IROS 2012 Vilamoura, Oct. 8, 2012

Robot & Remote-Controlled Machine Technology for Response against Accident of Nuclear Power Plants and toward Their Decommission

Hajime ASAMA Dept. of Precision Engineering, The University of Tokyo, Japan Robotics Task Force for Anti-Disaster (ROBOTAD), Chairman Remote Control/Robotics Project Team, Member Council on Competitiveness-Japan, Project on Disaster Response Robots and Their Operation System, Project Leader Japan Atomic Energy Commission, Advisory Committee on Medium-range and Long-range Measures for Fukushima Daiichi NPP, Member Japanese Government and TEPCO: Headquarter of Mid-term and Long-term Research and Development Promotion, Member Task Force for Remote Control Technology, Chairman NEDO Anti-disaster Unmanned System R&D Project, Project Leader

ie University of Tokyo

Copyright (c) Hajime Asama, Univ. of Tokyo. All rights reserved 2012

Thank you for your great support!

The Great Eastern Japan Earthquake and the Tsunami

Earthquake

- 14:46, Mar 11, 2011
- Magnitude: M9.0
- Maximum Seismic Intensity Scale: 7

Tsunami

- 30-60 min later
- Maximum Wave Height: 40.5[m]

neering

Accident of Fukushima Daiichi Nuclear Power Plant

- Earthquake (14:47)
- Loss of Power Supply
- Activation of Emergency Diesel Generator
- SCRAM Stop Reactors
- Tsunami
- Damage of Fuel Tanks and Generators
- SBO (Situation of Black Out) (15:39)
- Failure of Cooling System of Reactors and Fuel Storage Pool
- Loss of Cooling Water
- Melt down
- Hydrogen Explosion (Mar. 12-15, Unit 1, 2, 3, 4)

Major Accidents of Nuclear Facilities

- Three Mile Island
 - Mar. 28, 1979
 - Level 5 (Accident of coolant loss)
- Chernobyl
 - Apr. 26, 1986
 - Level 7
- Tokai
 - Sep. 30, 1999
 - Level 4 (Criticality accident in fuel processing)
- Fukushima
 - Mar. 12-15, 2011
 - Level 7

Explosion of the Reactor Building

Recent View of Fukushima Daiichi (Units 1 to 4)

©2012 The Tokyo Electric Power Company , INC. All Rights Reserved.

Radiation level

Current situation of units

Nikkei Newspaper

Dose Rate Map of Fukushima Daiichi Site (As of 5:00PM Jan.10, 2012)

Special Project Teams (Japanese Gov. and TEPCO)

THE UNIVERSITY OF TOKYO

Current Status of "Roadmap towards Restoration from the Accident at Fukushima Daiichi Nuclear Power Station, TEPCO" (Revised edition)

Appendix 3 October 17, 2011 Nuclear Emergency Response Headquarters Government-TEPCO Integrated Response Office

Red colored letter: newly added to the previous version, *: already reported to the government, Green colored shading: achieved target

Current Status of "Roadmap towards Restoration from the Accident at Fukushima Daiichi Nuclear Power Station, TEPCO" (Revised edition)

October 17, 2011 Nuclear Emergency Response Headquarters Government-TEPCO Integrated Response Office

Red colored letter: newly added to the previous version, \star : already reported to the government, Green colored shading: achieved object

Overview Image of BWR-4

Hajime Asama Dept. of Precision Engineering The University of Tokyo

Needs for Robots

- For Operation in Nuclear Power Plants
 - Missions
 - Stabilization of the cooling systems
 - Containment (Coverage of Reactor Buildings)
 - Decommission (Extraction of Nuclear Fuels)
 - Reduction of radiation exposure of workers
 - Tasks
 - Debris clearing
 - Surveillance and mapping outside and inside of the buildings (Images, radiation, temperature, humidity, oxygen concentration, etc.)
 - Instruments setup, sampling
 - Shield and decontamination
 - Material transportation
 - Construction of pipes and equipments , etc.

