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2Presentation Outline

• Closing and re-closing operations on transmission lines (line energization)

• Reduction of overvoltages in closing and re-closing operations on 
transmission lines

• Computer models for closing and re-closing operations on transmission lines

• Examples for closing and re-closing operations on transmission lines

• Example for temporary overvoltages

• Examples for subsynchronous resonance

• Example for single-line-to-ground fault on transmission lines

• Example for transient recovery voltage
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3Presentation Outline

• Example for linear resonance after opening a transmission line in parallel 
with another line

• Examples for steady-state coupling between parallel transmission lines

• Capacitor switching

• Inrush Currents

• Interruption of small inductive currents

• References

• General references
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4Closing & Re-closing Operations on Transmission Lines

• Circuit breakers at both ends I and II cannot close simultaneously.

• Therefore, the voltage
surge travelling down
the line doubles
at the open end.

• Low impedance 
termination (dotted).
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5Closing & Re-closing Operations on Transmission Lines

• In reality, overvoltage can be >2.0 p.u.  because:

• not infinite source in A (therefore reflections),
• line may have "trapped charge" from preceding opening operation,
• three poles do not close simultaneously,
• there are multi-velocity waves on a three-phase line (zero-sequence 

wave speed is slower than positive sequence wave speed),
• etc.

• Approximate classification (from a paper by M. Erche [1]):

The University of British Columbia

6Closing & Re-closing Operations on Transmission Lines
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• Statistical distribution
• Overvoltage is not a single value, but statistically distributed because 

overvoltage depends on Vsource at instant of closing,

• three poles do not close simultaneously.

• Closing times
• Many cases must be run with different circuit breaker closing times,    

that are either varied
• statistically,
• or systematically. 

Closing & Re-closing Operations on Transmission Lines
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• Cumulative frequency distribution
from 100 closing operations on 
digital computers and transient
network analyzers (TNA’s).

• 2 % value is often used
to define overvoltage with
one number

Closing & Re-closing Operations on Transmission Lines

The University of British Columbia



9

• If insulation can withstand the 2 % overvoltage value, then 98 % of switching 
operations will statistically be successful.

• 2 % of switching operations may statistically cause insulator flashover.
• By opening circuit breaker and re-closing again, arc will be extinguished 

(self-restoring insulation).

Closing & Re-closing Operations on Transmission Lines

The University of British Columbia
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Voltage/time curves
• Peak instantaneous overvoltage is not enough to say whether flashover 

across insulator occurs.
• Waveshape is also determining factor.
• For nice laboratory impulses,

voltage/time curves can be obtained.

• Actual waveshapes are much more
complicated, but standard impulse
waveshapes are needed for laboratory testing,
to meet impulse test standards.

• There are flashover models, such as the
integral method, but rarely used:

Closing & Re-closing Operations on Transmission Lines

( )∫ =−

2

1

0

t

t

Fdtv)t(v

The University of British Columbia



11

• Events in re-closing operations
• A fault occurs, usually in one phase.
• The transmission line is de-energized (switched off at one end, then on 

other end).
• On unfaulted phases, the current is capacitive when remote end is 

already switched off. Therefore, current and voltage are 90 ° out of 
phase.

• When current interrupts at current zero, voltage on line is at its
maximum (say, at -1.0 p.u.).

• If circuit breaker re-closes when source voltage is at its opposite 
maximum (say, at +1.0 p.u.), there is a voltage change of 2.0 p.u.

• This re-closing operation with “trapped” charge produces the highest 
overvoltages.

Closing & Re-closing Operations on Transmission Lines

The University of British Columbia
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• Events in re-closing operations
• The overvoltage is now 3.0 p.u.

Closing & Re-closing Operations on Transmission Lines
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1. Controlled closing

• Contacts close at instant when voltage is close to zero across the 
contacts.

• Requires some prediction of voltage across contacts.

• Prediction is easy with a sinusoidal voltage on the source side, and
• zero voltage on the line side,
• or dc voltage on the line side with trapped charge.

• Prediction is more complicated when re-closing into trapped charge     
on a line with shunt reactors.

Reduction of Overvoltages in Closing and Re-Closing 
Operations on Transmission Lines

The University of British Columbia
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1. Controlled closing
• Re-closing into trapped charge on a line with shunt reactors:

• In this case, there
is a beat phenomenon
in voltage across
contacts.

• Resonance between
shunt reactors and
line capacitance
usually somewhat
below 50 or 60 Hz).

