IEEE-CYBER

Tianjin, China July 19-23, 2018

PROGRAM

The 8th Annual IEEE International Conference on

The 8th Annual IEEE International Conference on CYBER Technology in Automation, Control, and Intelligent Systems

IEEE-CYBER 2018

Conference Digest

Tianjin, China July 19 – 23, 2018

IEEE-CYBER 2018 PROCEEDINGS

IEEE Catalog Number:	CFP18CYB-ART
ISBN:	978-1-5386-7057-6
IEEE Catalog Number (USB):	CFP18CYB-USB
ISBN (USB):	978-1-5386-7056-9

Copyright and Reprint Permission:

Copyright and Reprint Permission: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923. For reprint or republication permission, email to IEEE Copyrights Manager at pubs-permissions@ieee.org. All rights reserved. Copyright ©2018 by IEEE.

The Institute of Electrical and Electronics Engineers, Inc.

Welcome Message

Welcome to the 8th Annual IEEE International Conference on *CYBER* Technology in Automation, Control, and Intelligent Systems. The IEEE-CYBER is a key international conference (financially sponsored by IEEE Robotics & Automation Society and technically sponsored by Nankai University, Hebei University of Technology, and K.C.Wong Education Foundation) focusing on advanced research areas related to cyber physical systems, control/automation, robotics, internet of things and sensor networks. This year, the IEEE-CYBER conference will be held from July 19 to July 23 in Tianjin, China, with the spirit of bringing together researchers and engineers from around the world to present their latest research findings, accomplishments, innovations, and visions in the related fields.

With 419 paper submissions from 13 countries or regions, 304 papers have been selected for presentation at the conference after going through a rigorous review process. The technical program of the IEEE-CYBER 2018 consists of 7 plenary talks, 3 keynote talks, 42 technical sessions organized into six parallel tracks, and 4 separated poster sessions. The goal of IEEE-CYBER 2018 is to create an opportunity for participants to present their latest research results to an international audience. Moreover, networking with other researchers has always been a cornerstone of the IEEE-CYBER conference series, and several networking activities have been scheduled during IEEE-CYBER 2018, including welcome reception, banquet, and farewell reception. We hope IEEE-CYBER 2018 will be a valuable, memorable and exciting platform for people to exchange ideas and information, identify new research interests, establish collaborations, make friends, and find new opportunities for their career.

IEEE-CYBER 2018 will give out three technical awards: *Best Conference Paper Award*, *Best Student Paper Award*, and *Best Poster Award*. The nominated papers are arranged in separate sessions for presentation, which is convenient for those who specially want to attend the presentations from the nominees.

We greatly appreciate Nankai University, Hebei University of Technology, and K.C.Wong Education Foundation for their strong support to the organization of this conference. In addition, we would like to express our deepest gratitude to the great contributions from the Program Committee members, the Organizing Committee members, local staff, and student volunteers. The IEEE-CYBER 2018 would not have been possible without your commitment and efforts. Last but not least, our heartfelt thanks go to the authors, the reviewers, the conference participants, and the sponsors. It is your participation and contribution that will make IEEE-CYBER 2018 unique, enjoyable, and successful.

Besides enjoying the technical programs and networking activities during the conference, we highly suggest you spend some time in enjoying the city of Tianjin.

Finally, we wish you a wonderful and joyful stay in Tianjin, China!

General Chair Yongchun Fang Nankai University China

Program Chair Zhidong Wang Chiba Institute of Technology Japan

Organizing Chair Xuebo Zhang Nankai University China

CYBER 2018 Conference Committee

International Advisory Board

Tzyh-Jong Tarn	Washington University, USA
Toshio Fukuda	Nagoya University, Japan
Kazuhiro Kosuge	Tohoku University, Japan
Ning Xi	The University of Hong Kong, Hong Kong, China
Wen Jung Li	City University of Hong Kong, Hong Kong, China
Guizhang Lu	Nankai University, China
Yuechao Wang	Chinese Academy of Science, China
Haibin Yu	Shenyang Institute of Automation, CAS, China
Chih-Ming Ho	UCLA, USA
Min Tan	Institute of Automation, CAS, China
Krzysztof Kozlowski	Poznan University of Technology
Xiang Chen	University of Windsor, Canada
General Chair	Yongchun Fang, Nankai University, China
General Co-Chairs	Peng Yang, Hebei University of Technology, China
	Fuchun Sun, Tsinghua University, China
	Yibin Li, Shandong University, China
	Xin Zhao, Nankai University, China
	Heping Chen, Texas State University, USA
Program Chair	Zhidong Wang, Chiba Institute of Technology, Japan
Program Co-Chairs	Ming Yu, Hebei University of Technology, China
	Junzhi Yu, Institute of Automation, China
	Jingang Yi, Rutgers, The State University of New Jersey, USA
	Zengqiang Chen, Nankai University, China
Organizing Chair	Xuebo Zhang, Nankai University, China
Organizing Co-Chairs	Lianqing Liu, Shenyang Institute of Automation, China
	Hesheng Wang, Shanghai Jiao Tong University, China
	Long Cheng, Institute of Automation, China
	Yongsheng Ou, Shenzhen Institutes of Advanced Technology, China
Award Chair	Jingtai Liu, Nankai University, China
Award Co-Chairs	Xiang Chen, University of Windsor, Canada
	Krzysztof Kozlowski, Poznan University of Technology, Poland
	Youfu Li, City University of Hong Kong, China
	Bin Xian, Tianjin University, China

Regional Program Chairs	Ming Liu, Hong Kong University of Science and Technology, Hong Kong China
	Chenguang Yang, South China University of Technology, China Yuquan Du, Australian Maritime College, University of Tasmania,
	Australia
	Zhongxin Liu, Nankai Univeristy, China
	Liang He, University of Colorado Denver, USA
Workshop/Tutorial	Huaping Liu, Tsinghua University, China
Chairs	Yong Liu, Zhejiang University, China
	Yajing Shen, City University of Hong Kong, Hong Kong, China
	Jing Yuan, Nankai University, China
Industrial Chair	Bojun Ma, ABB Inc., China
Poster Sessions Chairs	Yan Zhuang, Dalian University of Technology, China
	Ningbo Yu, Nankai University, China
Publication Chairs	Shuai Yuan, Shenyang Jianzhu University, China
	Hua Chen, Hohai University, China
	Qiang Lv, Hangzhou Dianzi University, China
	Yongfu Li, Chongqing University of Posts and Telecommunications, China
Financial Advisor	Weihua Sheng, Oklahoma State University, USA
Financial Chairs	Zuting Shen, Nankai University, China
	Lu Zhou, Nankai University, China
Registration Chair	Guangyong Li, University of Pittsburg, USA
Publicity Chairs	Ning Sun, Nankai University, China
	Yanding Qin, Nankai University, China
	Haoyao Chen, Harbin Institute of Technology Shenzhen, China
Sponsor & Exhibition Chair	Yue Sun, Nankai University, China
Secretariat	Tracy Tsoi, The University of Hong Kong, Hong Kong, China

Technical Program Committee

An Peng	Di Guo	Haoyao Chen	Jing Yuan
Bailing Tian	Dianwei Qian	He Chen	Jingang Yi
Baoquan Li	Dong Liu	Heping Chen	Jinhua Li
Bin Fang	Donghao Lv	Hesheng Wang	Jin-Liang Wang
Bin Xian	Dongmei Xie	Hongguang Pan	Juanjuan Xu
Bin Xu	Dongya Zhao	Hongpeng wang	Juanjuan Zhang
Bingchang Wang	Fei Chen	Hongtai Cheng	Jufeng Yang
Bingtuan Gao	Feiqi Deng	Hongyi Li	Jun Mei
Bojun Ma	Fengchi Sun	Hongzhuan Zhao	Jun Yang
Botao Zhang	Fujun Wang	Hua Chen	Junyan Yu
Chang Liu	Guansheng Xing	Huaibin Tang	Kun Li
Changli Feng	Gui-Bin Bian	Huaping Liu	Lei Sun
Chao Ren	Guoyuan Qi	Huaping Wang	Leting Pan
Chao Xu	Hai Wang	Huijie Fan	Li Zhang
Chao Yang	Haibin Sun	Huimin Lu	Lianfu Han
Chaoquan Tang	Haibo Du	Huimin Ouyang	Liang He
Chaoxu Mu	Haibo Yu	Jian Chen	Liang Peng
Chenglong Zhu	Haifeng Li	Jian Fu	Lianqing Liu
Chenguang Yang	Haijin Fan	Jian Yang	Lin Xu
Chuanlin Zhang	Haixia Wang	Jianchuan Guo	Lina Hao
Chuanqi Tan	Haiyi Sun	Jianlei Zhang	Linying Xiang
Chunyu Yang	Haiyong Chen	Jianmin Li	Long Cheng
Daoxiong Gong	Han Zhang	Jie Huang	Lujia Wang
Decai Li	Hao Liu	Jie Wang	Menghua Zhang
Dedong Yang	Hao Zhu	Jing Xin	Ming Liu

Ming Yue	Shihong Ding	Xuemei Zheng	Yunyi Jia
Mingjie Dong	Shuai Yuan	Yan Zhuang	Yuqing He
Mingwei Sun	Song Liu	Yanding Qin	Yuquan Du
Mingzhu Sun	Tao Li	Yang Cong	Zenghui Wang
Minnan Luo	Te Li	Yanli Huang	Zengqiang Chen
Na Wang	Tingting Wang	Yanling Zhang	Zeyang Xia
Ning Sun	Wee Liat Ong	Yao Guo	Zhai Guang
Ning Wang	Wei He	Yi Tang	Zhan Yang
Ningbo Yu	Wei Sun	Yifen Mu	Zheli Liu
Peng Fei	Weiguo Xia	Yingjiang Zhou	Zhenghao Xi
Qi Song	Weisong Zhou	Yinjun Wu	Zhenguo Liu
Qi Wang	Wuquan Li	Yong Liu	Zhi Han
Qiang Fang	Xian Guo	Yong Liu	Zhi Wang
Qiang Lu	Xiangyu Wang	Yongchun Fang	Zhidong Wang
Qili Zhao	Xiao Liang	Yongfu Li	Zhigang Bing
Qingling Wang	Xin Wang	Yongjun Wu	Zhongcai Zhang
Qingsong Xu	Xingang Zhao	Yougang Sun	Zhongjing Ma
Qinmin Yang	Xinwei Chen	Yu Dai	Zhongxin Liu
Qinshan Xu	Xuebo Zhang	Yuahua Ni	Zongyu Zuo
Rong Song	Xuejuan Niu	Yuan Yuan	Zuojun Liu
Shengquan Li			

CYBER 2018 Sponsors

We acknowledge the support of the following sponsors to the 8th Annual IEEE International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (IEEE-CYBER 2018).