Needs for Robots

- For Other Disaster Response
 - Victim search and rescue
 - Inspection, diagnosis and recovery of plants and facilities
 - Surveillance of coast underwater
 - Mapping of the damaged area
 - Power assist for heavy load tasks
 - Mental care of evacuees

ROBOTAD

ROBOtics Task force for Anti-Disaster (ROBOtics - Temporary Active Duty) http://roboticstaskforce.wordpress.com/

> Anchorman: Yoshihiko Nakamura Chairman: Hajime Asama

- Established on Mar 31, 2011
- Group of scientists and engineers on robotics
- Objective:
 - Propose and introduce solutions for the disaster response and measures by applying robot technologies
- Main activities: (Quick action required)
 - Assist remote control/robotics PT
 - Propose and introduce solutions for the disaster response and measures by applying robot technologies
 - Support technically in mobilization and operation of robot systems including modification and reinforcement
 - Maintenance of database on applicable robot technology and achievement records
 - Broadcast technical information
- Association
 - RSJ, JSME Robomec Div., SICE SI Div., IEEE RAS Japan Chap., IFToMM Japan Council
 - Science Council of Japan
 - Japan Robot Association and companies
 - IRS (NPO, International Rescue System Institute)

THE UNIVERSITY OF TOKYO

Structure of ROBOTAD

the University of Tokyo

Copyright (c) Hajime Asama, Univ. of Tokyo. All rights reserved 2012

on Engineering

Remotely controlled Unmanned Construction System for Debris Clearing-up From Apr. 6, 2011

処理前

コンテナ1個分の処理後

^{ガレキ積2} Crawler dumps

コンテナふた

Backhoes & Iron Forks

積み込み時配置

遠隔操作重機によるガレキ撤去作業 (コンテナ:3.2×1.6×1.1m、約4m³) (撤去前) (撤去前) (加太後)

(仮置の瓦礫収集コンテナ)

- - r J - - O

THE UNIVERS

(東京電力提供)

Unmanned Construction System

Used in response against explosion of volcano (Unzen-Fugen Mt.), in 1991

- Pyroclastic flow (Flow of heated rocks and volcanic ash)
- Avalanche of earth and rocks (Flow of debris)

Unmanned Aerial Vehicles T-Hawk (Remotely controlled) From Apr. 10, 2011

TEPCO

T-Hawk (Honeywell)

Landing

Operation Room

Top View of R/B Unit 1

Top View of R/B Unit 3

Top View of R/B Unit 4

Copyright (c) Hajime Asama, Univ. of Tokyo. All rights reserved 2012

Mobile Robots (Remotely controlled) From Apr. 17, 2011

TEPCO

Packbot

Entering from the doors

Near Doors

1st floor of R/B Unit 1

1st floor of R/B Unit 2

1st floor of R/B Unit 3

Operation Vehicle(TEAM NIPPON)

JAEA (Japan Atomic Energy Agency)

- Radiation measurement and robot teleoperation
- Operation box shielded by iron plate of 80mm thickness
- Equipped with Gamma camera, monitoring camera, lightening devices, tele-operated survey meter
- Localization of radiation source by the Gamma Camera
- Confirmation of safety by measuring radiation level

(个)ロボット操作車の外観

(←)ロボット操作車の装備

Dept. of Precision Engineering The University of Tokyo

Localization of radiation source and measurement of radiation level by the Gamma Camera

May 22, 2011

(TEPCO)

Sampling of contaminated water and setting up of water level gauge by Quince from June 24, 2011

Hajime Asama Dept. of Precision Engineering The University of Tokyo

Operator Training of Narrow Stair Climbing by Quince

Investigation inside R/B unit 2 on July 8 by Quince

ロボットの移動経路

TEPCO July 11, 2011

Investigation of 1st-5th floor inside Unit 2 R/B on Oct. 20, 2011 by Quince

Cleaning inside of reactor building unit 3 using the Warrior July 2, 2011 TEPCO

Debris Removal inside of Reactor Building Unit 3 May 10-June, 2011

Brokk-90 (Brokk)

Talon (QinetiQ)

Bob Cat

(QinetiQ)

