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1. Introduction

The problem of disturbances produced by lightning-induced
overvoltages on distribution lines has been carefully reconsidered
in the last years by power utilities. This is motivated by the
widespread use of sensitive electronic devices in the power
system equipment (circuit breakers, disconnectors, control and
protection circuits) and, in parallel, by the increasing demand by
customers for good quality in the power supply. Indeed,
lightning-induced voltages are responsible of the majority of
faults on distribution overhead lines, causing microinterruptions
and, more in general, disturbances to sensitive electronic devices.

2.  What causes induced voltages and how to evaluate
them ?

A cloud-to-ground lightning flash generates a transient
electromagnetic field which can induce overvoltages of
significant magnitudes on overhead power lines situated in the
vicinity. The return stroke phase of the lightning discharge is
considered to be the major responsible for the induced voltages,
because the most intense electromagnetic radiation occurs during
this phase [1]t. The calculation of lightning-induced voltages
requires the following stages.

- first, a return-stroke model which specifies the spatial and
temporal distribution of the lightning current along the
channel during the return-stroke phase is adopted;

- then, the electromagnetic field change produced by such a
current distribution, ideally including propagation effects on
the field, is calculated along the line, and

- finally, voltages resulting from the electromagnetic
interaction between the field and the line conductors are
obtained by using a coupling model.

Return Stroke Current Models

A return-stroke model to be employed in the calculation of
lightning-induced voltages is a specification of the distribution of
the return stroke current as a function of height and time along
the lightning channel. This distribution is generally specified in
terms of the current at the channel-base, which is a directly-
measurable quantity and for which collected statistics are
available. A certain number of return stroke models have been
proposed in the literature (e.g. [2-4]) among which it has been
shown that the TL and its more physically plausible
modifications [5,6] are a good compromise between simplicity
and accuracy in terms of predicted electric and magnetic fields.

! For close distances (of the order of a few tens of meters) separating
the lightning discharge and the overhead lines, however, important
overvoltages can be induced due to the preceding downward leader phase
[46].
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Lightning electromagnetic field calculation

For distances not exceeding a few kilometers, the perfect
ground conductivity assumption is shown to be a reasonable
approximation for the vertical component of the electric field
and for the horizontal component of the magnetic field [7,8].
The horizontal component of the electric field, on the other
hand, is appreciably affected by the finite ground conductivity.
Simplified expressions have been proposed [8-10] which are able
to predict with a reasonable approximation electric field at
various distance [8,9,11].

Coupling Models

Three coupling models are commonly adopted in the power
literature to describe the coupling between lightning return-
stroke fields and overhead lines: the model by Rusck [12], the
model by Chowdhuri and Gross [13], and the model by Agrawal et
al. [14]. Only the Agrawal model and its equivalent formulations
[15] can be considered as rigorous within the limits of the
adopted hypothesis (transmission line approximations) [16,17].

Experimental validation of Coupling Models

The coupling models have been tested by means of natural
lightning [18-20] and triggered lightning [21-22]. The use of
lightning is complicated by the intrinsic difficulty in performing a
controlled experimenting, although triggered lightning is clearly
more promising in this respect. The agreement regarding the
wave shape can be considered satisfactory, but regarding the
intensity, there are still unexplained discrepancies. Possible
causes for the disagreement can be: calibration errors, an
incorrect determination of the angle of incidence of the electro-
magnetic wave, uncertainties about the ground conductivity, the
presence of trees and other objects in the vicinity of the line, etc..

More controlled conditions can be obtained using NEMP
simulators [23,24] or reduced-scale models [25,26]. Indeed, the
comparison between theory and experimental results for this
case is satisfactory (see Figs. 1 and 2).

3. What magnitudes and shape are typical overvoltages ?

Fig. 3a shows the induced voltage by a typical subsequent
return stroke characterized by a channel-base current presented
in Fig. 3b. The line is a lossless, 1-km long, 10-m high overhead
wire, matched at its two terminals. The lightning strike is located
at 50 m from the line center and equidistant to the line
terminations. As it can be seen by this figure, lightning-induced
voltages are characterized, in general, by faster risetimes and
shorter duration with respect to the originating return stroke
current.

Lightning-induced overvoltages can reach magnitudes up to
few hundreds of kV and, therefore, can occasionally cause line
flashover. If the line terminal is not protected by a surge arrester,
but rather by a spark gap, microinterruptions could occur due to
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the spark gap operation. The induced voltage magnitude and
shape significantly depend upon lightning return stroke
parameters (channel-base current parameters, return stroke
velocity), distance and relative position with respect to the
transmission line, ground electrical parameters, and, line
configuration and terminations [11,27].
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Fig. 1 — Induced current on an experimental line model illuminated
by an EMP simulator. Solid line: measured current, dashed line:
computed current. (For details on the experiment, see [24])
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Fig. 2 - Comparison between measurements on a reduced-scale

model and simulation results. (Experimental data courtesy of A.
Piantini. For details on the experiment, see [26])

4. How far away can lightning strokes be that cause an
induced voltage flashover ?

The distance within which a cloud-to-ground lightning
discharge can cause an induced voltage flashover is generally
within 200 m. This distance depends on the severity of the
stroke (current peak and maximum time derivative, return stroke
speed), line configuration (length, height), stroke location,
ground electrical conductivity, and the BIL. Lightning strokes
occurring beyond a few hundred meters from the line can cause
a line flashover for poor conducting soils [20].