Reduction of Overvoltages in Closing and Re-Closing 
Operations on Transmission Lines

The University of British Columbia
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2. Closing (pre-insertion) resistors
• Close contact I first, then II after 8 to 10 ms.
• From [1]:

Reduction of Overvoltages in Closing and Re-closing 
Operations on Transmission Lines

The University of British Columbia
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3. Metal oxide surge arresters
• At both ends
• At both ends and middle.

4. Comparison from [2] & [3] (re-closing into trapped charge with shunt reactors):
(staggered closing = close 2nd and 3rd pole 8 and 16 ms later in 60 Hz system)

Reduction of Overvoltages in Closing and Re-closing 
Operations on Transmission Lines

The University of British Columbia
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• Feeding network
• Simplest model is voltage source behind 50 Hz or 60 Hz “short-circuit 

impedance”, both for positive sequence and zero sequence.

• This simple model is reasonable
if the feeding network is mostly
inductive, as in the case of 
switching from a power plant:

Computer Models for Closing and Re-closing          
Operations on Transmission Lines

The University of British Columbia

18

• Feeding network
• If the feeding network is more complicated, CIGRE recommends to 

represent the lines in detail one or two substations away from the 
substation where switching is done.

• Beyond the one or two substations away, use the short-circuit 
impedances to represent the rest.

• Some utilities prefer to represent the large system completely in detail 
(Hydro-Quebec?).

Computer Models for Closing and Re-closing 
Operations on Transmission Lines

The University of British Columbia
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• Feeding network as equivalent network 
• A simplified version of an equivalent network recommended by CIGRE 

uses the short-circuit impedance (resistance RSC and inductance LSC) in 
parallel with the surge
impedance of the connected
lines, divided by the number
of lines, RS = Zsurge/n  [4]:

• Frequency dependent network equivalent (“FDNE”) creates an R-L-C 
network that has more or less the same frequency response as the
complete network, over the frequency range of interest. Starts from 
frequency scan of complete network.

Computer Models for Closing and Re-closing 
Operations on Transmission Lines

The University of British Columbia
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• Feeding network as equivalent network 
• H. Singh and A. Abur developed  a time domain model that reaches back 

more in history [5]:

• This can handle travel time delays on transmission lines more easily.

• Both FDNE and the time domain model are developed from the full 
system.

• If the equivalent is not used very often, it may be best to work directly 
with the full system.

Computer Models for Closing and Re-closing 
Operations on Transmission Lines
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• Circuit breaker 
• Normally, the circuit breaker is represented as an ideal switch,

• with closing time specified,
• and closing taking place at the next time step n·Δt ≥ tclose, or in some 

versions at n·Δt closest to tclose.
• For slow circuit breakers or circuit switchers, prestrike may have to 

be taken into account.

Computer Models for Closing and Re-closing 
Operations on Transmission Lines

t
Voltage across 
contact

Contacts start to close

Dielectric strength 
of contacts

Electric closure

Aiming point
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• Transmission line; constant parameter model 
• The simplest model is the constant parameter model with constant per-

unit length parameters R’, L’, C’, both in positive sequence and zero 
sequence.

• In EMTP version that I am familiar with, R’ is not really distributed,  
but lumped at both ends and the middle.

• Total resistance must be much less than 
characteristic impedance Zchar .

• A truly distributed resistance is a special case of line models with 
frequency dependent parameters, 
because Z becomes frequency dependent:

Computer Models for Closing and Re-closing 
Operations on Transmission Lines
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• Transmission line; constant parameter model 
• This model is often accurate enough for switching studies because

• frequencies are not very high (maybe to 10 kHz),
• positive sequence parameters are more or less constant in that 

range.

• Zero seq. parameters are frequency dependent, but if three poles
close simultaneously, then there are no zero sequence surges.

Computer Models for Closing and Re-closing 
Operations on Transmission Lines

The University of British Columbia
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• Transmission line, frequency-dependent parameter models
• Zero sequence parameters are very much frequency dependent.

• This dependence must be taken into account if there are noticeable    
zero sequence currents and voltages in the transients.

Computer Models for Closing and Re-closing 
Operations on Transmission Lines

The University of British Columbia



25

• Transmission line, frequency-dependent parameter models
• F. Castellanos and J. R. Marti [6] developed a frequency-dependent line 

model by lumping in many more places along 
lossless line sections, and taking the frequency dependence of these 
lumped impedances into account.

• represents the resistances and internal 
inductances of the conductors and of earth return.