Brokk-330 (Brokk)

Inspection inside of Reactor Building Unit 3 (2 Packbots and 1 Warrior) Nov. 16, 2011

Results of Radiation Measurement at 1st floor of Unit 3

TEPCO Nov. 16, 2011

THE UNIVERSITY OF TOKYO

Wiping Floor by a Robot

Inspection inside PCV of Unit 2 Jan. 20

TEPCO

Industrial Endoscope and Thermocouple

72.9Sv/h was observed At the 2nd entry in Mar. 27, 2012

Hajime Asama Dept. of Precision Engineering The University of Tokyo

使用済燃料プール上を覆っているフロート養生の開口部からROV※を使用済燃料 プール内に投入し、オペレーティングフロア上で操作を実施。

※ROV: Remotely Operated Vehicle(遠隔水中探査機)

Mapping of Debris in the Fuel Storage Poon in Unit 4

Investigation of Suppression Chamber Room in Unit 2 Apr. 18, 2012

Radiation dose: 186mSv For three hours mission

Suppression Chamber SE

Survey Runner TOPY Industries

61.4mSv/h 57.0mSv 2012-04-18 11:32:42

Copyright (c) Hajime Asama, Univ. of Tokyo. All rights reserved 2012

Debris Clearing-up of Operation Floor Using Remotely-controlled Machines

Debris Clearing-up of Operation Floor of Unit 3

Clearing-up on the ground

Radiation Source Localization & Radiation Measurement of Unit 2 and 3 Using γ Camera and Dosimeter

3. 床貫通部

Packbot+Quince2

Investigation inside R/B unit 1 (1st floor) TIP Room and South Area July 5, 2012 (TEPCO)

1号機 原子炉建屋 1階

Operational Robots (at July, 2012)

Name	manufacturer	Photo	Nr. Posession (Operational)	Use
Packbot	iRobot		4 (3)	Investigation Radiation measurement Light work, etc. (inside buildings)
Quince	- Chiba Inst. Tech. - Tohoku Univ. - IRS		3 (2)	Investigation Radiation measurement Dust sampling (Q2) 3D mapping (Q3) (Operatable by wireless even if cable amputation)
Survey Runner	TOPY Industries		1	Investigation Radiation measurement (in underground level such as suppression chamber) (Operatable by wireless even if cable amputation)

Achievements of Robot Operation in R/B Unit 1, 2, 3 (at July, 2012)

Investigation (Acq	uisision of visu	ual images, etc.)
Date	Location	Robots
Apr. 17, 2011	1u 1F	Packbot
Apr. 17, 2011	3u 1F	Packbot
Apr. 18, 2011	2u 1F	Packbot
Apr. 26, 29, 2011	1u 1F	Packbot
May 10, 2011	3u 1F N	Packbot
May 13, June 3, 2011	1u 1F S	Packbot
June 24, July 2, 2011	3u 1F S	Packbot
July 8, 2011	2u 1∼3F	Quince
July 22, 2011	3u 1F NE	Packbot
July 26, 2011	3u 1∼2F	Quince
Sep. 22, 2011	2u 1F S	Quince
Sep. 24, 2011	3u 1F	Quince
Oct. 13, 2011	1u 1F S	Packbot
Oct. 20, 2011	2u 1~5F	Quince
Nov. 3, 2011	3u 1F	Packbot
Nov. 14, 19, 2011	3u 1F NE	Packbot
Feb. 27, 2012	2u 5F	Quince2
Mar. 21, 2012	2u TIP Rm.	Quince2
Apr. 18, 2012	2u Sup.Cham.	Survey Runner
May 23, 2012	3u 1F TIP Rm.	Quince2
June 13, 2012	2 <mark>u 1∼5</mark> F	Quince2
July 4, 2012	1u 1F S	Packbot Quince2,3

