Lightning Transient Study of a Hybrid Overhead and Underground High-Voltage System

G. W. Chang, Y. J. Liu, and H. M. Huang

Department of Electrical Engineering National Chung Cheng University, Taiwan

June 26, 2007

Outline

- Introduction
- Insulation Coordination
- Modeling of the Hybrid Transmission System
- Simulations & Results

Conclusions

Introduction

• Transmission systems are often exposed to severe weather conditions, especially due to the lightning.

Introduction (cont'd)

• In general, the probability and parameters of lightning stroke are main factors for investigating lightning transients.

Fig. 2: Overhead transmission lines

Fig. 3: Underground cable systems

4

Introduction (cont'd)

Fig. 4: Cable breakdown

Fig. 5: GIS fault

• In this paper, the authors try to make some transient analysis and computer simulations, then the results are used to evaluate whether there is a lightning overvoltage problem in the system or not.

Insulation Coordination

- Insulation coordination is important for correlating electric equipment insulation strength with protective device characteristics so that the equipment obtains an acceptable risk of failure and against expected overvoltage.
- The selection of equipment insulation strength and the voltage level provided by protective devices usually depends on engineering judgments and cost.

Insulation Coordination (cont'd)

 BIL is defined as the peak value of the standard lightning impulse waveform. Equipment conforming to these BILs must be capable of withstanding repeated applications of the standard waveform of positive or negative polarity without insulation failure. ^v/₄

7

Insulation Coordination (cont'd)

• Protective ratio (PR) is definded in (1), which is used to measure the degree of equipment coordination.

 $PR = \frac{\text{insulation withstand level}}{\text{voltage at protected equipment}}$ (1)

• Protective margin (PM) is defined as the difference between the equipment breakdown voltage and the protective device ceiling voltage.

$$PM = (PR - 1) \times 100\% \tag{2}$$

- One of the most important tasks in power system transient analysis is the selection of the model by which the physical system can be accurately represented.
- Distributed parameter models take into account the distributed nature of the component parameters and they are based on" *Traveling Wave Theory*".

• Considering a single-phase two-wire lossless transmission line. Figure 7 shows a line section with an infinitesimal length.

• For convenience, the shunt conductance and series resistance can be omitted. In addition, the parameters *L* and *C* are assumed to be constants and are independent of the frequency.

$$\frac{\partial v(y,t)}{\partial y} = L \frac{\partial i(y,t)}{\partial t}$$

$$\frac{\partial i(y,t)}{\partial y} = C \frac{\partial v(y,t)}{\partial t}$$
(4)

• According to the traveling wave theory analysis, a general solution set of (4) is given below

$$v(y,t) = v_1(t - \frac{y}{c}) + v_2(t + \frac{y}{c})$$

$$i(y,t) = \frac{v_1}{Z_c}(t - \frac{y}{c}) + \frac{v_2}{Z_c}(t + \frac{y}{c})$$
(5)

where v_1 and v_2 are constants; Z_c is the characteristic impedance of the line which is defined as $Z_c = \sqrt{L/C}$; *c* is the propagation velocity of a traveling wave and is defined as $c=1/\sqrt{LC}$.

• A hybrid overhead and underground 345 kV high-voltage system that supplies a high-tech industrial park is under investigation.

Simulations & Results

Table 2: Case study

	Simulation Parameters					
Case 1	Lightning current $150kA(0.1 imes 40us)$, lightning					
	channel impedance 400Ω , MOV grounding resistance					
	10Ω , MOV bounding wire $40m$, transmission tower					
	foot impedance 7Ω , connected station tower foot					
	impedance 3Ω					
Case 2	Lightning current $150kA(1.8 \times 30us)$, lightning channel					
	impedance 400 Ω , MOV grounding resistance 10Ω ,					
	MOV bounding wire $40m$, transmission tower foot					
	impedance 7Ω , connected station tower foot impedance					
	3Ω					

Items	BIL(kV):	
Cable Joint	1300	
GIS	1175	
Transformer	1050	

• Transient currents of the lightning and surge arresters

• Energy of the lightning and surge arresters

• Transient voltages at cable joints M5~M1

Table 4: Statistics of case1

Case 1		V _{max} (k∀)	PR	PM
	M 55	984.28	1.32	32%
Cables₽	M_{5}	1642.2	0.792	<1%
GIS		691.31	1.7	70%
Tr.		926.1	1.34	34%
Tower		1353.4		/
	LA	1643.7		
Arresters	SA	1012.4		

Table 5: Statistics of case 2

Case 2		V_{\max} (kV)	PR	РМ
	M 55	975.82	1.33	33%
Cables	M_{5}	1245.4	1.04	4%
GIS		693	1.69	69%
Tr.		892.2	1.17	17%
Tower		1186		
	LA	1247.8		
Arresters	SA	920.78		

Conclusions

- This paper presents a transient study of lightning overvoltage in a 345 kV hybrid transmission system. An effective transient simulation of lightning overvoltage is demonstrated by the use of distributed parameters to model the transmission system.
- Considering the system insulation coordination several indices are used to evaluate the capability of withstanding transient overvoltage of each equipment.

Conclusions (cont'd)

- Simulation results indicate only useing the worst-case to do simulation the transient overvoltage will unusual occur. If the lightning impulse is in a reasonable range, the transient overvoltage will not be produced.
- It can firstly to conclude that the current transmission system in the industrial park does not produce the serious destruction of transient overvoltage that caused by lightning stroke.

Thank You!

E-mail: wchang@ee.ccu.edu.tw http://www.ee.ccu.tw/~pq/wchang.htm