• For three-phase lines, these impedances are 3*3 matrices.
• It works directly in the phase domain, without having to go through 

transformation between phase and mode quantities.
• Well suited for un-transposed lines.
• This approach works for underground cables as well, with minor 

modifications [7].

Computer Models for Closing and Re-closing 
Operations on Transmission Lines
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• Transmission line, frequency-dependent parameter models
• Most EMTP models are based on fitting propagation factor e-γl and 

characteristic impedance Zchar(ω) in the frequency domain.
• For both positive and zero sequence, find propagation constant

• With approach of J. R. Martí [8], calculate propagation factor A(ω) = e-γl

in frequency domain, & convert to weighting function a(t) in time domain.
• Before, we picked one history term

going back τ. Now we pick more,
using a weighting function a(t).

• For efficiency, recursive
convolution is used to sum
history points with a(t).

Computer Models for Closing and Re-closing 
Operations on Transmission Lines
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• Transmission line, frequency-dependent parameter models
• The characteristic impedance was a pure

shunt resistance Z before. Now it is
frequency- dependent.

• Approximate

with an R-C circuit, as shown at right.
• Straightforward for “balanced” (perfectly

transposed) lines.
• On un-transposed lines, transformation 

matrix approximated as real and constant
(not good for double-circuit lines).

Computer Models for Closing and Re-closing 
Operations on Transmission Lines
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• Transmission line, frequency-dependent parameter models
• Much progress has been made, particularly for un-transposed lines, 

mostly with phase domain based models:
• T. Noda, N. Nagaoka and A. Ametani [9] developed the ARMA model 

(auto-regressive moving average).
• A. Morched, B. Gustavsen and M. Tartibi [10] developed the 

universal model with vector fitting.
• B. Gustavsen [11] added many refinements.
• A. B. Fernandes and W. L. A. Neves included effects of shunt 

conductance [14, 15].
• Etc.

Computer Models for Closing and Re-closing 
Operations on Transmission Lines

The University of British Columbia
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• Trapped charge
• There are various ways to represent it, depending on EMTP version.

• Simulate the line opening, wait for trapped charge to settle to dc after some 
oscillations, then close again. May require long simulation time.

• In version which I use, initial conditions can be read in, which override the ac 
steady-state solution values. Example for line from 1 to 2 with phases A, B, 
C, read in initial voltages in 1A, 1B, 1C, 2A, 2B, 2C, and read in zero initial 
currents in 1A-2A, 1B-2B, 1C-2C.

• In older versions of EMTP, and maybe ATP, you can connect special   
voltage sources Vmaxcos(ωt) with a frequency of 0.001 Hz, 
(Tstart = 5432.0?), to approximate dc (solving directly for dc requires 
extensive code changes to handle ωL = 0 and 1/ωC = ∞).

Computer Models for Closing and Re-closing 
Operations on Transmission Lines

The University of British Columbia
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• CIGRE test case for energization of 202.8 km long line from inductive 
source [12]

• Source impedance (generator + transformer): 
Rpos = Rzero = 6.75 Ω; Xpos = Xzero = 127 Ω at 50 Hz.

• Line: Z’pos = 0.04 + j 0.318 Ω/km at 50 Hz, C’pos = 11.86 nF/km;             
Z’zero = 0.26 + j 1.015 Ω/km at 50 Hz, C’zero =   7.66 nF/km;
length = 202.8 km. Constant R’, L’, C’ assumed.

• Circuit breaker: closing times, with respect to instant when voltage in 
phase A goes through zero from positive to negative;
TCLOSE-A = 3.05 ms, TCLOSE-B = 8.05 ms, TCLOSE-C = 5.55 ms.

Examples for Closing and Re-closing Operations on 
Transmission Lines

The University of British Columbia
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• CIGRE test case for energization of 202.8 km long line from inductive 
source [12]

• Overvoltage at receiving end in phase B; computer results (dashed line) 
superimposed on family of curves from transient network analyzer
results; time count starts when wave arrives at receiving end

Examples for Closing and Re-closing Operations on 
Transmission Lines

The University of British Columbia
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• CIGRE test case for energization of 202.8 km long line from inductive 
source [12]
• This case did not have high frequencies, and constant parameter line 

model and single
Π-circuit gave
almost identical
results.

• In general, I would
not recommend
Π-circuits (on 
transient network
analyzers, switched
line was typically represented by cascade connection of 10 Π-circuits).