Decont	Decontamination, Work Monitoring		
Date	Location	Robot	Use
July 1, 2011	3u 1F S	Warrior	Cleaning
July 6, 2011	3u 1F S	Warrior	Work monitoring
July 6, 2011	3u 1F S	Packbot	Work monitoring
July 8, 2011	3u 1F S	Packbot	Working site inspection
July 12, 2011	3u 1F S	Packbot	Work monitoring
Sep. 23, 2011	2u 1F	JAEA3 Packbot	Inspection by camera and γ camera
Sep. 23, 2011	3u 1F	Packbot	Inspection by camera
Nov. 2, 3, 2011	3u 1F	Warrior Packbot	Obstacle transportation
Nov. 14, 17-19, 2011	3u 1F NE	Packbot	Rag wiping
May 2012- (on going)	1∼3u 1F	Packbot	Inspection by γ camera

Light work by Packbot

Cleaning by Warrior

5000mSv/h was recorded in the inspection of 1u T/B2F SGTS Rm. by Packbot in Aug. 2, 2012

Achievements of Disaster Response Robots

Investigation of Building (Kohga3: Matsuno, Kyoto U.)

Investigation under Water (Anchor Diver III: Hirose, TITech.)

Investigating under Water (Remote-Controlled ROV: Ura, U. Tokyo)

UAV (Nonami, Chiba Univ.)

計測結果(例)

Mapping of the Destroyed Area (Omni-directional Camera on a Vehicle Ikeuchi, U. Tokyo, Deguchi, Tohoku U.) THE UNIVERSITY OF TOKYO

Assist of Heavy Load Task (Smart Suit Light: Tanaka, Hokkaido U.)

Recovery Operation using Dual Arm Machine

Mid-and-long-Term Roadmap Summary (TEPCO)

Step 1, 2 Phase 1	Phase 2	Phase 3
chieved Stable Conditions> ondition equivalent to cold evidence	Period to the start of fuel debris removal (Within 10 years)	Period to the end of decommissioning (After 30-40 years)
nutdowngnificant Suppression i Emissions-Commence the removal of fuels from the spent fuel pools (Unit 4 in 2 years)-Reduce the radiation impact due to additional emissions from the whole site and radioactive waste generated after the accident (secondary waste materials via water processing and debris etc.) Thus maintain an effective radiation dose of less than 1 mSv/yr at the site boundaries caused by the aforementionedMaintain stable reactor cooling and accumulated water processing and improve their credibilityCommence R&D and decontamination towards the removal of fuel debris-Commence R&D of radioactive waste processing and disposal	 -Complete the fuel removal from the spent fuel pools at all Units -Complete preparations for the removal of fuel debris such as decontaminating the insides of the buildings, restoring the PCVs and filling the PCVs with water Then commence the removal of fuel debris (Target: within 10 years) -Continue stable reactor cooling -Complete the processing of accumulated water -Continue R&D on radioactive waste processing and disposal, and commence R&D on the reactor facilities decommission 	 -Complete the fuel debris removal (in 20-25 years) -Complete the decommission (in 30-40 years) -Implement radioactive waste processing and disposal

Work Steps Involved in Fuel Debris Removal (1/3)

Copyright (c) Hajime Asama, Univ. of Tokyo. All rights reserved 2012

49

Work Steps Involved in Fuel Debris Removal (2/3)

Copyright (c) Hajime Asama, Univ. of Tokyo. All rights reserved 2012

Work Steps Involved in Fuel Debris Removal (3/3)

THE UNIVERSITY OF TOKYO Copyright (c) Hajime Asama, Univ. of Tokyo. All rights reserved 2012 Dept. of Precision Engineering The University of Tokyo 51

[Overall management]

[Specific R&D projects]

R&D Projects for Fuel Debris Removal

Toshiba/Hitachi GE Nuclear Energy/Mitsubishi Heavy Industries Technical Catalogue

Investigation of applicable technologies toward accomplishment of removal of fuel debris and decommission.

- Decontamination technology and remote-control technology for decontamination work
- Remote-control operation machine and measurement equipment for Primary Containment Vessel inspection and repair.