General Information

Conference Date and Venue

Date: July 19 - 23, 2018

Venue: Hyatt Regency Tianjin East 126 Weiguo Road, Hedong District, Tianjin, China, 300161

Registration Desk

July 19 (Thursday)	14:00 - 18:00	Lobby, 1F
July 20 (Friday)	08:00 - 18:00	Lobby, 1F
July 21 (Saturday)	08:00 - 18:00	Lobby, 1F
July 22 (Sunday)	08:00 - 17:00	Lobby, 1F

Conference Events

Welcome Reception	July 19 (Thursday)	18:30 - 20:00	Market Café, 1F
Dinner	July 20 (Friday)	18:30 - 20:00	Market Café, 1F
Conference Banquet	July 21 (Saturday)	18:30 - 21:30	Grand Ballroom, 2F
Farewell Dinner	July 22 (Sunday)	18:30 - 20:00	Market Café, 1F

Conference Lunches

July 20 (Friday)	12:00 - 13:30	Market Café, 1F / Wok in the Garden, 3F
July 21 (Saturday)	12:00 - 13:30	Market Café, 1F / Wok in the Garden, 3F
July 22 (Sunday)	12:00 - 13:30	Market Café, 1F

Floor Map- Hyatt Regency Tianjin East

1st Floor (Registration Desk, Workshop, Oral Sessions, Poster Sessions, Coffee Breaks, Welcome Reception, Farewell Dinner and Lunches)

2nd Ffloor (Plenary Talks, KeynoteTalks, Forum, Oral Sessions, Poster Sessions, Coffee Breaks and Conference Banquet)

Official Language

The official language of the conference is English. All presentations, including discussions and paper submissions, shall be made in English.

Conference Attire

Casual attire is generally recommended for the Welcome and Farewell Receptions while a business suit or a white shirt with a neck-tie at all technical sessions and at the Conference Banquet.

Presentation Specifications

In each oral presentation room, one LCD projector and one laptop will be available. The presenters do not need to bring their own laptop. The presenters should prepare Power Point Slides (PPT) to facilitate their presentations. The slides and the presentations must be in English. Please test the slides (in either the provided laptop or your own laptop) before session start to avoid potential format problems caused by different software versions.

Durations for each category of oral presentation are listed below:

Plenary Lectures are scheduled for 45 minutes (including 5 mins Q&A) each. Keynote Lectures are scheduled for 30 minutes (including 5 mins Q&A) each. Regular Sessions are scheduled for 15 minutes (including 3 mins Q&A) each.

Poster Specifications

Poster session represents an effective and valuable means for authors to present their research results. It offers an opportunity of meeting with interested attendees for in-depth scientific and technical discussions, and establishing new collaborations. Therefore, it is important that you display your results clearly to attract people who have an interest in your team's research work.

Your poster should cover the KEY POINTS of your paper, which include but not limited to backgrounds, methods, results and conclusions. Make your poster as self-explanatory as possible. This will save your time for discussions and questions with fellow researchers.

Poster Dimensions

- Your poster SHOULD have the following dimensions:
- Poster Size: A0 Size 33.1 inches (84.1 cm) wide x 46.8 inches (118.9 cm) high.
- Please note that printing out your submitted full paper in A4 size format is NOT acceptable as a poster.

Poster Contents

- **Title:** The title of your poster should appear at the top with lettering of at least **70 pt** font size). Below the title, place the names of authors and their affiliations.
- **Text:** Text should be readable from five feet away. Use a minimum font size of **18 pt**. Keep the text brief. Try to use text to introduce the study, explain visuals and direct viewers' attention to significant data trends and relationships portrayed in the visuals, state and explain the interpretations that follow from the data. It is also a good idea to put future research plans or questions for discussion with viewers in your text.
- **Figures:** Each figure should have a brief title. Figures should be numbered consecutively according to the order in which they are first mentioned in the text. Try to use color figures rather than only black and white text to make your poster attractive and highlight the important technical content of your paper. Make sure that the text and the visuals are integrated.

Transportation to/from Tianjin Binhai International Airport

Hyatt Regency Tianjin East forms part of the fast-developing commercial hub connecting downtown Tianjin and the booming business district of Tianjin Binhai New Area. The convenient location is just 20 minutes from Tianjin Binhai International Airport and 10 minutes from the historic heart of Tianjin, with easy access to the Tianjin Economic Development Area (TEDA), Dongli, Beichen, Wuqing and Xiqing industrial zones. It is also close to Tianjin Line 2 Metro Station and Tianjin Main Railway Station, a regular stop for high-speed train services from around China, including the Tianjin-Beijing line that takes just 28 minutes to reach the Chinese capital.

Tianjin Binhai International Airport is located in Zhanggui Zhuang, Dongli District, about 13 kilometers (about 8 miles) away from the downtown area.

With easy access to the express highway linking to the airport and industrial zones, the hotel is within 20 minutes of the airport and 10 minutes of downtown.

- a. Beijing Capital International Airport: 120 km (2 hours by car)
- b. Tianjin Binhai International Airport: 13 km (20 minutes by car)
- c. Tianjin Train Station: 4.5 km (14 minutes by car)
- d. Subway Station: Jingjiang Road Station, Line 2

For more information, please contact the Hotel Concierge at +86 22 2457 1234.

About Tianjin

Tianjin, one of China's four municipalities directly under the Central Government, is the largest opening coastal city in North China, one of the National Famous Historical and Cultural Cities in China, as well as a member of the first group of the outstanding tourist cities of China.

Tianjin is located in northeast part of the North China Plain and the center of Bohai-Rim, bordering the Bohai Sea in the east, leaning against the Yanshan Mountain in the north. It is only 120 kilometers from

Beijing in the northwest. Tianjin covers an area of 11,760 square kilometers, with a 153-kilometer-long coastline and a total municipal population of 12,280,000. Tianjin is rich in tourism resources. There are many types of attractions in Tianjin, including mountains, rivers, lakes, sea, springs, and wetlands. Tianjin plays a prominent role in China's modern history and can be viewed as an epitome of modern history of China. The blend of Chinese and Western cultures forms Tianjin's distinctive human resources.

Tianjin will gradually transform into an eco-city, an international port city as well as an economic center in North China. As a modern metropolis with a long history, profound cultural background and distinctive natural resources, Tianjin will keep the city environment clean and beautiful, highlight the characteristics of the city and provide tourists with complete facilities and better services.

Climate

Tianjin has four distinct seasons and a dry climate, with summer temperatures in July ranging from 20°C to 37°C (68°F to 98°F) and winter temperatures in January from -5°C to 10°C (23°F to 50°F).

Currency

Renminbi (CNY). Major credit cards (Visa, MasterCard, and American Express) and travelers cheques are commonly accepted.

Local Time

The standard time zone is UTC/GMT +8.

Electricity

The electrical system is 220V (50 Hz). Travelers with shavers, computers, and other personal electronics are advised to carry a travel Universal adaptor.

Plenary Talks

Plenary Talk 1: Friday, July 20, 2018 09:15-10:00, Grand Ballroom, Second Floor Session Chair: Yongchun Fang, Nankai University

The Tri-Co (Coexisting-Cooperative-Cognitive) Robots

Han Ding

Professor School of Mechanical Science and Engineering Huazhong University of Science & Technology, China

Abstract:

Tri-Co Robots (Coexisting-Cooperative-Cognitive Robots) are those that can naturally interact and collaborate with the environment, including humans as well as other robots, and adapt to new situations. This will all be achieved through state-of-the-art machine learning, control and planning algorithms. Key characteristics of Tri-Co Robots are: plastic and dexterity, multi-modal perception, and working autonomously and collaboratively. This talk will introduce the current research activities of robotics in China, especially the Tri-Robot Research Plan of NSFC (National Natural Science Foundation of China). It will discuss the primary scientific challenges and key scientific problems of the plan, mainly focusing on mechanism, perception and control. The talk will also forecast China's expected breakthroughs and goals in Tri-Co robot research. Finally, the talk will present recent research results of our group and discuss current and future challenges.

