EPRI Lightning Protection Design Workstation

Tom McDermott Electrotek Concepts, Inc. 2000 Winter Power Meeting

LPDW v5 Components

- Includes 1988-97 flash data from the National Lightning Detection Network
- CFlash for underground distribution (new)
- DFlash for overhead distribution
- TFlash for overhead transmission
- LPData.exe manages main database
- On-line reference

LPDW History

- 1992 v1 Release (DFlash)
- 1994 v2 Release
 - DFlash pole drawing
 - MultiFlash for transmission
- 1997 v4 Release
 - brand new TFlash for transmission
 - multiple circuits in DFlash
- 1999 v5 brand new CFlash for cables

DFlash Features

- Lightning Flash Data (EPRI RP 2431)
 - Ground Flash Density maps
 - Peak currents of the first stroke
- Pole Insulation Strength analysis (EPRI RP 2874)
- Shielding
 - Overhead shield wires
 - Nearby trees and houses
- Surge Arresters at various spacings
- Pole Ground Resistance
- Transformer Protection (lead length, low-side surges)
- Equipment Inventory

DFlash Conductor and Insulator Specification

Conductor Types Conductor Names Size (KCM) Phase: ACSR T 1/0_R4/EN 1056 Neutral / Shielding: ACSR T 1/0_R4/EN 1016	Pan Vertical PB Pan Vertical PC PC <td< th=""><th></th><th>.aop_7061 .aop_7061 .aop_7061</th><th>130 130 130</th><th>4.2 0.0 1.2 0.0</th><th>90 95 90 80</th></td<>		.aop_7061 .aop_7061 .aop_7061	130 130 130	4.2 0.0 1.2 0.0	90 95 90 80
	Phase. Neutral/Shelding	Conductor Ty ACSR	200 2 2	Conductor N 1/0_R4/EN 1/0_R4/EN	lanon I	Size[IKCM] 105.6 105.6

CFC	O Added Value	es
Table 2. CFO Added I Second Component of	y Second Components With first component of	Adds to the CF
Wood crossarm	· Vertical pin insulator	250 kV/m
Wood crossarm	Vertical suspension insulator	160 kV/m
Wood crossarm	Horizontal suspension insulator	295 kV/m
Wood pole	· Vertical pin insulator	235 kV/m
Wood pole	: Suspension insulator	90 kV/m
Fiberglass Crossarm	: Insulator	250 kV/m
Fiberglass Standoff	Insulator	315 kV/m
Table 3. CFO Added I Third Component of:	by Third Components Adds to the CFO: 65 kV/m	

Sample Pole CFO [kV]

No Arrester	Phase B Arrester
370	340
439	130
370	340
	<u>No Arrester</u> 370 439 370

**** Line Sectio	n Flashov	er Perfo	rmance	****			
Line Section Nam Global flash den	e : sity :	15kV 6.68 fl	.ashes/s	q.km⁄yr			
Exposed Conductor(s)	Events On	Arres Energ 1ph	sters Ex ny Ratin 2⁄3ph	ceeding g∕yr Mckt	Dir Fla 1ph	rect-Strushovers 1 2/3ph	oke ⁄yr Mckt
Phase A, Ckt 1	Ckt1 Ckt2 Ckt3	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	12.621 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000
Phase B, Ckt 1	Ckt1 Ckt2 Ckt3	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.682 0.000 0.000	0.000	0.000 0.000 0.000
Phase C, Ckt 1	Ckt1 Ckt2 Ckt3	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	5.300 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000
Equivalent shado Flashes to line Flashes to line Shielding factor Direct-stroke fl Nearby-stroke fl Arresters with e Median current o	w widths in open g with near due to n ashovers ashovers xcess ene f first d	round by objec earby ob rgy disc irect st	ts jects harge roke to	= = = = = = =	Ckt1 27.85 78.65 18.60 0.76 18.60 36.63 0.00 28.86	Ckt2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Ckt3 0.00 meters 0.00 /yr 0.00 /yr 0.00 /yr 0.00 /yr 0.00 /yr 0.00 kÅ

Sample Line Flashover Results

100 km, GFD=1, 9.1 first strokes to line/year 0.188 shielding failure flashovers in all cases

A	rrester	Ground	Stroke to B		Excess
<u>S</u>	<u>pacing</u>		<u>1-¢ FO</u>	<u>2,3-¢ FO</u>	Energy
N	lone	50	8.910	0.000	0.000
Ε	very 2	50	4.368	0.985	3.130
Е	very 1	50	0.000	1.969	5.311
N	lone	10	8.910	0.000	0.000
Е	very 2	10	4.516	0.126	3.841
Е	very 1	10	0.000	0.373	6.907

