BUILDING GREEN AND SMART HOME

from personal experience

Nenad Uzelac, G&W Electric

What is Green Building?

A structure and process that is environmentally responsible and resource-efficient throughout a building's life-cycle:

Design – Construction – Operation – Maintenance – Renovation – Demolition

Green Objective:

Reduce environmental footprint!

Low impact homes

Don't have to look like this !

They come in any style:

Social Transformation

LOCAL

Total CO2 emissions:

Total 2008 CO2 Emissions

2008 CO2 Emissions per Capita

http://www.nahb.org/generic.aspx?genericContentID=75563

Figure ES-1: U.S. Greenhouse Gas Emissions by Gas

http://www.epa.gov/climatechange/emissions/downloads11/US-GHG-Inventory-2011-Executive-Summary.pdf

House lifecycle – energy usage

2,450 ft² residential home built in Ann Arbor, Michigan was analyzed to determine total life cycle energy consumption of materials fabrication, construction, use and demolition over a 50 year period

Lifecycle Energy distribution:

- 6.1% construction phase
- 93.7% use phase
- 0.2% end of life phase

15,455 GJ Total life cycle energy consumption: (2,525 barrels of crude oil)

Green Standards

2 main standards in USA:

Better suitable for residential homes

Approved by ANSI

Better suitable for commercial building homes

NAHB Green

Gre	en Ruilding	Catagoriae	Performance Point Levels (1) (2)							
GIE	en bunung	Categories	BRONZE	SILVER	GOLD	EMERALD				
1.	Chapter 5	Lot Design, Preparation, and Development	39	66	93	119				
2.	Chapter 6	Resource Efficiency	45	79	113	146				
3.	Chapter 7	Energy Efficiency	30	60	100	120				
4.	Chapter 8	Water Efficiency	14	26	41	60				
5.	Chapter 9	Indoor Environmental Quality	36	65	100	140				
6.	Chapter 10	Operation, Maintenance, and Building Owner Education	8	10	11	12				
7.		Additional Points from any category	50	100	100	100				
		Total Points	222	406	558	697				

Green Home Benefits:

- Economic Benefits:
 - Reduced energy / water consumption
 - Lower maintenance cost (durable materials)
- Health Benefits:
 - Improved indoor quality (nonvolatile organic and non-toxic materials, ventilation, far fewer problems with mold or mildew)
- Environmental Benefits:
 - Reduces environmental footprint

- Obtain GOLD level of NAHB green standard
- Consume no more energy then previously owned 1500 sq ft condo
- Guidelines:
 - Quality before Quantity
 - Functionality before Formality
 - Efficiency before Spaciness
 - Comfort and Character

1) Resource efficiency:

- Reduce the quantity of material used and waste
 Efficient floor plan, pre-cut joists
- Enhance durability and reduce maintenance
 Covered entry, roof overhands, flashing details
- Use recycled content material
 - Recycled insulation, countertops, tiles...
- Use renewable materials:

- Bamboo, FSC wood (forestry stewardship council)

2) Energy efficiency

- a) Passive solar design
- b) Use daylight to preserve energy
- c) Use appropriate windows
- d) Insulate and airtight building envelope
- e) Use efficient HVAC design
- f) Use efficient equipment and monitor consumption
- g) Install house automation system

Sun chart over Site location

Passive solar (cont)

South window surface: 7 - 12% of the sq ft of conditioned area

Passive solar (cont)

Depth of overhangs depends of the latitude

West side windows < 2% of sq ft North + East windows < 4% of sq ft

It works in Chicago Winter!

-20F outside on the Sunny day heating turned off.

b) Daylight

Well insulated light tubes bring in light without compromising insulation

Enough light during an overcast day

c) Use appropriate windows

U factor – rate of heat loss

U = 1/R

Low U (< 0.31) most important in heating dominating areas

SHGC - solar heat gain coeff

Use low SHGC in south, and high SHGC in north climates

http://www.efficientwindows.org/energystar.cfm

d) Improve building envelope

- Insulate, Insulate, Insulate
- Add external insulation to prevent thermal bridging and reduce/prevent condensation in the exterior walls

Cavity Insulation with OSB Sheathing

Thermal bridging

Yellow areas indicate the greatest heat loss through uninsulated wood studs.

Blue indicates minimal heat loss.

Cavity Insulation with OSB and R-5 Insulated Sheathing

Walls - R32 : cellulose insulation inside + rigid foam outside

Make house Airtight!

2e Airtight building envelope (cont)

- Old houses can loose as much heat through air leakage as through building envelope conduction.
- Moisture, condensation..
- Door blower test
- Mechanical ventilation system may be required, if ACH (air exchange per hour) < 0.35

Air leakage in Canadian homes

Air Leakage by Year

2e

Efficient HVAC design

- Properly size the equipment (Heat loss calculation, ACCA "Manual J" for residential homes
- Bigger is not Better. Oversized equipment leads to:
 - Higher energy bills
 - Higher initial cost
 - Uncomfortably cold/hot spots
 - Indoor humidity