Biography:

Prof. Han Ding received his Ph.D. degree in Mechatronics from Huazhong University of Science & Technology in 1989. Supported by the Alexander von Humboldt Foundation, he worked at University of Stuttgart, Germany in 1993. He obtained the National Distinguished Youth Scientific Fund in 1997 and was awarded the "Cheung Kong" Chair Professor at Shanghai Jiao Tong University in 2001. He was elected a member of Chinese Academy of Sciences in 2013. Prof. Ding has long dedicated himself to research in the field of robotics and digital manufacturing, and has successfully combined both technologies. He published three academic books and more than 300 journal papers, and licensed more than 60 patents in China. Prof. Ding acted as an Associate Editor (2003-2007) and as an Editor (2011-) of IEEE Transactions on Automation Science and Engineering. He was also a Technical Editor of IEEE/ASME Trans. on Mechatronics from 2010 to 2014. Currently, he is a Senior Editor of IEEE Robotics and Automation Letters. He is also the Co-founder of the IEEE International Conference on Intelligent Robotics and Applications.

Plenary Talk 2: Friday, July 20, 2018 10:00-10:45, Grand Ballroom, Second Floor Session Chair: Xin Zhao, Nankai University

Geometric and End-to-end Visual Servoing

François Chaumette

Rainbow group Inria, Univ Rennes, CNRS, IRISA Rennes, France

Abstract: As for humans and most animals, vision is a crucial sense for a robot to interact within its environment. Vision-based robot motion control, also named visual servoing, is a general approach to close the perception-action loop. It has given rise to an incredible amount of research and successful applications from the creation of the fields of robotics and computer vision several decades ago. The aim of this talk is to provide a comprehensive state of the art on the basic concepts, methodologies, and applications. In a first part, the traditional approach based on geometric visual features, such as image points, image moments, or camera-object pose will be described. The more recent end-to-end approach that directly uses the image content without any image tracking nor matching process will be also considered, providing a link to CNN modern methods that use the same inputs.

Biography:

François Chaumette, IEEE Fellow, is an Inria senior research scientist at IRISA in Rennes, France, where he lead the Lagadic group since 2004. He received the M.Sc. (eng.) degree from "Ecole Nationale Supérieure de Mécanique", Nantes, in 1987 and a Ph.D. in computer science from the University of Rennes in 1990. His research interests lie in the area of robot vision, mainly visual servoing and active perception. He has published over 250 journal or conference papers, with the 2002 Best IEEE Transactions on Robotics and Automation Paper Award. He has served on the technical program committee of the main conferences in computer vision (ECCV, CVPR, ICCV) and robotics (ICRA, IROS, RSS). He has been Associate Editor of the IEEE Transactions on Robotics (2001-2005) and is currently in the Editorial Board of the Int. Journal of Robotics Research, Funding Senior Editor of the IEEE Robotics and Automation Administrative Committee.

Plenary Talk 3: Friday, July 20, 2018 11:15-12:00, Grand Ballroom, Second Floor Session Chair: Peng Yang, Hebei University of Technology

Leader-follower Formation Algorithms with Collision Avoidance for Two-wheeled Mobile Robots

Krzysztof Kozlowski

Professor Institute of Control and Robotics Poznan University of Technology, Poland

Abstract:

Multiple mobile robot control became intensively investigated area of robotics in the last few years. This is due to a wide range of applications and the availability of technologies supporting the development of mobile robotics. Designing effective control algorithms remains currently the most challenging problem.

Regardless of the main purpose of the application, one of the basic problems is formation motion control. There are three classes of solutions: virtual structure, behavioral approach and leader-following methods. In this paper a review of leader-follower methods for the multiple differentially driven mobile platforms is presented. The goal is to tracking desired trajectory by the formation. In this approach only one robot called leader knows the desired trajectory. The others form a queue. For each of them control problem reduces to the task of maintaining a constant (predefined) distance from the predecessor.

Most of the algorithms known from the literature assume that initial configuration of robots ensures that collisions cannot occur. In presented methods collision avoidance behavior is part of the algorithm. Initial configurations may be 'difficult', that minds that during the process of forming the queue robots can get close to each other, but the collision will not occur, which is guaranteed by the algorithm.

In the paper the proof of stability of the closed-loop system is given in presence of obstacles for different kind of control algorithms. The proposed algorithms are new and are supported by extensive numerical simulations.

Biography:

Professor K. Kozlowski received the M.Sc. degree in electrical engineering from Poznan University of Technology (PUT), Poland, and the Ph.D. degree in control engineering from PUT in 1979, where he currently holds full professor position in robotics and automation. In 1993, he was a Fulbright scholar with Jet Propulsion Laboratory, Pasadena, USA. He founded and serves as a chairman of a new Institute of Automation and Control established on May 1, 2017 at Poznan University of Technology.

He teaches and conducts research in the area of modeling and control of industrial and mobile robots. His research interests include multi-agent systems, identification and various robotics applications. His research publications include more than 140 conference papers and more than 65 papers published in national and international journals. He is an author of the book titled Modelling and Identification in Robotics (Springer-Verlag, 1998).

He was an Associate Editor for the IEEE Transactions on Control Systems Technology (1999-2008), for the IEEE Robotics and Automation Magazine (1998-2002), for the Journal of Intelligent and Robotic Systems (2005-2010) and for the International Journal of Applied Mathematics and Computer Science (1999-2017), IEEE Conference Editorial Board, Conference on Decision and Control (CDC) and American Control Conference (ACC) since 1999 till now. He was the member of the Administrative Committee, IEEE Robotics and Automation Society 2000-2002, 2004-2005 and the member of the Board of Directors, IEEE Control Systems Society, 2003-2004. He serves as the chair of the IEEE Robotics and Automation Chapter, Polish Section, 2000-2008 and 2014-2019.

He conducted 39 different research scientific projects as supervisor (26) and as principal investigator (13) granted by national research institutions and 2 international research agencies.

Plenary Talk 4: Saturday, July 21, 2018 08:30-09:15, Grand Ballroom, Second Floor Session Chair: Jingtai Liu, Nankai University

Cross-modal Learning of Intelligent Robot Systems

Jianwei Zhang

Professor Institute TAMS (Technical Aspects of Multimodal Systems) Department of Informatics University of Hamburg, Germany

Abstract:

It is a long-term goal of AI research to understand the complex neural, cognitive and computational mechanisms of cross-modal learning and to use this understanding for (1) enhancing human performance, and (2) improving the performance of artificial systems. The term cross-modal learning refers to the synergistic synthesis of information from multiple sensory modalities such that the learning that occurs within any individual sensory modality can be enhanced with information from one or more other modalities. Crossmodal learning is crucial for human understanding of the world, and examples are ubiquitous, such as: learning to grasp and manipulate objects; learning to walk; learning to read and write; learning to understand language and its referents; etc. In all these examples, visual, auditory, somatosensory or other modalities have to be integrated, and learning must be cross-modal. In fact, the broad range of acquired human skills are crossmodal, and many of the most advanced human capabilities, such as those involved in social cognition, require learning from the richest combinations of cross-modal information. In a dynamic and changing world, a robust and effective robot system must have adaptive behaviors, incrementally learnable skills and a high-level conceptual understanding of the world it inhabits, as well as planning capabilities for autonomous operations. Future intelligent robot systems will benefit from the recent research on neurocognitive models in processing cross-modal data, exploiting synergy, integrating high-level knowledge and learning, etc. I will first introduce cross-modal learning issues of intelligent robots. Then I will present our investigation and experiments on synergy technique which uses fewer parameters to govern the high DOF of robot movement. The third part of my talk will demonstrate how an intelligent system like a robot can evolve its model as a result of learning from experiences; and how such a model allows a robot to better understand new situations by integration of knowledge, planning and learning.

Biography:

Jianwei Zhang is professor and director of TAMS, Department of Informatics, University of Hamburg, Germany. He received both his Bachelor of Engineering (1986, with distinction) and Master of Engineering (1989) at the Department of Computer Science of Tsinghua University, Beijing, China, his PhD (1994) at the Institute of Real-Time Computer Systems and Robotics, Department of Computer Science, University of Karlsruhe, Germany, and Habilitation (2000) at the Faculty of Technology, University of Bielefeld, Germany. His research interests are sensor fusion, intelligent robotics and multimodal machine learning, cognitive computing of Industry4.0, etc. In these areas he has published about 300 journal and conference papers, technical reports, four book chapters and three research monographs. He holds 40+ patents on intelligent components and systems. He is the coordinator of the DFG/NSFC Transregional Collaborative Research Centre SFB/TRR169 "Crossmodal Learning" and several EU robotics projects. He has received multiple best paper awards. He is the General Chairs of IEEE MFI 2012, IEEE/RSJ IROS 2015, and the International Symposium of Human-Centered Robotics and Systems 2018. Jianwei Zhang is life-long Academician of Academy of Sciences in Hamburg.

Plenary Talk 5: Saturday, July 21, 2018 09:15-10:00, Grand Ballroom, Second Floor Session Chair: Heping Chen, Texas State University

Towards More Flexible Calibrations for Visual Sensing and Tracking

Youfu Li

Professor Department of Mechanical Engineering City University of Hong Kong, Hong Kong, China

Abstract:

Visual sensing is important to many engineering applications including tracking for robotics. In this talk, I will present our research in visual sensing and tracking focusing on the issues in the calibration. For robotic applications, visual sensing in 3D is often needed, but the calibration remains tedious and inflexible with traditional approach. To this end, we have investigated the relevant issues for different visual sensing systems. A flexible calibration method desires the vision system parameters to be recalibrated automatically or with less operator interference whenever the configuration of the system is changed, but practically this is often hard to achieve. Various attempts were made in our previous works to enhance the flexibility in the visual sensing calibration. I will present some them including the work on omni-directional visual sensing and tracking. Another case to present is that of gaze tracking where the issues in the parallax errors and the tedious calibration procedures are addressed with our new calibration method developed.

