 PROBLEM DESCRIPTION Power systems network is a highly topological arrangement of components Transmission networks can be classi multi-planar, bidirectional multi-grad Hamiltonian cycles Visual aid fails to identify intricate fee the graph viz loops, cycles, minim paths, etc. Loops or Hamiltonian cycles are essed accommodate unscheduled flows (USF) Objective: Identification and sele sufficient loops in a given net accommodate USFs LOOP DETECTION ALGORITH Proposed algorithm is derived from A* algorithm and Dijkstra's algorithm Loop detection algorithm is agnostic fisize i.e. applicable to both test and systems Each transmission line is assumed bidirectional edge Sufficiency condition: All the edges set 	
 topological arrangement of components Transmission networks can be classi multi-planar, bidirectional multi-gra Hamiltonian cycles Visual aid fails to identify intricate fee the graph viz loops, cycles, minim paths, etc. Loops or Hamiltonian cycles are essed accommodate unscheduled flows (USF) Objective: Identification and sele sufficient loops in a given net accommodate USFs LOOP DETECTION ALGORITH Proposed algorithm is derived from A* algorithm and Dijkstra's algorithm Loop detection algorithm is agnostic fisize i.e. applicable to both test and systems Each transmission line is assumed bidirectional edge 	
 components Transmission networks can be classi multi-planar, bidirectional multi-gra Hamiltonian cycles Visual aid fails to identify intricate fe the graph viz loops, cycles, minim paths, etc. Loops or Hamiltonian cycles are esse accommodate unscheduled flows (USF) Objective: Identification and sele sufficient loops in a given net accommodate USFs LOOP DETECTION ALGORITH Proposed algorithm is derived from A* algorithm and Dijkstra's algorithm Loop detection algorithm is agnostic f size i.e. applicable to both test and systems Each transmission line is assumed bidirectional edge 	
 Transmission networks can be classi multi-planar, bidirectional multi-gra Hamiltonian cycles Visual aid fails to identify intricate fe the graph viz loops, cycles, minim paths, etc. Loops or Hamiltonian cycles are esse accommodate unscheduled flows (USF) Objective: Identification and sele sufficient loops in a given net accommodate USFs LOOP DETECTION ALGORITH Proposed algorithm is derived from A* algorithm and Dijkstra's algorithm Loop detection algorithm is agnostic fisize i.e. applicable to both test and systems Each transmission line is assumed bidirectional edge 	
 multi-planar, bidirectional multi-gra Hamiltonian cycles Visual aid fails to identify intricate fe the graph viz loops, cycles, minim paths, etc. Loops or Hamiltonian cycles are esse accommodate unscheduled flows (USF Objective: Identification and sele sufficient loops in a given net accommodate USFs LOOP DETECTION ALGORITH Proposed algorithm is derived from A* algorithm and Dijkstra's algorithm Loop detection algorithm is agnostic f size i.e. applicable to both test and systems Each transmission line is assumed bidirectional edge 	
 Hamiltonian cycles Visual aid fails to identify intricate fetthe graph viz loops, cycles, minimpaths, etc. Loops or Hamiltonian cycles are esseaccommodate unscheduled flows (USF) Objective: Identification and selesufficient loops in a given nettaccommodate USFs LOOP DETECTION ALGORITH Proposed algorithm is derived from A* algorithm and Dijkstra's algorithm Loop detection algorithm is agnostic tisize i.e. applicable to both test and systems Each transmission line is assumed bidirectional edge 	
 Visual aid fails to identify intricate fer the graph viz loops, cycles, minim paths, etc. Loops or Hamiltonian cycles are essed accommodate unscheduled flows (USF) Objective: Identification and sele sufficient loops in a given net accommodate USFs LOOP DETECTION ALGORITH Proposed algorithm is derived from A* algorithm and Dijkstra's algorithm Loop detection algorithm is agnostic fisize i.e. applicable to both test and systems Each transmission line is assumed bidirectional edge 	
 the graph viz loops, cycles, minimpaths, etc. Loops or Hamiltonian cycles are essentiated accommodate unscheduled flows (USF) Objective: Identification and seles sufficient loops in a given net accommodate USFs LOOP DETECTION ALGORITH Proposed algorithm is derived from A* algorithm and Dijkstra's algorithm Loop detection algorithm is agnostic missive i.e. applicable to both test and systems Each transmission line is assumed bidirectional edge 	
 paths, etc. Loops or Hamiltonian cycles are esse accommodate unscheduled flows (USF Objective: Identification and sele sufficient loops in a given net accommodate USFs LOOP DETECTION ALGORITH Proposed algorithm is derived from A* algorithm and Dijkstra's algorithm Loop detection algorithm is agnostic size i.e. applicable to both test and systems Each transmission line is assumed bidirectional edge 	
 Loops or Hamiltonian cycles are essentiated accommodate unscheduled flows (USF) Objective: Identification and select sufficient loops in a given net accommodate USFs LOOP DETECTION ALGORITH Proposed algorithm is derived from A* algorithm and Dijkstra's algorithm Loop detection algorithm is agnostic for size i.e. applicable to both test and systems Each transmission line is assumed bidirectional edge 	
 accommodate unscheduled flows (USF) Objective: Identification and sele sufficient loops in a given net accommodate USFs LOOP DETECTION ALGORITH Proposed algorithm is derived from A* algorithm and Dijkstra's algorithm Loop detection algorithm is agnostic to size i.e. applicable to both test and systems Each transmission line is assumed bidirectional edge 	
 Objective: Identification and sele sufficient loops in a given net accommodate USFs LOOP DETECTION ALGORITH Proposed algorithm is derived from A* algorithm and Dijkstra's algorithm Loop detection algorithm is agnostic resize i.e. applicable to both test and systems Each transmission line is assumed bidirectional edge 	
 sufficient loops in a given net accommodate USFs LOOP DETECTION ALGORITH Proposed algorithm is derived from A* algorithm and Dijkstra's algorithm Loop detection algorithm is agnostic size i.e. applicable to both test and systems Each transmission line is assumed bidirectional edge 	
 accommodate USFs LOOP DETECTION ALGORITH Proposed algorithm is derived from A* algorithm and Dijkstra's algorithm Loop detection algorithm is agnostic to size i.e. applicable to both test and systems Each transmission line is assumed bidirectional edge 	
 > Proposed algorithm is derived from A* algorithm and Dijkstra's algorithm > Loop detection algorithm is agnostic risize i.e. applicable to both test and systems > Each transmission line is assumed bidirectional edge 	
 Proposed algorithm is derived from A* algorithm and Dijkstra's algorithm Loop detection algorithm is agnostic size i.e. applicable to both test and systems Each transmission line is assumed bidirectional edge 	
 algorithm and Dijkstra's algorithm Loop detection algorithm is agnostic to size i.e. applicable to both test and systems Each transmission line is assumed bidirectional edge 	
 Loop detection algorithm is agnostic size i.e. applicable to both test and systems Each transmission line is assumed bidirectional edge 	
 size i.e. applicable to both test and systems ➤ Each transmission line is assumed bidirectional edge 	
systems ➤ Each transmission line is assumed bidirectional edge	
Each transmission line is assumed bidirectional edge	
bidirectional edge	
traced at least in one direction and	
sequences be duplicated	
NETWORK REDUCTIONS	
Two major network reduction steps en are successive nodal collapse and	
wave search	
Successive nodal collapse: Formin	
adaptive edges by collapsing all	
nodes successively	
<pre>> STOP if min(degree) > 2</pre>	
2-1-5	
Heuristic wave search: For an active	
determine the locally minimal comple	
the starting vertex	
On distinct outward and inward	
intersection of imaginary waves is sou	
STOP first intersection of wa	
Cost function: Minimum number of n	
loop are preferred	