Examples for Closing and Re-closing Operations on 
Transmission Lines

The University of British Columbia
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• CIGRE test case for energization of 202.8 km long line from inductive 
source [12]
• Trapped charge can increase or decrease the overvoltages.
• Depends on polarity of trapped

voltage.

Trapped charge      Overvoltages
(p.u.)                         (p.u.)

A    B    C    A        B           C
0.0  0.0  0.0 2.068  2.166 2.287
0.9  0.8 -0.8      1.368 1.538 1.342

-0.9 -0.8  0.8      3.086 3.172 3.469

Examples for Closing and Re-closing Operations on 
Transmission Lines

The University of British Columbia
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• Energization of 400 km long line through closing resistors [13] 
• This was a field test by CEMIG in Brazil.
• Line was switched from a power plant. No other lines were connected.
• Line had a three-phase shunt reactor at sending end.

Examples for Closing and Re-closing Operations on 
Transmission Lines

S
P
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S
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Sending 
end

Receiving 
end
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• Energization of 400 km long line through closing resistors [13] 
• Modelling: (1) Find positive and zero sequence impedances looking into 

power plant (generator with Xd”) , and then model as 3 
coupled impedances.

(2) Model shunt reactor as 3 coupled impedances.
(3) Model line with constant parameters.

Examples for Closing and Re-closing Operations on 
Transmission Lines

SOURCE

BREAKER
TRANSMISSION 
LINE

REACTOR
Sending 
end

Receiving 
end

[x]

Vs(t)

[x]

The University of British Columbia
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• Energization of 400 km long line through closing resistors [13] 
• Voltages at sending end.

Examples for Closing and Re-closing Operations on 
Transmission Lines

solid line:    field test 
dotted line: simulation

The University of British Columbia
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• Energization of 400 km long line through closing resistors [13] 
• Voltages at receiving end. 

• Going from constant to frequency-dependent parameter models did     
not improve results much.

Examples for Closing and Re-closing Operations on 
Transmission Lines

solid line:    field test 
dotted line: simulation

The University of British Columbia
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• Energization of a line terminated with transformer or shunt reactor 
• Example from M. Erche [1]:

• This case is probably from American Electric Power Corp. 
• Caused by resonances between harmonics from transformer     

saturation and line capacitance.

Example for Temporary Overvoltages

The University of British Columbia
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• Energization of a line terminated with transformer or shunt reactor

• Overvoltages can last a long time.

Example for Temporary Overvoltages

The University of British Columbia
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• Energization of a line terminated with transformer or shunt reactor 
• Nonlinear inductances do not keep peak voltages down.
• Part of the voltage around voltage zero is “cut out”, because of 90°

phase shift between flux and voltage.
• VRMS = f(IRMS) must be converted to flux linkage = f (current) (simplified 

as 2-slope nonlinearity here)

• This “cut out” produces the harmonics.

Example for Temporary Overvoltages

The University of British Columbia
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• Interaction between mechanical resonances on turbine-generator shaft 
system and on electric network side
• Occurs at frequencies below power frequency.
• Most likely to occur on steam turbines, if a transmission line with series 

capacitors is switched.
• Unlikely to occur on hydro turbines because “stiffer” with higher 

resonance frequencies.
• Can also be caused by control modes in nearby HVDC terminal.

Examples for Subsynchronous Resonance

The University of British Columbia
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• Interaction between mechanical resonances on turbine-generator shaft 
system and on electric network side
• Example from General Electric Co. [17].

Examples for Subsynchronous Resonance

The University of British Columbia
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• First IEEE benchmark model [18, 20].

Examples for Subsynchronous Resonance

The University of British Columbia
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• First IEEE benchmark model, torque between generator & exciter.

Examples for Subsynchronous Resonance

The University of British Columbia
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• Second IEEE 
benchmark
model [19, 21].

Examples for Subsynchronous Resonance

The University of British Columbia
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• Second IEEE benchmark model, shaft between generator and low 
pressure steam turbine.

Examples for Subsynchronous Resonance

The University of British Columbia
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• Frequency-scan for impedance seen from power plant
• Helps to see whether potential for subsynchronous resonance exists.

• Example
from [26]:

• Measured: Short circuit was applied for a few cycles. Change in Δv, Δi 
transformed from time domain to frequency domain, to obtain Z(ω).