Biography:

You-Fu Li received the B.S. and M.S. degrees in electrical engineering from Harbin Institute of Technology, China. He obtained the PhD degree in robotics from the Department of Engineering Science, University of Oxford in 1993. From 1993 to 1995 he was a research staff in the Department of Computer Science at the University of Wales, Aberystwyth, UK. He joined City University of Hong Kong in 1995 and is currently a professor in the Department of Mechanical Engineering. His research interests include robot sensing, robot vision, and visual tracking. In these areas, he has received many awards including a Second Prize of Natural Science Research Award by the Ministry of Education of China, for the work on "Active 3D Computer Vision", and IEEE Sensors Journal Best Paper Award by IEEE Sensors Council. He has served as an Associate Editor for IEEE Transactions on Automation Science and Engineering (T-ASE), Associate Editor for IEEE Robotics and Automation Magazine (RAM), Editor for CEB, IEEE International Conference on Robotics and Automation (ICRA), and Guest Editor for IEEE Robotics and Automation Magazine (RAM).

Plenary Talk 6: Sunday, July 22, 2018 08:30-09:15, Grand Ballroom, Second Floor Session Chair: Xiang Chen, University of Windsor

Making of a Microresonator-based Sensor –Dynamics, Feedback and Functional Printing

George Chiu

Professor School of Mechanical Engineering, Purdue University, USA

Abstract:

Vibration-based sensing using microelectromechanical systems (MEMS) have shown promise in mass detection across numerous application spaces. To date, many such vibration-based sensing modalities have relied upon monitoring shifts in the natural frequency to detect structural changes which are attributable to the chemical or biological species that are being detected. This approach often carries significant signal processing expense, due to the presence of electronics such as precision phase locked loops or lock-in amplifiers, when high sensitivities are required. Bifurcation-based sensing modalities, in contrast, can produce changes in response amplitude with high sensitivity to structural change. However, low fabrication yield is a key consideration. In this talk, we will introduce the design and implementation of a tunable, Duffing-like electronic resonator. It was realized via nonlinear feedback electronics on a quartz crystal tuning fork as the device platform. The system in this manifestation used collocated sensing and actuation, along with readily available electronic components, to realize the desired behavior, creating a nonlinear resonator from a linear one. A novel method, leveraging inkjet technology, is used to functionalize the sensors and characterizes the spatial mass sensitivity of microresonators. Experimental validations will also be presented.

Biography:

George T.-C. Chiu is the Assistant Dean for Global Engineering Programs and Partnerships in the College of Engineering and a Professor in the School of Mechanical Engineering with courtesy appointments in the School of Electrical and Computer Engineering and the Department of Psychological Sciences at Purdue University. Dr. Chiu received the B.S. degree in Mechanical Engineering from the National Taiwan University in 1985 and the M.S. and Ph.D. degrees from the University of California at Berkeley, in 1990 and 1994, respectively. Before joining Purdue, he worked for the Hewlett-Packard Company, designing inkjet printer and multi-function devices. Between 2011 and 2014, he served as the Program Director for the Control Systems Program of the US National Science Foundation. Dr. Chiu's current research interests are mechatronics and dynamic systems and control with applications to digital printing and imaging systems, digital fabrications, human motor control and robotics, motion and vibration perception and control. He received the 2012 NSF Director's Collaboration Award, the 2010 IEEE Transactions on Control System Technology Outstanding Paper Award and the Purdue University College of Engineering 2016 Faculty Engagement/Service Excellence Award and 2010 Team Excellence Award. Professor Chiu is the current Editor-in-Chief for the IEEE/ASME Transactions on Mechatronics. He served on the Executive Committee of the ASME Dynamical Systems and Control Division from 2007 to 2015 and was the Chair of the division between 2013-14. He is a Fellow of ASME and the Society for Imaging Science and Technology (IS&T) and a senior member of IEEE.

Plenary Talk 7: Sunday, July 22, 2018 09:15-10:00, Grand Ballroom, Second Floor Session Chair: Zhidong Wang, Chiba Institute of Technology

Mutli-Scale Robotic System — From Large Scale Cellular Robot to Small Scale Robots

Toshio Fukuda

Professor Beijing Institute of Technology, China

Abstract:

This lecture is an overview of the Multi-scale robotics, based on the Cellular Robotics System, which is the basic concept of the emergence of intelligence in the multi-scale way from Cell Level to the Organizational Level, proposed more than 30 years ago. It consists of many elements how the system can be structured from the individual to the group/society levels in analogy with the biological system. It covers with the wide range of challenging topics: Then I mainly focus on medical robots and bio cell manipulation and cell assembly and refer to applied areas for the future hybrid cyborg and bionic system to improve the quality of life of human.

Biography:

Toshio Fukuda graduated from Waseda University, Tokyo, Japan in 1971 and received the Master of Engineering degree and the Doctor of Engineering degree both from the University of Tokyo, in 1973 and 1977, respectively. He studied at Graduate School of Yale University in 1973-1975. He joined the National Mechanical Engineering Laboratory in Japan in 1977, the Science University of Tokyo in 1982, and then joined Department of Mechanical Engineering, Nagoya University, Japan in 1989. He worked at University of Stuttgart, as Humboldt Fellow in 1979-1981.

He is Professor Emeritus of Nagoya University. Department of Micro and Nano-Systems Engineering and Professor of Meijo University as well as Beijing Institute of Technology.

He is mainly engaging in the research fields of intelligent robotic system, micro and nano robotics, biorobotic system, and technical diagnosis and error recovery system.

He was the President of IEEE Robotics and Automation Society (1998-1999), Director of the IEEE Division X, Systems and Control (2001-2002), the Founding President of IEEE Nanotechnology Council (2002-2005), Region 10 Director (2013-2014) and Director of Division X, Systems and Control (2017-2018). He was Editor-in-Chief of IEEE/ASME Trans. Mechatronics (2000-2002).

He was the Founding General Chair of IEEE International Conference on Intelligent Robots and Systems (IROS) held in Tokyo (1988). He was Founding Chair of the IEEE Workshop on Advanced Robotics Technology and Social Impacts (ARSO, 2005), Founding Chair of the IEEE Workshop on System Integration International (SII, 2008), Founding Chair of the International Symposium on Micro-Nano Mechatronics and Human Science (MHS, 1990-2012).

He has received many awards such as IEEE Eugene Mittelmann Achievement Award (1997), IEEE Third Millennium Medal (2000), Humboldt Research Prize (2003), IEEE Robotics and Automation Pioneer Award (2004), IEEE Transaction Automation Science and Engineering Googol Best New Application Paper Award (2007), George Saridis Leadership Award in Robotics and Automation (2009), IEEE Robotics and Automation Technical Field Award (2010). He received the IROS Harashima Award for Innovative Technologies (2011), Friendship Award of Liaoning Province PR China (2012), Friendship Award from Chinese Government (2014), JSME Achievement Award (2015), IROS Distinguished Service Award (2015) and Honor of Medal with the Purple Ribbon from Japanese Government (2015). Award from Automation Foundation (2016).

IEEE Fellow (1995). SICE Fellow (1995). JSME Fellow (2002), RSJ Fellow (2004), VRSJ Fellow (2011) and member of Science Council of Japan (2008-2014), Academy of Engineering of Japan (2013-), and Foreign member of Chinese Academy of Sciences (2017).

Keynote Talk

Keynote Talk 1: Sunday, July 22, 2018 10:30-11:00, Grand Ballroom, Second Floor Session Chair: Xuebo Zhang, Nankai University

Robust Coordination of Networked Multi-Robot Systems

Guoqiang Hu

Associate Professor School of Electrical & Electronic Engineering Nanyang Technological University, Singapore

Abstract:

Man-made multi-robot systems have been advancing apace with the help of high-performance hardware and computational technologies. Despite the high-performance computing, communication, sensing, and power devices used in these systems, their effectiveness in uncertain environments appears to still fall behind the natural systems such as a swarm of ants, a flock of birds, or a team of wolves. One of the challenges in multi-robot coordination is the lack of effective distributed algorithms and designs that enable the robots to work cooperatively and safely in uncertain environments. This talk will present some recent research results on distributed algorithms and robust control methods for multi-robot coordination. The research on this topic has a wide range of potential engineering applications, including surveillance and search, intelligent transportation, environment monitoring, unmanned exploration of dangerous areas, and deployment and scheduling of sensor networks.

Biography:

Guoqiang Hu joined the School of Electrical and Electronic Engineering at Nanyang Technological University, Singapore in 2011, and is currently a tenured Associate Professor and the Director of the Centre for System Intelligence and Efficiency (EXQUISITUS). He was an Assistant Professor at Kansas State University from 2008 to 2011. He received the B.Eng. degree in Automation from University of Science and Technology of China in 2002, the M.Phil. degree in Automation and Computer-Aided Engineering from the Chinese University of Hong Kong in 2004, and the Ph.D. degree in Mechanical Engineering from University of Florida in 2007. His research interests include distributed control, optimization and games with applications to intelligent energy and robotic systems.

