modeling guidelines

Overvoltages originated by strokes to shield wires

Modeling guidelines

Overvoltages originated by strokes to conductors

Lightning stroke parameters

- Return stroke waveform
 - Concave waveform Heidler model

$$i(t) = \frac{I_p}{\eta} \frac{k^n}{1+k^n} e^{-t/\tau_2}$$

I_p is the peak current

 η is a correction factor of the peak current

n is the current steepness factor

 $k=t/\tau_1$, $(\tau_1, \tau_2$ time constants determining current rise and decay-time, respectively)

Lightning stroke parameters

Return stroke waveform

Lightning stroke parameters

Return stroke waveform

- Parameters used to define this waveform
 - the peak current magnitude, I₁₀₀
 - the rise time, $t_f (= 1.67 (t_{90} t_{30}))$
 - the tail time, t_h (time interval between the start of the wave and the 50% of peak current on tail)

The main difficulty to synthesize a concave waveform is the determination of the parameters to be specified in the current expression from those of the return stroke (I₁₀₀, t_f, t_h)

Insulator strings

- Based on the leader progression model (LPM)
- When the applied voltage exceeds the corona inception voltage, streamers propagate along the insulator string; if the voltage remains high enough, these streamers will become a leader channel
- A flashover occurs when the leader crosses the gap between the cross-arm and the conductor
- The total time to flashover can be expressed as follows

$$t_t = t_c + t_s + t_l$$

t_c is the corona inception time (it is usually neglected)

t_s is the streamer propagation time

$$t_s = \frac{E_{50}}{1.25E - 0.95E_{50}}$$

 E_{50} is the average gradient at the critical flash-over voltage *E* is the maximum gradient before breakdown

Insulator strings

• The leader propagation time, t_l , can be obtained from the following equation

$$\frac{dl}{dt} = k_l V(t) \left[\frac{V(t)}{g - l} - E_{l0} \right]$$

V(t) is the voltage across the gap g is the gap length l is the leader length E_{l0} is the critical leader inception gradient k_l is a leader coefficient

 The leader propagation stops if the gradient in the unbridged part of the gap falls below E₁₀

Monte Carlo procedure

- Calculation of random values (lightning stroke parameters, leader channel location, phase conductor voltages, footing resistance, insulator strength)
- Application of the electrogeometric model
- Overvoltage calculations
- If a flashover occurs, the counter is increased and the flashover rate updated
- Convergence of the Monte Carlo method

Line and lightning parameters

Models were created using ATP capabilities

- Line represented by means of 390-m spans plus a 30-km section as line termination at each side of the point of impact
- Tower surge impedance calculated according to the expression suggested by CIGRE
- Parameters of insulator equation

 $k_{l} = 1.3E-6 \text{ m}^{2}/(\text{V}^{2}\text{s})$; $E_{l0} = 570 \text{ kV/m}$

- Insulator string striking distance 3.066 m
- Only negative single stroke flashes (represented by the Heidler model) were considered

Line and lightning parameters

Probability distributions assumed

- Stroke parameters determined assuming a lognormal distribution
- The reference angle had a uniform distribution, between 0 and 360 degrees
- Insulator string parameters determined according to a Weibull distribution, with a standard deviation of 5% for all parameters.
- The footing resistance had a normal distribution with a mean value of 50 Ω and a standard deviation of 5 Ω (soil resistivity = 200 Ω.m)
- The stroke location was obtained by assuming a uniform ground distribution of the leader

Flasshover rate without arresters

- Flashover rates after 20000 runs
 - backflashovers = 1.65 per 100 km-year
 - shielding failures = 0.66 per 100 km-year
- The total flashover rate was 2.31per 100 km-year
- Values obtained N_g = 1 fl/km²-year
 Too high rate for a transmission line

Simulation results

Strokes to shield wires that caused flashover

Simulation results

Strokes to phase conductors that caused flashover

Sensitivity analysis

- Performed to find out the relationship between the flashover rate of the test line and some parameters
 - the median value of the peak current magnitude
 - the rise time of lightning strokes
 - the mean value of the footing resistance at low current and low frequency

Flashover rate vs. peak current magnitude (t_f = 2 μs, t_h = 77.5 μs, R_0 = 50 Ω, ρ = 200 Ω.m, N_a = 1 fl/km²-y)

Flashover rate vs. footing resistance (I_{100} = 34 kA, t_f = 2 μs, t_h = 77.5 μs, ρ = 200 Ω.m, N_q = 1 fl/km²-y)

Modeling guidelines

- Spans must be represented as multi-phase untransposed frequency-dependent distributed-parameter line sections
- No less than 7 spans at both sides of the point of impact have to be included in the model for arrester energy evaluation
- The effect of the arrester lead is negligible when strokes hit either a tower or a phase conductor
- The tail time of the return stroke current has a strong influence; the effect of the rise time very small, or even negligible for low peak current values

Arrester model and parameters

- Model recommended by IEEE
- Values used to obtain the arrester model:
 - voltage for a 10 kA, 8/20 μ s current, V_{10} = 1007 kV
 - switching surge discharge voltage for 1 kA, 30/60 μs current, V_{ss} = 735 kV
 - height of the arrester, d = 3.72 meters
 - number of parallel columns of MO disks, n = 1
- Rated voltage selected for the test arrester is 378 kV

Maximum energy discharged by surge arresters

Arresters per tower	Stroke to a tower	Stroke to a phase conductor ⁽²⁾
A – B – C	96.4 kJ	645.8 kJ
A – B	101.2 kJ	645.8 kJ
B – C	81.7 kJ	651.7 kJ
C – A	90.8 kJ	645.8 kJ
Α	97.3 kJ	645.8 kJ
В	88.8 kJ	651.7 kJ

(1) Waveform of the stroke to a tower = 150 kA, 2/50 μ s (2) Waveform of the stroke to a conductor = 50 kA, 2/50 μ s Footing resistance: $R_0 = 50 \Omega$; $\rho = 200 \Omega$.m

Maximum energy discharged by surge arresters

Stroke to a tower - Footing resistance: $R_0 = 50 \Omega$; $\rho = 200 \Omega$.m

Maximum energy discharged by surge arresters

Stroke to a tower - Footing resistance: $R_0 = 50 \Omega$; $\rho = 200 \Omega$.m

Flashover rate with arresters

- Goal: estimate the improvement of the flashover rate that can be achieved by installing surge arresters at all towers of the test line, but not at all phases
- Conclusions derived from the previous results:
 - The line has a poor lightning performance, mainly due to an abnormal shielding failure rate
 - Arrester failures can be caused by a stroke to a phase conductor, unless arresters with a large energy absorption capability were installed
- The flashover rate of the test line with the different combinations of arresters was estimated; it was assumed that arresters with a large enough energy absorption capability were installed

Flashover rate with arresters

Flashover rate with arresters (per 100 km-year)

Arrester Protection	BFOR	SFFOR	Total flashover rate
A - B - C	0	0	0
A – B	0.245	0	0.245
B – C	0.670	0.560	1.230
C – A	0.505	0.100	0.605
Α	0.740	0.105	0.845
В	1.000	0.560	1.560

Conclusions

 The paper has presented the lightning performance improvement of a 400 kV line with a poor shielding

The study has shown that

- a different degree of improvement can be achieved by installing arresters at all or only some of the line phases
- the improvement can be very significant when arresters are installed at two phases
- with the installation of a single arrester per tower, an important reductions of the FR is achieved
- the installation of arresters with a high energy absorption capability is advisable