Examples for Subsynchronous Resonance

The University of British Columbia
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• When a single-line-to-ground fault occurs on a transmission line, there 
will be overvoltages on the unfaulted phases (typically 1.6 p.u.) 
• Frequency dependent line model is necessary, because there are large 

zero sequence currents (Izero = Ipos = Ineg in fault current).
• Example [8]:

Example for Single-Line-to-Ground Fault 
on Transmission Lines

The University of British Columbia



49

• When circuit breaker opens to remove the fault, a “transient recovery 
voltage” appears across the contacts.
• If rate of rise is too steep or amplitude is too high, circuit breaker may 

restrike or re-ignite.
• Important to include stray capacitances of transformers, busbars, etc.
• Initial rate of rise used to be a problem in gas-insulated substations.
• Example

from [13, 25].

• Fault current:

Example for Transient Recovery Voltage

The University of British Columbia
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• For simulation, one can either simulate complete event (fault initiation, 
fault clearing).

• I prefer “cancellation method”, whereby a current is injected across 
circuit breaker contacts that cancels the fault current.

• Starts from zero initial conditions.
• Network need only be represented to distance away where total 

travel time > tmax (no reflections coming back beyond that point).

Example for Transient Recovery Voltage

The University of British Columbia
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• Results for fault at 1.2 kmfrom substation:

Solid line = field test; dotted line = simulation.

Example for Transient Recovery Voltage

The University of British Columbia
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• Initial rate of rise becomes worse if fault farther away from substation 
(“short-line fault”
or “kilometric fault”).

• Fault  moved from
1.2 km to 8.0 km:

• Fault current 
decreases 13.7%.

• Initial rate of rise
increases.

Example for Transient Recovery Voltage

The University of British Columbia
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• Can be studied as a steady-state case at power frequency (60 Hz or 50 
Hz) 
• Best transmission line model is Π-circuit.
• For complicated transposition schemes, use one Π-circuit for each 

section.
• Example from planning study at Bonneville Power Administration:

Example for Linear Resonance after Opening a   
Transmission Line in Parallel with another Line

The University of British Columbia
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• Can be studied as a steady-state case at power frequency (60 Hz or 50 
Hz) 
• Varying L of shunt reactor showed

possibility of resonance between
coupling capacitance and L.

• L was changed somewhat to avoid
resonance at 60 Hz.

• Resonance is more likely to occur at
harmonic frequencies in such cases.

Example for Linear Resonance after Opening a   
Transmission Line in Parallel with another Line

rated current 132 A

rated inductance 6.09 H

The University of British Columbia
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• A similar case that actually happened on a 345 kV line that was close 
to an energized 138 kV line is reported in [31] and [32].

• A case of what might happen on a 765 kV line close to an energized 
345 kV line is discussed in [33] for these situations:
• No transpositions on both lines.
• 345 kV line transposed.
• 765 kV line transposed.
• Both lines transposed.

Example for Linear Resonance after Opening a   
Transmission Line in Parallel with another Line

The University of British Columbia
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• Three circuits in parallel are modelled as five nine-phase Π-circuits
• Coupling is capacitive.
• Steady-

state
case.

Example 1 for Coupling between 
Parallel Transmission Lines

The University of British Columbia



57Example 1 for Coupling between 
Parallel Transmission Lines
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• A double-circuit line is modelled as a cascade connection of twelve 
six-phase Π-circuits.

• Coupling is inductive [23].

• Steady-state case.

Example 2 for Coupling between
Parallel Transmission Lines

The University of British Columbia
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• Results from one of many tests.

Example 2 for Coupling between
Parallel Transmission Lines

The University of British Columbia
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• From B. C. Hydro and Power Authority [24] 

• Steady-state case.

• A large zero sequence voltage was induced into a 138 kV line from 
adjacent 500 kV lines.

• It distorted the 2½-element revenue metering schemes of two large 
industrial customers supplied from the 138 kV line.

• The two customers were overcharged 3.5% for 15 years.

• They received refunds of Can. $ 4 million.

• The metering scheme was changed.

Example 3 for Coupling between 
Parallel Transmission Lines

The University of British Columbia



61Capacitor switching

• Switching capacitances off 
• When switching a capacitor or unloaded transmission line off, the 

capacitance remains charged up.

• 2.0 p.u. overvoltage
across contacts half a
cycle after opening.

• Modern SF6 circuit
breakers are less likely
to restrike than older
circuit breakers.

The University of British Columbia

62Capacitor switching

• Energization of capacitors 
• Voltage on capacitor cannot change instantaneously, because it is 

determined by integral:

Equivalent circuit for EMTP 
studies.