Dr. Hu was a recipient of the Best Paper in Automation Award in the 14th IEEE International Conference on Information and Automation, and a recipient of the Best Paper Award (Guan Zhao-Zhi Award) in the 36th Chinese Control Conference. He serves as Associate Editor for IEEE Transactions on Control Systems Technology, Technical Editor for IEEE/ASME Transactions on Mechatronics, Associate Editor for IEEE Transactions on Automation Science and Engineering, and Subject Editor for International Journal of Robust and Nonlinear Control. He serves as General Chair for ICARCV 2018, General Co-Chair for IEEE ICCA 2018, and Program Co-Chair for IEEE IECON 2020. Keynote Talk 2: Sunday, July 22, 2018 11:00-11:30, Grand Ballroom, Second Floor Session Chair: Long Cheng, Institute of Automation, CAS

Laser-Based 3D Scene Modeling and Understanding for Autonomous Robots in Large-Scale Open Environments

Yan Zhuang

Professor School of Control Science and Engineering Dalian University of Technology, China

Abstract:

Since recent advancement of computing and 3D laser scanning technologies, autonomous robots such as UGVs and UAVs are soon ready to serve us in large-scale urban scenes, natural scenes and post-disaster environments. These robots can perform unstructured scene reconstruction, semantic map building and long-term navigating autonomously in dynamic and open environments, and therefore will play an important role in our life. This talk briefly overviews the key challenges and opportunities in laser-based 3D scene modeling and understanding robotic systems towards real-world applications with UGVs and UAVs. In particular, the recent development of modeling algorithms and scene understanding frameworks for outdoor security robots, driverless car, patrol quadrotors at Dalian University of Technology are introduced, and some preliminary results are demonstrated via videos.

Biography:

Yan Zhuang is a Professor in School of Control Science and Engineering at Dalian University of Technology, China, leading the Intelligent Robotics Lab (DUT Robotics Lab). His research interests include mobile robot 3D environment perception and mapping, outdoor scene understanding and machine learning in robotics. He has published over 60 papers in journals and conferences in these areas including IEEE Transactions and Journal, IEEE ICRA, IEEE IROS, and received best paper award in WCICA2006. He has been a chair or committee member for many international conferences such as IEEE ICSSE, CYBER, ROBIO and WCICA. Intelligent robotic products developed by DUT Robotics Lab won the "Excellent Product Award" of China Hi-Tech Fair in 2010, 2016 and 2017. His lab has provided 1 stack and 7 packages to ROS.org, and also published several 3D point clouds processing algorithms in Point Cloud Library (PCL). He currently serves as the member of Robotics Professional Committee of CAA and council member of Liaoning Association for Artificial intelligence.

Keynote Talk 3: Sunday, July 22, 2018 11:30-12:00, Grand Ballroom, Second Floor Session Chair: Lianqing Liu, Shenyang Institute of Automation, CAS

Intelligent Robot for Large-scale Equipment Manufacturing

Jing Xu

Associate Professor Lab of Robotics and Automation Department of Mechanical Engineering Tsinghua University, China

Abstract:

Industrial robot has achieved many successes in automotive manufacturing industry, where the robot performance depends on repeatability. However, it is still a challenge for large-scale structure in 10 priority sectors in "Made in China 2025", where the part is always much bigger than the robot workspace. The reason is that the inevitable deformation cause by large scale and heavy weight would result in difference from CAD model. Therefore, the offline programming method from CAD model used in automotive manufacturing industry would fail. To improve robot accuracy, real-time 3D sensing, online path planning, and intelligent control methods are introduced in this talk. The proposed methods have been successfully applied in drilling, assembly, spray, and quality inspection in manufacturing industry, resulting in quality and efficiency improvement.

Biography:

Jing Xu is currently an associate professor in the Department of Mechanical Engineering, Tsinghua University, China. His research focuses on 3D perception and control for industrial robot. He has been involved in several Chinese National Projects regarding quality inspection robot for specular surface, assembly robot for large-scale structure, 3D printing robot for complex shape, 3D perception for robot navigation under the support of NSFC and MOST. He has published over 100 peer-reviewed journal and conference papers, co-authored 4 book chapters, over 20 issued patents. He serves as guest editor for Journal of Sensors and as the organizing committee member of IEEE ROBIO and so on. He also received two Best Conference Paper Awards in recent years.

Workshop: Advanced Theory and Technologies in Intelligent Automation

Thursday, July 19, 2018 The Residence 1, First Floor Session Chair: Yongchun Fang, Nankai University

14:10-14:50

Unmanned Vehicles: from Automated Driving to Autonomous Driving

Jianru Xue Professor Institute of Artificial Intelligence and Robotics Xi'an Jiaotong University, China

Abstract: Unmanned vehicles are well known disruptive technologies, and gain more and more attention ranging from academia, enterprise, to government. However, autonomous driving and automated driving are two different stages of the unmanned vehicle technologies, and there is still a huge gap between them. The aim of this talk is to provide a comprehensive state of the art on the basic concepts, methodologies, and technologies of autonomous driving. Firstly, the traditional automated driving technologies will be described. Secondly, challenging problems in the field of autonomous driving are presented as well as the latest progress we have made. Finally, demonstrations of our unmanned vehicles autonomous driving in real urban scene will be presented, along with our future work.

Biography: Jianru Xue, Phd, Professor, Changjiang Scholar. He got his BS degree from Xian University of Technology in 1994, and both MS and PhD degrees from Xi'an Jiaotong University in 1999 and 2003, respectively. He joined the Institute of Artificial Intelligence and Robotics at Xi'an Jiaotong University, Xi'an, China, since 1996, where he currently is a full professor. He had worked in FujiXerox, Tokyo, Japan, from 2002 to 2003, and visited University of California, Los Angeles, from 2008 to 2009. His research interests include computer vision and pattern recognition, visual scene understanding and motion control for intelligent vehicles, and machine learning. He and his team are winner of IEEE ITSS Institute Lead Award in 2014. He and his students won the best application paper award in Asian Conference on Computer Vision 2012. He is co-author of the book Statistical Learning and Pattern Analysis approaches to Image and Video Processing, published by Springer-verlag in 2009. He has published 100+ papers in top cited journals and conferences including IEEE TPAMI, IEEE TIP, IEEE TSMCB, ICCV, ECCV, ACM MM, ICPR, etc. He had severed as organization chair or co-chair of several international conferences including VALSE2012, VLPR2011, VLPR2010, ACCV2010, VSMM2006, and so on. He also served on the technical program committee of peer-reviewed conferences ICME, ACCV, ICPR, IVS, etc.

14:50-15:30

Model Predictive Control: From Theory to Vehicle Applications

Hong Chen Professor State Key Laboratory of Automotive Simulation and Control Jilin University, China

Abstract: Model predictive control (MPC) is used in a variety of industrial application over the last three decades. The reasons for its success are, on the one hand, its capability to directly incorporate constraints, and on the other hand, the intuitive way to address control problems. The main purpose of this talk is to provide the state of the art of model predictive control, and its application to vehicle control. In the first part, the basic idea of MPC, MPC with guaranteed nominal stability, inherent robustness of MPC, and an efficient robust MPC scheme will be introduced, respectively. Then, fast MPC for real-time automobile control using low-cost hardware will be considered, providing two technical routes of reducing computational effort. The third part focuses on some aspects of applying MPC to automotive systems through some selected examples including MPC-based ecological-driving and energy management strategies.

Biography: Chen Hong has been a professor in Jilin University, Changchun, China since 1999, where she currently serves as a Tang Aoqing professor and as the director of the State Key Laboratory of Automotive Simulation and Control. She received the B.S. and M.S. degrees in Process Control from Zhejiang University, Zhejiang, China, in 1983 and 1986, respectively, and the Ph.D. degree in System Dynamics and Control Engineering from the University of Stuttgart, Stuttgart, Germany, in 1997. Her current research interests include model predictive control, nonlinear control and applications in mechatronic systems focusing on automotive systems.

15:30-16:10

Some Challenges in Machine Vision Applications

Shengyong Chen Professor Tianjin University of Technology, China

Abstract: This talk presents the recent developments and challenges of machine vision, including object localization, segmentation, recognition, reconstruction,

representation, feature extraction, target tracking, pattern analysis, etc. The questions in the presentation are summarized to include: Where is the object? Who is who? What is meaningful? What represents the object? What happen? All problems have been studied for tens of years and all have significant progress. All, however, are still open to seek better solutions. Variety of examples and videos are shown in the talk.

Biography: Shengyong Chen received the Ph.D. degree in computer vision from City University of Hong Kong, Hong Kong, in 2003. He worked as a guest research at University of Hamburg, Germany, where he received a fellowship from the Alexander von Humboldt Foundation in 2006. He was a visiting professor at Imperial College London, from 2008 to 2009. He is currently a Professor in Tianjin University of Technology and Zhejiang University of Technology. Dr. Chen is an IET Fellow and an IEEE senior member. His research interests include computer vision, image processing, and robotics. He received the National Outstanding Youth Foundation Award of NSFC. He has published over 100 scientific papers in international journals, five of which received Best Paper Awards from IEEE and IET societies.

16:20-17:00

Intelligent Perception and Decision-making of USVs, Based on the Memory Forming and Cognition Process of Brain

applications in the area of submarine survey, marine monitoring, etc.