Implications of the EGM

- Need to match shielding with stroke collection
- Median current of strokes to the line **increases** with height
- NLDN current distribution may become preferred data source, median to flat ground is in the 20's of kA
- A leader progression model (Rizk, Dellera and Garbagnati) might be better
- Could use a 3D model for nearby objects

Implications of Induced Voltages

- Rusck model is widely criticized for simplicity
- Compensating errors in DFlash
 - Rusck model may be optimistic
 - steepness and insulation strength pessimistic
- At least 2 good travelling wave models exist, Anderson and Nucci et. al., but:
 - voltage between conductors less than voltage to ground
 - widely spaced arresters are effective
 - insulation above 300 kV CFO is effective

Example: Induced Voltage with Pole Ground

$h_p = 30 \text{ ft}$	$h_n = 24 \text{ ft}$	$Z_g = 500 \; \Omega$			
$Z_m = 150 \ \Omega$	$R=50~\Omega$	CFO = 300 kV			
Suppose $V = 300 \text{ kV}$ from nearby stroke, on a conductor 30 ft above ground					
$V_{ins} = 300 [1 - (24/30)] = 60 \text{ kV}$ at ungrounded poles					
$V' = 300 \{1 - (24/30) * [150/(2 * 50 + 500)]\} = 240 \text{ kV}$					
$V_n = 300 (24/30) * [(2 * 50)/(2 * 50 + 500)] = 40 \text{ kV}$					
$V_{ins} = 240 - 40 = 200 \text{ kV}$ at grounded poles					

NLDN Performance Improvements

	50% Error Ellipse	Flash Detection			
Year	Semi-Major Axis	Efficiency			
1995	0.5-1.0 km	80-90%			
1992-94	2-4 km	65-80%			
1989-91	4-8 km	70%			
Some interesting observations					
• Peak current distribution seems to vary with location					

• Many subsequent strokes have higher peak currents than the first stroke

Small Boxes

- 10 minutes on a side
- About 16 x 16 km at the equator
- Cumulative flash counts for positive and negative polarity
- Use for local ground flash density (GFD)
- Line Sections and Towers are located in small boxes

Large Boxes

- 1 degree (60 minutes) on a side
- About 100 km x 100 km at the equator
- Cumulative GFD statistics
 - Mean annual GFD
 - Standard deviation of annual GFD
- Histogram of first-stroke peak currents
- Histogram of stroke multiplicity, for positive and negative polarity

Lightning Parameter Options

- IEEE: 31-kA median, 2-µsec front
- Cigre: 31-kA median, 1.28-µsec median front that depends on current
- NLDN: median peak depends on the Large Box, Cigre fronts

In Dflash:

- All: tail time = $77.5 \ \mu sec$
- All: 12.3-kA median subsequent stroke, but multiplicity varies

Effect of Lightning Environment Arresters Every Pole, 50-Ω grounds

Option	First Strokes <u>to Line</u>	Median of First Strokes <u>to Line [kA]</u>	Shielding Failure FO	Top-Phase Flashover
Cigre	11.24	44.63	0.130	4.717
IEEE	11.09	42.33	0.128	4.392
NLDN	9.10	31.98	0.188	1.969

- There are 10 years available for use with LPDW Version 4.1, 1988-1997, but the first few years did not cover the entire U. S. (48 states)
- Before 1995, the ground flash detection efficiency ranges from 40% to 70%, depending on geographic location
- Calibration of peak current magnitudes is very approximate
- Many ground flashes have multiple attachment points
- Actual "Ground Strike" density could be up to 2-3x raw GFD from NLDN, depending on year and location

Fault Analysis and Lightning Location System (FALLS)

- First release in 1995
- GIS-based (MapInfo)
- Uses NLDN flash or stroke data with timecorrelated power system events
- Small-area GFD and stroke parameter maps
- Asset exposure and reliability analysis
 - difference between "hot lightning areas" and "hot flashover areas"
- Solaris/Sybase server, Solaris or NT client

TFlash Features

- Complete modeling of the line, tower-by-tower
- Ground rods, radial and continuous counterpoise with impulse resistance
- Transmission line surge arresters
- Shielding from nearby objects
- Transmission line surge arresters
- Corona effects
- Tower surge impedance

Improvements for Version 6

- Map based on commercial GIS
- Improve archived NLDN data, with stroke current distributions in the 10-minute boxes
- Internationalization, allow other sources of lightning data
- Pole model options (underbuild, H-frame)
- More access to modeling options

- Revised/redone electrogeometric model
- Better characterize the arrester energy discharge capability
- CFO added from fiberglass guy insulators (needs laboratory testing)
- Time-domain simulation of induced voltages