• If voltage is originally zero, bus voltage collapses to zero temporarily 
after switching on.

• Creates voltage collapse on bus, as well as high inrush currents into 
capacitor bank.
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63Capacitor switching

• Energization of capacitors 
• High dv/dt, v, and i may create

problems.  
• From Brunke and Schockelt [16]:

The University of British Columbia

64Capacitor switching

• Energization of capacitors 
• Reduction of transients with:

• Closing (pre-insertion) resistors.
• Synchronous (controlled) closing, close to zero voltage across 

contacts.
• Current-limiting reactors in series with capacitor.

The University of British Columbia



65Capacitor switching

• Effect remote from substation where capacitors are switched 
• In case shown here, it may have caused phase-to-phase insulation 

failure 56 km away in a phase-shifting transformer [22].

• Field test
and
simulation:

The University of British Columbia

66Capacitor switching

• Back-to back switching of capacitors 
• Back-to-back switching: one capacitor bank is energized, and another 

capacitor bank next to it is switched on.
• This is worst condition, as seen in previous case.

• I analyzed a failure where an induction motor was switched on, close to 
another running induction motor, in a pipeline pumping station.

• Both had capacitors connected for power factor correction.
• When second motor was switched on with vacuum contactor, the 

contacts welded together, and contactor could no longer be opened.
• After complicated modelling of induction motors, capacitors, etc., it 

turned out to be so simple I could have solved it with a slide rule.

The University of British Columbia



67Capacitor switching

• Both induction motors were 5 m apart through a cable.
• Both had a 600 kVar capacitor, rated 4.16 kV (line-to-line), 83.3 A.
• One energized capacitor discharged into the capacitor of the motor being 

switched on, through whatever inductance is between them.
• Creates a very high inrush current, which welded the contacts in this 

case.

The University of British Columbia

68Capacitor switching

• Simulation:

• A current-limiting reactor would solve the problem.

The University of British Columbia



69Capacitor switching

• A more likely problem in such cases is overvoltages created by re-
ignitions when opening the vacuum contactor.

• This is caused by tendency of vacuum contactors or circuit breakers to 
chop currents (see next slide).

• Surge capacitor on load being switched helps to prevent re-ignition (not 
an issue in my case).

The University of British Columbia
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• When an unloaded  transformer is energized, high “inrush currents”
may occur that are higher than rated current.

• Cause is the nonlinear magnetizing inductance, with its nonlinear 
curve for flux λ = f(i). 

• Modern circuit breakers close with high speed. Closing at v = 0 is as 
probable as closing at v = Vmax (slow contacts used to prestrike close to 
Vmax). 

• Since flux is integral of voltage

we get 2 p.u. flux if we close 
at v = 0, assuming the residual
flux λ(0) at t = 0 is zero.

Inrush Currents

The University of British Columbia
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• Residual flux can make the inrush current higher or lower.

• There may also be high-frequency overvoltages in energizing three-
phase banks if the closing times are more than 5 ms apart. This may 
have caused damages recently.

Inrush Currents

The University of British Columbia
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• The inrush current also depends on the tap position of the load tap changer, 
and by positioning it conveniently, the inrush currents can be reduced.

• If other transformers are already in operation close to the one being 
energized, there is “sympathetic interaction” between them that influences 
the inrush currents [35].

• By monitoring the flux in the transformer, and by controlling the closing of 
the circuit breaker contacts, it becomes possible to close at just the right 
moment to reduce the inrush current to very small values similar to the 
steady-state exciting current ([36], [37], [38]). 

Inrush Currents

The University of British Columbia
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• Example from CIGRE Working Group [34]:

Inrush Currents

The University of British Columbia

74

• Example from CIGRE Working Group [34]:

Inrush Currents

The University of British Columbia
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• Problem is “current chopping” in circuit breaker opening 

• Tendency to “chop” if current is small (because
of falling v(i) characteristic of arc, arc voltage
becomes high when current becomes low).

• Small current is not the problem, but high derivative di/dt.

• Can cause overvoltages

as              .

• Maximum overvoltage 
factors when interrupting
magnetizing currrent of
high voltage transformers [1].

Interruption of Small Inductive Currents

dt
diL
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• Can also happen when switching off reactor-loaded transformers.

• Vacuum circuit breakers have tendency to chop even at higher   
currents.

• For CIGRÉ reports, see [27], [28], [29], [30].

Interruption of Small Inductive Currents
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77The End

Thank you for your attention!

Any Questions?
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