Shaorong Xie Professor Shanghai University, China

Abstract: The intelligent perception and automatic control problem of USVs in the complex dynamic marine environment consists of object recognition, situation awareness and autonomous decision, and it is characterized by two attributes: 1) incomplete information, 2) uncertainty information. To address the above problem, a general and innovative architecture based on the memory forming and cognition process of brain is recommended. In the architecture, the functions of memory modules and their relationships in brain memory cognitive process, and the selective attention and crossperception mechanisms have inspired the development of intelligent perception and decision-making techniques. Based on this architecture, we also have proposed the framework of situation awareness, task allocation and cooperative control. This research is expected to provide important support for the USV

Biography: Prof. Shaorong Xie is Associate Dean of School of Computer Engineering and Science, Director of Engineering Research Center of Marine Intelligent Unmanned System Equipment of the Ministry of Education, and Associate Dean of Unmanned Surface Vehicle Engineering Research Institute at Shanghai University. She received her Ph.D. from the Institute of Intelligent Machines, Tianjin University and the Institute of Robotics and Information Automation, Nankai University in 2001. She was a postdoctoral fellow at the University of Toronto in Canada, a visiting professor at Tokyo Institute of Technology in Japan, and a visiting professor at New Mexico State University in the United States. Her main research areas are intelligent and autonomous robots, including unmanned surface vehicle technology, cooperative control technology of multi-autonomous robots, and intelligent systems. She was selected as a leading talent in Shanghai, Shanghai outstanding academic leader, and other talent plans. Among the awards Prof. Xie has received are: the first national team of Huang Danni-style teachers, the National Able Women Achievement Medal, Best Professor Award in Shanghai, Distinguished Young Scholar by the National Science Foundation of China, Young Scientist Award from the Chinese Society of Automation, Shanghai Science and Technology Elite Nomination, the second prize of national technology invention, the first prize of Shanghai science and technology advances, and the first prize of Shanghai technological invention.

17:00-17:40

Intelligent Construction

Bin He Professor Group of Intelligent Detection and Computing Perception College of Electronics and Information Engineering Tongji University, China

Abstract: The automation technologies have promoted the improvement of productivity in various industrial fields. However, in the field of civil engineering, the automatic detection technology and robot technology are still lagging behind other fields. Aiming at the automation technologies and methods in the manufacturing field, here will talk about the automation technologies, robotics and information technologies that will change the civil engineering in the future, and propose other related technologies for future intelligent constructions through some construction examples.

Biography: Bin He is a Professor at College of Electronics and Information Engineering of Tongji University, Shanghai, China. He has been with the Group of Intelligent Detection and Computing Perception since 2003. He received the B.S. degree in engineering machinery from Jilin University, Changchun, China, in 1996, and the Ph.D. degree in mechanical and electronic control engineering from Zhejiang University, Hangzhou, China, in 2001. Between 2001 and 2003, he held postdoctoral research appointments with The State Key Lab of Fluid Power Transmission and Control, Zhejiang University. He has published 100 papers and authorized over 20 patents of innovation. His current research interests include intelligent robot and intelligent construction, and etc. He is an Associate Editor of Neurocomputing (2012-).

Forum of Artificial Intelligence (AI), Robotics, and Cyber Systems

Saturday, July 21, 2018 Grand Ballroom, Second Floor Session Chair: Jianwei Zhang, University of Hamburg, Germany

Artificial Intelligence (AI) including deep learning techniques achieves remarkable progress and successful applications in areas such as object classification, speech recognition, AlphaGoZero, and so on. Advanced robotics and cyber systems are also paid significant attention in recent years. In this context, this forum aims to provide novel viewpoints by leading experts with different backgrounds covering artificial intelligence, advanced robotics, autonomous vehicles, vision, and cyber systems. By discussion, it is expected that some potential and promising future research directions can be concluded for both the academic and industrial communities.

Deep Imitation Reinforcement Learning for Complex Decision-making Tasks

Xin Xu Professor Director of the Institute of Unmanned Systems National University of Defense Technology, China.

Abstract: This talk will present a deep imitation reinforcement learning scheme for complex sequential decision-making tasks which include autonomous

driving and playing video games, etc. Human expert data will be used to realize deep imitation learning at first. And Deep reinforcement learning algorithms are integrated with the policy obtained by deep imitation learning for better performance both in terms of learning speed and policy quality. Some experimental results will be provided to show the effectiveness of the proposed scheme.

Exploration and Practice of Autonomous Vehicle

Youchun Xu Professor Academy of Military Transportation, China

Abstract: This talk will Introduce the technical research and the practice of the autonomous vehicle in the field of the autonomous vehicle in the past 20 years, and the prospects for future development.

Neural Interface, Intelligent Prosthetics and Rehabilitation Robotics

Jiping He Professor Beijing Institute Technology, China

Abstract: Integrating neuroscience into the design principles of robotics development is the current trend so that human desire and intention are intimately interfaced into the control of robotic systems. Strokes, Parkinson's, multiple Sclerosis et al neural degenerative diseases and spinal cord injury as well as other traumatic injuries, furthermore, recent rapid growth in diabetic population needs our attention on diabetic foots due to high rate of eventual amputation. All these lead to high demand of rehabilitation robots and artificial limbs. These highly human-machine interface systems demand new breakthrough in safe, reliable and durable information exchange with human neural system. Where to get the most relevant information from human and machine and how to transfer the information? How to make these highly personalized yet capable flexible system economically affordable and profitable requires creative thinking and collaboration among government agencies, science technology research society and manufactory communities.

Design of the Service Robot based on its Representation Space

Jianbo Su Professor Shanghai Jiao Tong University, China

Abstract: SLAM and robot interactions are investigated for versatile service in unstructured environments. The representation space is proposed and the optimal strategy for task realization is evolved. Different tasks are demonstrated within the proposef strategy.

Technical Tour to Nankai University

Institute of Robotics & Automatic Information Systems (Tianjin Key Laboratory of Intelligent Robotics)

Date: July 23 (Monday) Price: Free of Charge (Maximum 90 persons) Time: 9:00-12:00

If you are interested in this activity, please sign up at the registration desk before 12:00 July 22 and **gather before 9:00 of July 23 (Mon) on the 1st floor of Hyatt Regency Tianjin East Hotel.**

The Institute of Robotics & Automatic Information System (IRAIS) was founded in spring 1998 within the College of Information Technical Science of Nankai University, which was established back in 1971 as one of the earliest in China. In 1985, Nankai initiated robotics research and established the Artificial Intelligence and Robotics Laboratory, one of the pioneer robotics laboratories in China. Over the years, the Lab gradually expanded and transferred into the Institute of Robotics & Automatic Information System. It has been awarded with multiple titles, namely an open laboratory on robotics in the National High Technology Research and Development Program (863 Program) of China in 1990, Tianjin Key Laboratory of Intelligent Robotics in 2013, National Education Center for Virtual Simulation in 2015, and Tianjin International Cooperation Base in 2016. Subsequently on May 11, 2018, the research works of the institute and the education programmes of the department were united together, and became the base for the new College of Artificial Intelligence of Nankai.

Through decades of persistent academic pursuit, IRAIS has gained recognition in multiple robotics research fields. It now has research directions spanning from large-scale aerospace down to micro/nano technologies, from industry robots to cell manipulation, from missile guidance to surgical navigation, etc. The first robot controller of China was developed in IRAIS, the micro-manipulation robotic system of IRAIS was awarded National Award for Technological Invention, and multiple research works of IRAIS have been successfully commercialized, such as the automated overhead crane system, and the large-scale 3D sculpture-painting robot.

IRAIS currently holds a young and highly qualified team. Steering vision from senior professors and energetic dedication of young faculties have brought synergy and broadened the research horizon. Through collaboration with groups inside and outside Nankai, we apply control methods and techniques to tackle emerging challenges in other engineering and science fields of biology, medicine, physics, mathematics, etc., and have extended our research beyond disciplinary.

IRAIS's Cutting-Edge Research:

- The emphasis on fusion of control science and engineering excites ample theoretical and experimental research opportunities at the forefront of this field and its interdisciplinary applications.
- Advanced Robotics: trajectory planning, robot vision and vision based SLAM, multi-robot scheduling, human-robot interaction and coordination, as well as their applications in industrial, service, rehabilitation and surgical robotics.
- Micro/Nano Systems: cell micro-manipulation, high-aspect-ratio micro-fabrication, soft material nano-fabrication, superhydrophobic surface manufacture, AFM-based nano-scale manipulation and characterization, and nano-positioning.
- Complex Systems and Control: theory and application of the chaotic system, complex dynamical networks, modeling and control of multi-agent systems.

• Optimization and Applications: guidance and control, underactuated systems and control, medical and process engineering, modern logistics, bioinformatics.

The technical tour will visit the following Laboratories:

- Rehabilitation and Assistive Robotics Laboratory
- Wearable Bio-Monitoring System Lab
- Bio-Inspired Robotics Lab
- Micro Manipulation System Lab
- Micro/Nano Positioning & 3D Bio-printing Lab
- Micro/Nano Fabrication Lab
- Micro/Nano Systems Control Lab
- Medical Robotics Lab
- Underactuated Systems Lab
- Mobile & Flying Robotics Lab
- Field & Aerial Robotics Lab
- Service Robots Lab
- Industrial Robotics Lab
- VR-AR and Robotic Simulation Lab
- Bio-system Modeling & Simulation Lab
- Human-Robot Interactive Gait Lab

IEEE-CYBER 2018 Conference Program

July 19 (Thursday)	Workshop on Advanced Theory and Technologies in Intelligent Automation (The Residence 1) Speakers: Prof. Jianru Xue, Prof. Hong Chen, Prof. Shengyong Chen, Prof. Shaorong Xie, Prof. Bin He	Welcome Reception (Market Café, 1F)
	14:00-17:40	18:30-20:00