395 proposals

Image of system application to the accident of NPP

Robots developed in projects for nuclear facilities

For Maintenance

Considerations

Nuclear Power Plants brought us lots of energy and benefits as well as challenging technological demands to handle the dangerous materials and reduce the risks RT development for the nuclear facilities Big investment for the development Failure in smooth RT introduction to the disaster sites

Friday, Jan. 6, 2012

NUCLEAR AWAKENING

Domestic robots failed to ride to rescue after No. 1 plant blew

By HIROKO NAKATA

Staff writer Last of five parts

After the March 11 tsunami slammed into the Fukushima No. 1 nuclear plant and wrecked three reactors, many people expected the nation's cutting-edge robotic technologies to come to the rescue.

That, however, turned out to be wishful thinking, and the public was left wondering why Japanese robots, such as Honda Motor Co.'s Asimo humanoid, weren't sent to the power plant to assist firefighters and workers trying to bring the crippled reactors under control.

In the early stages of the nuclear crisis, many people actually sent messages to the Asimo Twitter account run by Honda Motor Co., asking why the robot wasn't participating in recovery efforts led by the government and plant operator Tokyo Electric Power Co.

The reply they received, however, said only that

- Indication of the responsibility of robot scientists
- Why Honda Asimo not used?
- Disappointment to know RT is not useful in real situation when it is demanded

Slinky move: Quince moves down stairs at Chiba Institute of Technology

THE UNIVERSITY OF TOKYO Copyright (c) Hajime Asama, Univ. of Tokyo. All rights reserved 2012

- There are few robots and remotely controlled machines which have sufficient function to be used in the real disaster sites.
- Most of the robots developed in Japan were just prototypes developed by researchers, and there are few products.

- Confusion in information sharing between users and providers (developers)
 - Users
 - What kind of robots and remotely controlled machines are existing?
 - How useful they are in the disaster sites?
 - Providers
 - Where are the needs?
 - What are the needs and requirements?

• It was difficult to introduce RT to the disaster sites smoothly.

Questions in responsibility of scientists

- Did we make sufficient effort to translate and transmit the real information on RT to the public?
 - Mass media has reported only on the strong points of Robot Technology and not much on the technological limitation in function.
 - We should review if we have made sufficient effort to translate and transmit the information on the reality on RT to the public.

Questions in responsibility of scientists

- 2. Did we make sufficient effort to develop practical technology for implementing the technology in the society?
 - Difficulty in implementing the technology in the society
 - Decision making of technology utilization is heavily dependent on the dynamics of politics and economics
 - Any systems are imperfect in the indefiniteness of the real world (artificial systems and even humans)
 - Risk reduction vs. cost and efficiency
 - Necessity of efforts to develop practical technologies
 - Effort to develop practical technology should be responsibility of scientists
 - Reliable and dependable technology development led by the hard experience and failures

THE UNIVERSITY OF TOKYO Copyright (c) Hajime Asama, Univ. of Tokyo. All rights reserved 2012

Lessons learned and future issues

- Necessity to construct international network and framework for cooperation in knowledge sharing and technology transfer
- Examination of the political strategy
 - Sustainability of technology for possible disasters
 - Limitation of demand and market
 - Combination with maintenance use
- Necessity of projects to develop practical technologies usable at first-hand by involving users
- Necessity of site and organization for practical technology development, testing, and quick response to possible emergency and disaster
- Necessity of conservation of technology and knowledge for long-life artificial systems

THE UNIVERSITY OF TOKYO

Copyright (c) Hajime Asama, Univ. of Tokyo. All rights reserved 2012

RT System Design & Operation

Copyright (c) Hajime Asama, Univ. of Tokyo. All rights reserved 2012

Seed-driven approach

Copyright (c) Hajime Asama, Univ. of Tokyo. All rights reserved 2012

Need-driven approach

Copyright (c) Hajime Asama, Univ. of Tokyo. All rights reserved 2012

For Future

- Transform the bitter experience to the chance for the technological advancement by developing more dependable and demanded technology for safe and secure society
- Develop young human resources and keep the knowledge and technology beyond the generation

I extend my sincere condolences for all the victims, and express my hearty sympathy to all the evacuees due to the Earthquake

Thank you for your attention!

