IEEE 'Lightning Performance of Overhead Lines' WG

Tuesday, July 19, 2016 8:00 AM

Minutes of 2016 WG Meeting at the PES General Meeting in Denver, Co

Chair: Emanuel Petrache Vice-Chair: Jens Schoene

Emanuel opened the meeting at 8:05am with an overview of the Agenda

- 1. Bill Chisholm reported on CIGRE WG activities and other news
 - a. Presentation posted at http://ewh.ieee.org/soc/pes/lpdl/
 - b. B2.54 Guidelines for the Management of Risk Associated with Severe Climatic Events and Climate Change on Overhead Lines (Henry Hawes)
 - c. B2.56 Ground Potential Rise at Overhead AC Transmission Line Structures during Faults (George Watt)
 Bill presented details on step potential verification method.
 Recommendation: Coordinate with C4.33 to confirm the validity of the impulse test method, considering frequency dependence of the soil
 - d. B2.AG06.TF007 Coordination of transmission line surge arrester (TLSA) and vibration damper installations (David Havard, leading to CIGRE Science & Engineering Article)
 "Don't put your arresters near our dampers"
 Objective is to produce a paper for CIGRE Journal of Science and Engineering guidelines Scheduled completion 2016
 - e. Petrache paper on CEATI studies (CDEGS HiFreq vs NEC-4)
 - f. Lots of interest in German Hybrid AC/DC with positive pole exposed to lightning Double circuit lines with single OHG. Converting one side to DC. Banks of 10 arrester at terminal proposed.
 - g. C4.23 GUIDE TO PROCEDURES FOR ESTIMATING THE LIGHTNING PERFORMANCE OF TRANSMISSION LINES (Christiaan Engelbrecht)
 "Don't wait for its readiness. Better move forward with revising 1243 on an aggressive schedule."
 - h. C4.26 UHV Line Shielding (Jinliang He)
 - C4.33 Impact of Soil-Parameter Frequency Dependence on the Response of Grounding Electrodes and on the Lightning Performance of Electrical Systems (Sliverio Visacro) Bill presented details on frequency dependence of soil. :Using low-frequency value for flashover calculations may result in a 600% error of flashover rate."
 - j. C4.36 Winter Lightning Parameters and Engineering Consequences for Wind Turbines (Masaru Ishii)
 Severity of problem (lightning blowing blades of) is unique to Japan. Starting to see similar problem in Ontario.
 - k. C4.39 Effectiveness of line surge arresters for lightning protection of overhead transmission lines (Kenji Tsuge)

Some aspect of existing electro-geometric model apparently erroneous.

- I. PES Annual Meeting, July 2016
 - i. HVDC Line Design Guide Task Force (July 18)
 - ii. HVDC Line Design Subcommittee (July 20, 8 AM)

- 2. Tom McDermott will present the results of a recently-funded CEATI project aimed at improving IEEE Flash (tower models, counterpoise models, and updated applications of the CFO-added method).
 - a. OpenEtran developed for distribution to estimate flashover rate.
 - i. Runs EMTP under the hood.
 - ii. Includes line segments, insulators, grounds, surge arresters, lightning.
 - iii. Frequency-dependent arrester models.
 - iv. Soil model not frequency dependent.
 - v. Does not handle pre-discharge currents.
 - b. IEEE Flash calls OpenEtran with a GSL root-finding method to find critical stroke current causing flashover.
 - c. Development needs
 - i. Improve model of induced voltages from nearby strokes. Proposed new model is from Hoidalen
 - ii. Implement the CFO-added method and transmission counterpoise.
 - d. CEATI project Scope and Schedule
 - i. Transmission: tower and counterpoise model
 - ii. Distribution: CFO added method
 - iii. Overall: documentations and examples
 - iv. Chisholm: Time-dependent insulation parameters
 - v. Interface: Python?
 - vi. Schedule
 - 1. Models in C code: October 2016
 - 2. User Interface and Case Study: February 2017
 - 3. Documentation and Deployment: June 2017
 - vii. Tom asking for recommendations for counterpoised models and data to support this project performance information, counterpoise, conductor type, etc. Bryan Beske can provide some data.
- 3. Revision of IEEE Std. 1243
 - a. 2 year extension request approved last year
 - b. Deadlines:
 - i. All IEEE standards have a 10 year maintenance life cycle, and 1243 will expire in 2018
 - ii. Complete draft and submit to RevCom (Review Committee) for approval by October 2018 (completed balloted).
 - iii. Balloting takes 6-12 months (according to John).
 - iv. Switched to inactive -> can bring it back by completing work.
 - v. If standard is in balloting, then an extension can be requested.
 - c. Next steps.
 - i. Create editable format in current template. Can be done by IEEE Standard Association
 - d. Bill suggested three changes that can be made immediately
 - i. Thunder storm hour wrong by a factor of 10
 - ii. Sag calculation wrong by a factor of 10
 - iii. L/R time constant tall of wave is wrong. Says determines time on wave, but it doesn't.
 - e. Webex meeting 2-3 months from now (September/October, 2016), after editable version received

- f. Task assignment.
 - i. Assigned during first Webex
 - ii. Bill volunteered to transfer 1410 content on flash density to 1243
- g. Update on IEEE Std. 1410TM
- h. Next Meeting:

2016 IEEE PES Joint Technical Committee Meeting in New Orleans, January 8 - 12, 2017 (tentatively)

- 4. Action items
 - a. Request editable format that conforms to current IEEE template from IEEE-SA Standards Board (completed). Erin Spiewak will take care of this
 - b. Emanuel: Schedule WebEx for end of September, 2016.
 - c. Emanuel: Schedule WebEx for late April, 2017.
- 5. Meeting sojourned at 11AM