			July 20 (Friday	(
	The Residence 1	The Residence 2	The Residence 3	The Residence 4	Regency Room 3	Regency Room 1
08:50-09:15			Opening Cer	emony		
09:15-10:00	Plenary Talk 1	The Tr Han Ding, I	i-Co (Coexisting-Cooper Huazhong University of \$	ative-Cognitive) Robo Science & Technology	ıts /, China	(Grand Ballroom)
10:00-10:45	Plenary Talk 2	Ge	ometric and End-to-end François Chaumette,	Visual Servoing , IRISA, France		(Grand Ballroom)
10:45-11:15	Coffee E	sreak (Prefunction Area	, 2F)	FrPoA- Poste (103,108 261,398,	r Session 1 (Prefunction) 129,138,225,448,332,1 464,405,395,428,161,30	on Area, 2F) 56,470, 99,177)
11:15-12:00	Plenary Talk 3 Leader -	follower Formation Al Krzysztof I	lgorithms with Collision Kozlowski, Poznan Univ	Avoidance for Two-w ersity of Technology,	heeled Mobile Robots Poland	(Grand Ballroom)
12:00-13:20		די	ınch (Market Café, 1F/ W	ok in the Garden, 3F)		
13:20-14:50	FrA1- Stochastic Control (152,172,226,229, 231,325,367)	FrA2- Active Robot Perception (210,219,272,275,	FrA3- Simultaneous Localization and Mapping	FrA4- Visual Servo Control (253,155,164,165, 179,291,357)	FrA5- Cyber Robotics (361,406,450,480, 137,336)	FrA6- Best Paper Session (105,262, 311, 477, 462, 199,)
14:50-15:05		344,347,352)	249,250,194)	FrPoB	-Poster Session 2 (Fo)	ver, 1F) 151 150
15:05-15:20	C	offee Break (Foyer, 1F	(410,176	6,193,315,178,420,351,3	348,441)
15:20-16:50	FrB1- Modeling and Control of Piezoelectric Actuators (128,215,230,433, 257,435)	FrB2- Space Robotics (242,243,281,282, 294,360)	FrB3- Surgical Robotics (255,368,310,383, 407,457)	FrB4- Cyber Physical Systems (475,217,212,466, 187)	FrB5- Specialized Robot (111,139,259,412, 476,209)	FrB6- Best Student Paper Session (366,381,374,283, 240,481)
17:00-18:15	FrC1- System Modeling (248,532,148,149)	FrC2- Micro and Nano Manipulation Robotics (416,474,422,483)	FrC3- Bio & Smart Sensing (228,274,300,394)	FrC4- Intelligent Surveillance and Detection (531,338,296,478)	FrC5- Unmanned Aerial Vehicle (154,264,269,411, 459)	
18:30-20:00			Dinner (Market	Café, 1F)		
		July 21 (Sature	day)			
-------------	---	---	--	---		
	The Residence 1	The Residence 2	The Residence 3	The Residence 4		
08:30-09:15	Plenary Talk 4	Cross-modal Learning of Intellig Jianwei Zhang, Universit	gent Robot Systems ty of Hamburg, Germany	(Grand Ballroom)		
09:15-10:00	Plenary Talk 5 To v	vards More Flexible Calibrations for Youfu Li, City University of He	r Visual Sensing and Tracking ong Kong, Hong Kong, China	(Grand Ballroom)		
10:00-10:30	Coffee Break (Pr	efunction Area, 2F)	SaPoA- Poster Session (131,135,101,109,14 308,442,461,529,15	3 (Prefunction Area, 2F) 45,147,364,399,434, 61,356,358,365,112)		
10:30-12:00		Forum of Artificial Intelligence (A	Al), Robotics, and Cyber Systems	(Grand Ballroom)		
12:00-13:20		Lunch (Market Café, 1F/	/ Wok in the Garden, 3F)			
13:20-14:50	SaA1- Human Abilities and Robotic Assistance 1 (306,134,203,319,465,307)	SaA2- Mobile Robot 1 (120,170,186,460,387)	SaA3- Advanced Control of Mechatronic Systems 1 (184,195,207,443,244,200)	SaA4- Multi-Agents and Networked Systems 1 (110,126,218,114,334,349)		
14:50-15:20	Coffee Brea	k (Foyer, 1F)	SaPoB- Poster Ses (163,171,227,247,286, 192,205,221,241,375,	sion 4 (Foyer, 1F) 468,208,104,180,181, 141,484,271,485,486)		
15:20-16:50	SaB1- Human Abilities and Robotic Assistance 2 (216,482,239,359,313,404)	SaB2- Mobile Robot 2 (122,127,528,206,273,302)	SaB3- Advanced Control of Mechatronic Systems 2 (268,301,289,391,265,479)	SaB4- Multi-Agents and Networked Systems 2 (125,173,339,380,118,144)		
17:00-18:15	SaC1- Human Abilities and Robotic Assistance 3 (146,290,224,304,130,444)	SaC2- Mobile Robot 3 (346,354,408)	SaC3- Automation in Space/Flying Robots (157,158,326,329,222)	SaC4- Multi-agent Systems and Evolutionary Game Theory (113,277,299,414,369)		
18:30-21:30		Banquet and Award Pres	entation (Grand Ballroom)			

		July 22 (Sund	lay)	
	The Residence 1	The Residence 2	The Residence 3	The Residence 4
08:30-09:15	Plenary Talk 6 Making of s	ı Microresonator-based Sensor –Dy George Chiu, Purdı	namics, Feedback and Functional ue University, USA	<i>Printing</i> (Grand Ballroom)
09:15-10:00	Plenary Talk 7 Mutti-Sca	le Robotic System— From Large Sc Toshio Fukuda, Beijing Insi	ale Cellular Robot to Small Scale F titute of Technology, China	Robots (Grand Ballroom)
10:00-10:30		Coffee Break (Pre	efunction Area, 2F)	
10:30-11:00	Keynote Talk 1	<i>Robust Coordination of Netv</i> Guoqiang Hu, Nanyang Techno	<i>worked Multi-Robot Systems</i> ological University, Singapore	(Grand Ballroom)
11:00-11:30	Keynote Talk 2 Laser-Based	<i>3D Scene Modeling and Understan</i> Yan Zhuang, Dalian Univers	<i>ding for Autonomous Robots in La</i> ity of Technology, China	rge-Scale Open Environments (Grand Ballroom)
11:30-12:00	Keynote Talk 3	Intelligent Robot for Large-sc Jing Xu, Tsinghua	<i>ale Equipment Manufacturing</i> University, China	(Grand Ballroom)
12:00-13:20		Lunch (Mark	ket Café, 1F)	
13:20-14:50	SuA1- Sliding Mode Control and Mechatronics 1 (107,183,188,254,267,370)	SuA2- Connected and Automated Vehicles 1 (143,202,234,236,305,317)	SuA3- Power Systems 1 (182,213,220,278,337,417)	SuA4- Robotic Vision (185,401,376,413,454,136)
14:50-15:20		Coffee Break	k (Foyer, 1F)	
15:20-16:50	SuB1- Sliding Mode Control and Mechatronics 2 (371,431,440,233,343,453)	SuB2- Connected and Automated Vehicles 2 (318,345,372,373,400,430)	SuB3- Power Systems 2 (323,324,320,153,190,396)	SuB4- Automation in Real-world Applications (362,415,419,527,473,191)
17:00-18:15	SuC1- Robot Control and Planning (198,378,472,533,295)	SuC2- Medical Robotics and Systems (150,252,263,284,403)	SuC3- Power Systems 3 (166,214,246,330,342)	SuC4- Structural Analysis and Evolutionary Dynamics of Complex Systems (297,321,327,340,287)
18:30-20:00		Farewell Dinner ((Market Café, 1F)	

July 23 (Monday)	Technical Tour Institute of Robotics & Automatic Information Systems, Nankai University
	09:00-12:00

Technical Sessions

July 20th, 2018

FrPoA Poster Session 1 Session Chairs: Xiao Liang and Donyang Bie Room : PREFUNCTION, 10:45-11:15, Friday, July 20, 2018

FrPoA(1) 10:45-11:15

FrPoA(3) 10:45-11:15

Attack Detection in Cyber-Physical Systems Using Particle Filter: An Illustration on Three-Tank System

Hongyang Li and Xiao He Department of Automation, Tsinghua University, China Yufeng Zhang and Wenyuan Guan CSSC Systems Engineering Research Institute Oceanic Intelligent Technology Innovation Center, China

Bullet Point

paper

· A problem of cyber attack detection is researched for three-tank system;

filter is utilized to detect the attack;

Three types of attacks are considered in this

Physical map of three tank system

FrPoA(5) 10:45-11:15

Terrain Vision Aided Online Estimation of Instantaneous Centres of Rotation for Skid-Steering Mobile Robot

Wenjun Lv, Ji Chang, Yu Kang, and Zerui Li Department of Automation, University of Science and Technology of China, China Yun-Bo Zhao

College of Information Engineering, Zhejiang University of Technology, China

- · We propose an online estimation method to acquire the robot's instantaneous centres of rotation (ICRs).
- · The sensor system is composed of two incremental encoders, a GPS-compass unit, and a camera.
- The robot's ICRs can be estimated by using terrain adaptive innovation-based extended Kalman filter.

FrPoA(2) 10:45-11:15

Real-Time Human-Robot Interaction for a Service Robot Based on 3D Human Activity Recognition and Human-mimicking Decision Mechanism Kang Li, Jinting Wu, Xiaoguang Zhao and Min Tan State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences This paper describes the development of a real-time Human-Robot Interaction (HRI) 1. 1. 1. 1. 1. 1. system for a service robot based on 3D human activity recognition and human-mimicking decision mechanism. 1 21 21 21 21 21 2 The Human-Robot Interactive (HRI) system. which allows one person to interact with a hat at a bab at service robot using natural body language, collects sequences of 3D skeleton joints comprising rich human movement information about the user via Microsoft Kinect. Interaction between robot and user

The framework of the overall system is established on the Robot Operating System.