MISSION NETWORKS		
IN TEST NETWORK		
	2342	
	43254	
94	47914131265124	
	9 10 11 6 13 14 9	
ST NETWORK #2		
est system under analysis needs		
tion tech	niques	
dal colla	pse reduces the network	
	odes to 5 nodes	
	ed in addition to ones	
cessive	collapses (7 loops)	
<u> </u>		
6 12		
0		
esults	6 Active Network #1	
CHALLENGES		
	nt issues for bulk	
ns due to data sizes available to troubleshoot for		
errors		
Iulticollinearity issues observed		
trix formed for USF estimation		
<u>CONCLUSIONS</u>		
f graph theory techniques to		
n power system networks		
s detect	ed for relatively simpler	
on o	n practical bulk	
ns under development		
tween two reduction methods is		
<u>REFERENCES</u>		
ory," 2 nd ed,. Springer-Verlag: New York, Inc. 2000, pp.		
nbinatorics,"	^{4th ed., Wiley and Sons, 2002, pp. 129-}	
IOWLEDGEMENT		
work was funded by WECC as a subcontract from ent of Energy under contract DOE-FOA0000068 for		

the project titled 'Regional Transmission Expansion Project (RTEP)"

Prof. Dan Zimmerle's guidance in graph theory is highly appreciated.