5. How does the induced voltage drop as a function of
distance from the line ?

For the same return stroke parameters and assuming a
perfectly conducting ground, the induced voltage at a given point
along the line can be approximately assumed to decrease
inversely proportional to the distance. Fig. 4 presents the
induced voltage as a function of distance for the same
parameters as in Fig. 3.
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Fig. 3 — Induced voltage on a 1-km long, 10-m high, lossless, matched
line over a perfectly conducting ground. Stroke location: 50 m from the
line center and equidistant to the line ends. Return stroke parameters
correspond to typical subsequent strokes. (a) Induced voltage. (b)
Lightning channel-base current.
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Fig. 4 — Dependence of the induced voltage as a function of the
distance. Same configuration as in Fig. 3.

6. What BIL is needed to prevent induced flashovers ?

In contrast with direct strokes for which, regardless of the
BIL, generally flashover occurs, the number of induced
flashovers decreases as a function of BIL. That is the reason for
which lightning-induced overvoltages are of concern essentially
for distribution lines [28-30]. The line height and the ground
conductivity affect considerably the number of induced voltages
greater than a given BIL [31]. In Fig. 5, taken from [31], we show
the dependence of the number of events as a function of the
BIL for a 2-km long line and considering different values for the
ground conductivity. As it can be seen from this figure, Lines
with a BIL less than about 300 kV are prone to induced
flashovers.

7.  What arrester spacing is needed to prevent induced
flashovers ?

In order to prevent direct-stroke flashover, arrester spacings
of 300-400 m is generally recommended. For the case of induced
flashovers, a given configuration of line arresters can result in
different performances depending on the location of lightning
strike [32]. Further studies are needed in this respect.
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Fig. 5 — Number of events vs BIL for a MV line. (Adapted from [31])

8.  Will a shield wire help ?

Shield wires help in reducing the magnitude of induced
voltages by a factor of about 20 to 40 % [12,33,34]. This implies
about the same reduction of the fault frequency.

9. Is horizontal or vertical construction best ?

The induced voltage magnitude for typical distribution lines
is virtually proportional to the line height. As a consequence, an
important factor determining the magnitude of lightning-induced
voltage is the line height above ground, rather than the type of
construction. In general, a construction allowing a shorter height
for the conductors is expected to experience lower induced
overvoltages. Examples of induced voltages on typical horizontal
and vertical configurations can be found in [34].

10. What effect does pole grounding and ground resistivity
have ?

Pole grounding affects the performance of the ground wire
in reducing the induced overvoltages. In general, lower the pole
ground impedance, better the performance of the ground wire.

The ground resistivity has a major effect on the waveshape
and magnitudes of the induced voltages. It affects both the
lightning electromagnetic fields and surge propagation along the
line. However, its effect depend strongly on the line
configuration and the stroke location. It can produce an increase,
a decrease, and/or an inversion of polarity of the lightning-
induced voltages [11,35].

11.  Some of the current researches which are being done
on induced voltages

- Lightning electromagnetic field characterization using natural
and artificially-initiated lightning [36-39]

- Experimental validation of field-to-transmission line coupling
models [22,25,40]

- Development of engineering tools for the protection of
power networks against lightning-induced overvoltages [41-
45]

- Leader-induction effect [46]

- Effect of ground conductivity on
overvoltages [9,11,25,35,47,48]

- Return stroke modeling and influence of elevated strike
objects on lightning current and radiated fields [2,4,49-53]

- Adequacy of the available lightning return stroke current
statistical data [50,54,55]

- Effect of corona on lightning-induced voltages [56,57]

- Lightning detection and location systems [58-59]

- Lightning channel tortuosity and inclination [60]

lightning-induced

12. What is the CIGRE working group doing on induced
voltages ?

Within the framework of the CIGRE working group WG
33.01 "Lightning", Task Force 33.01.01 "Lightning induced
voltages" established some years ago has already produced two
papers published in Electra [3,27] dealing respectively with
lightning return stroke models and lightning electromagnetic
field-to-transmission line coupling models. A third paper, dealing
with a sensitivity analysis and aimed at providing ranges of
overvoltage values to be expected in the different typical line
configurations, is in preparation.
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