SEER rating

• Higher SEER (Seasonal energy efficiency ration) means better efficiency

SEER	1 Ton		1.5 Ton		2 Ton		2.5 Ton		3 Ton		3.5 Ton		4 Ton		5 Ton	
8	\$	270	Ş	405	\$	540	\$	675	\$	810	\$	945	\$	1,080	\$	1,350
9	\$	240	\$	360	\$	480	\$	600	\$	720	\$	840	\$	960	\$	1,200
10	\$	216	\$	324	\$	432	\$	540	\$	648	\$	756	\$	864	\$	1,080
11	\$	196	\$	295	\$	393	\$	491	\$	589	\$	687	\$	785	\$	982
12	\$	180	\$	270	\$	360	\$	450	\$	540	\$	630	\$	720	\$	900
13	\$	166	\$	249	\$	332	\$	415	\$	498	\$	582	\$	665	\$	831
14	\$	154	s	231	\$	309	\$	386	\$	463	\$	540	\$	617	\$	771
15	\$	144	\$	216	\$	288	\$	360	\$	432	\$	504	\$	576	\$	720
16	\$	135	\$	203	\$	270	\$	338	\$	405	\$	473	\$	540	\$	675
17	\$	127	\$	191	\$	254	\$	318	\$	381	\$	445	\$	508	\$	635
18	\$	120	\$	180	\$	240	\$	300	\$	360	\$	420	\$	480	\$	600
19	\$	114	\$	171	\$	227	\$	284	\$	341	\$	398	\$	455	\$	568
20	\$	108	\$	162	\$	216	\$	270	\$	324	\$	378	\$	432	\$	540
21	\$	103	\$	154	\$	206	\$	257	\$	309	\$	360	\$	411	\$	514
22	\$	98	\$	147	\$	196	\$	245	\$	295	\$	344	\$	393	\$	491
23	\$	94	\$	141	\$	188	\$	235	\$	282	\$	329	\$	376	\$	470
24	\$	90	\$	135	\$	180	\$	225	\$	270	\$	315	\$	360	Ş	450
25	\$	86	\$	130	\$	173	\$	216	\$	259	\$	302	\$	346	\$	432
26	\$	83	S	125	\$	166	\$	208	\$	249	\$	291	\$	332	\$	415

Base on 9 cent a KW and 2000 cooling hours

Efficient El. Equipment:

Energy star appliances

Compact Fluorescent Lights

In 2011 CREE developed white LED (4500K) that has 231 lumens / watt !

CASE 1: warm white LED strips

5M 500CM Warm White 3528 SMD LED Strip Lights 300 leds

300 LEDs, 15ft, 12Vdc, 0.4A, 250 lumens

Use with 12Vdc power supply

Warm white LED strips

Warm white LED strips

Cove light (30ft = 10W)

Under cabinet light – using 2 strips mounted parallel

Kick toe light

CASE 2: multi color LED strip

New 5M 5050 RGB LED Strip 44key Controller Power Supply

LED strip + Remote + Controller + 12Vdc Power supply=

Multi Color LED strip

CASE 3: LED downlight

120Vac, MR16 light fixture

LED downlight

Halogen

LED

LED downlight

3 Halogen lights

3 LED lights

Monitor Power Consumption

- TED 5000 energy detective
- Real time monitor power

consumption

- Record data in GOOGLE power module
- See it on computer, smart phone, Ipod

Power consumption data:

House automation system

Criteria:

- Reliable
- Secure
- Affordable
- Scalable
- DYI

2g 2 wire	2 wireless systems:						
	TigBee® Control your world						
Developed by Zensys	IEEE 802.15.4						
900 MHz	2.4 GHz (global)						
Up to 30m range	10 – 100m range						
Lower cost							

Remote/local access:

Living Room

X 11:45 PM all Carrier 🤶 ¢ Lights ON Office Kitchen ON **Kitchen Island** LivingRoom Mushroom Lamp OFF 9 ... 0

PC/MAC browser

Android phone

Iphone

Applications:

- Automatically turn on/off lights when on vacation
- Turn off all loads when leaving the house
- Adjust thermostat from the bed, or away from home
- Automatically turn off selected lights during Sunny day
- Receive a text message when someone rings the door bell
- Receive an email with photo when camera with armed sensor detects motion
- Turn on the lights in bedroom during severe weather

Water Efficiency

Touch faucet

Low flow rate shower

Drip irrigation system

4

Indoor air quality

- No Carpets
- Low VOC paint / stain
- Direct vent fireplace
- Tightly sealed doors to garage
- MERV9 filter
- Whole house ventilation system

Lesson learned:

- Installing 5 occupancy sensors = 20 points
- Passive solar feature of the house = 10 points
- Carbon reduction is not proportional to number of points.
- Go for QUALITY, NOT QUANTITY (smaller, more functional, more durable, less cleaning, less maintenance)
- Use standard as a guideline, not Bible.
- MINIMIZE ENERGY consumption.
- Don't forget to have FUN in the process!

- Passive solar design: "The sun inspired house" http://www.sunplans.com/store/book
- Bigger is not better "Not So Big House": http://www.notsobighouse.com/
- Sun Charts: http://solardat.uoregon.edu/cgi-bin/SunChart.cgi
- Misc solar tools: http://www.builditsolar.com/References/SunChartRS.htm
- Overhang design: http://www.susdesign.com/overhang/
- Building science: http://www.buildingscience.com/index_html
- Perfect Wall design: http://www.buildingscience.com/documents/insights/bsi-001the-perfect-wall
- Supported ZWAVE devices: http://wiki.micasaverde.com/index.php/Supported_Hardware
- NAHB Green standard: http://store.builderbooks.com/cgi-bin/builderbooks/874