FrPoA(4) 10:45-11:15

FrPoA(6) 10:45-11:15

FrPoA Poster Session 1 (con't) Session Chairs: Xiao Liang and Donyang Bie Room : PREFUNCTION, 10:45-11:15, Friday, July 20, 2018

FrPoA_2(7) 10:45-11:15

FrPoA_2(9) 10:45-11:15

A Novel SLAM Method Using Wi-Fi Signal Strength and RGB-D Images

Shaokun Yang, Qinxuan Sun, Xingliang Dong and Jing Yuan College of Computer and Control Engineering, Nankai University, China

- · Fusion of Wi-Fi signal strength and RGB-D images is addressed based on the extended Kalman filter.
- Motion estimation and loop-closure g detection of the robot are achieved based on multi-sensor fusion.
- · Map of the environment is obtained by the graph optimization algorithm.

FrPoA_2(11) 10:45-11:15

presented framework can make an accurate . prediction

estimation framework

FrPoA_2(8) 10:45-11:15

Bag-of-Words framework. At the feature-extraction stage, one single-scale SIFT feature and HOG feature are extracted from the densely sampled patches, which are further fused into a combined low complexity feature. At the visual word allocation stage, a new allocation technique is proposed, which no longer assigns a visual word totally to one certain visual word in the codebook that has the nearest distance to the visual word to be assigned. Experiments on Caltech-101 and 15-Scene datasets show that the proposed method can obtain a higher AR than the traditional methods.

FrPoA_2(10) 10:45-11:15

FrPoA_2(12) 10:45-11:15

FrPoA Poster Session 1 (con't) Session Chairs: Xiao Liang and Donyang Bie Room : PREFUNCTION, 10:45-11:15, Friday, July 20, 2018

FrPoA_3(13) 10:45-11:15

FrPoA_3(15) 10:45-11:15

Full-order Terminal Sliding-Mode Control for LCL Type Grid-Side Converter

Xuemei Zheng and Xinrui Chang Ruobo Chen, Yangman Li Liguo Wang, Yong Feng Electrical Engineering, Harbin Institute of Technology , China

- This paper investigates the robust control
- strategies for the LCL type grid-side converter. $\frac{1}{M} + \frac{1}{M} + \frac{1}{$
- The current inner loop is designed in the synchronous rotating coordinate system, and adopts full-order sliding mode control strategy.
 Finally, the simulation results validate the proposed method.

FrPoA_3(17) 10:45-11:15

Hybrid Calculation Architecture of Cyber Physical Power System Based On Correlative Characteristic Matrix Model

Manli Li, Ming Ni, Yusheng Xue, Xuetong Chen and Weidong Ding NARI Group Corporation (State Grid Electric Power Research Institute), China

- Three sub-architectures: hybrid calculation sub-architectures of communication network, secondary device network and decisionmaking layer
- each sub-architecture contains model, hybrid calculation algorithms and data interaction interface
- The hybrid calculation architecture can simplify the complex CPPS model, and realize the analysis, calculate and the optimal control of CPPS.

Algorithm library/ Model library Algorithm	Demands of analyze and control of CIPS
Analysis and alculation of CPPS	Interactive interface of cyber and physical
Jar vice appirous	a Arriar again
rid Calculation Sub-architec of Secondary device	ture Hybrid Calculation Sub-architecture of Communication Layer
Interactive interface of	d Interactive interface of
Algorithm Model Minister	Review Review Reprimentation and Relation
Algorithm library Mod	al Algorithm library/Model Anatyria
iibrary	library statistics
÷	Annias communication larger
Analysis and calculation secondary device lave	Analysis and calculation

of RS-liDAR and VLP-16

FrPoA_3(14) 10:45-11:15

A Malicious Attack Modeling Method for Source-Grid-Load System Based on Petri Net

Jie Fan, Lei Wei, Wei Li, Quan Yuan, Mengya Li, Yi Tang the Global Energy Interconnection Research Institute co. Ltd.

- Modeling of independent safety protection device and security
- protection mechanism The attack mode contains false data
- injection attack (FDIA), denial of service (DoS) and fake command attack
- The SGL system malicious attack model considers the layered and partitioned architecture of the SGL system and the required permissions for different attack modes

The Petri net model of FDIA in production and control area

FrPoA_3(16) 10:45-11:15

FrPoA_3(18) 10:45-11:15

FrA1 Stochastic Control

Session Chairs: Yuanhua Ni and Bingchang Wang

Room : THE RESIDENCE 1, 13:20-15:05, Friday, July 20, 2018

FrA1(1) 13:20-13:35

H2/H∞ Control for Continuous-Time Infinite Markov Jump Systems: Infinite Horizon Case

Liu Yueying, Hou Ting (ht_math@sina.com) Shandong University of Science and Technology

In this paper, the infinite horizon H2/H ∞ control problem is studied for a class of stochastic differential equations (SDEs) with infinite Markov jumps and multiplicative noise. The jumping parameters are modelled as a continuous-time, infinite-state Markov chain. Stochastic bounded real lemma (SBRL) is analyzed in terms of coupled algebraic Riccati equations (CAREs) for the considered system. Further, based on SBRL, a necessary and sufficient condition is presented for the existence of the mixed H2/H ∞ control by means of the solvability of the CAREs.

FrA1(3) 13:50-14:05

An overview of recent progress in the study of convergence rates of SA consensus algorithms Huaibin Tang

School of Microelectronics, Shandong University, Jinan 250100, P. R. China. Academy of Mathematics and Systems Science, CAS, Beijing 100190, P. R. China Tao Li

Shanghai Key Laboratory of Pure Mathematics and Mathematical Practice, Department of Mathematics, East China Normal University, Shanghai 200241, P. R. China

For the consensus problem with stochastic communication noises, the stochastic approximation type algorithm is one effective method to reduce the impact of the noise. This paper reviews some main results in the study of convergence rates of the stochastic approximation consensus algorithms with communication noises, which is one of the most important tasks to optimize the performance of the algorithm. After the review, a short discussion is included to propose several potential research topics for further investigations.

FrA1(5) 14:20-14:35

Linear Quadratic Mean Field Games: Open-loop Solutions

Bing-Chang Wang, Dan-Dan Pang School of Control Science and Engineering, Shandong University, Jinan, China School of Information and Electrical Engineering, Shandong Jianzhu University, Jinan, China pangdandan@sdjzu.edu.cn

FrA1(2) 13:35-13:50

The topology structure of leader-follower MASs for optimal cost control Shuai Liu Zhijian Ji and Haisheng Yu College of Automation and Electrical Engineering , Qingdao University , China Ting Hou College of Mathematics and Systems Science , Shandong University of Science and Technology , China • Based on LQR theory for hybrid weighted leader-follower multi-agent systems(MASs).

- The optimal topological structure corresponding to be a (an uneven) hybrid weighted star structure.
- The exchange of information among followers will increase the cost of system control.

FrA1(4) 14:05-14:20

Exponential Stabilization for Ito Stochastic Systems with Multiple Input Delays

Juanjuan Xu Huanshui Zhang

School of Control Science and Engineering, Shandong University

Firstly, we reduce the original system to a pseudo delay-free system by defining a new state.

Secondly, we consider the finite-horizon optimization problem of minimizing the linear quadratic cost functionfree system by defining a new state. Finally, we have the necessary and sufficient conditions for the mean-square stabilization for system.

FrA1(6) 14:35-14:50

Distributed Fault Estimation for A Class of Timevarying Systems over Sensor Networks with Switching Topologies and Randomly Occurring Uncertainties

Xianye Bu, Hongyu Gao, Jianling Chen, Qinjiang Sun and HongliDong Institute of Complex Systems and Advanced Control, Northeast Petroleum University, Daqing. CNOOC (China) Co., Ltd. Tianjin branch, Tianjin.

- The sensor networks model which contains switching topologies is proposed in fault estimator design.
- The raised algorithm handled by RLMIs is suitable for online execution.
- The randomly occurring uncertainties is introduced in the target systems.

Fault signal and its estimate

FrA1 Stochastic Control (con't)

Session Chairs: Yuanhua Ni and Bingchang Wang

Room : THE RESIDENCE 1, 13:20-15:05, Friday, July 20, 2018

FrA1_2(7) 14:50-15:05

Time-Inconsistent Stochastic Optimal Control

Yuan-Hua Ni College of Computer and Control Engineering, Nankai University, China

• Standard optimal control problems are all time-consistent.

The non-exponential discounting and the nonlinear appearance of conditional expectation will ruin the time-consistency.

Open-loop equilibrium control and feedback equilibrium strategy
of time-inconsistent optimal control problems are clarified.

FrA2 Active Robot Perception

Session Chairs: Yuanlong Yu and Peng An

Room : THE RESIDENCE 2, 13:20-15:05, Friday, July 20, 2018

FrA2(1) 13:20-13:35

A Novel Pipeline Inspection Robot with Two Angle-changeable Crawler Drive Modules

mingxue cai and mingjie dong the State Key Laboratory of Management and Control for Complex Systems, Instituteof Automation, Chinese Academy of Sciences the State Key Laboratory of Virtual Reality Technology and System, Beihang University

· Modular crawler drive module

· Adapt to big range of diameter of pipeline move throw the elbow pipeline

Pipeline inspection robot With two Angle-changeable Crawler Drive Modules

FrA2(3) 13:50-14:05

FrA2(5) 14:20-14:35

Event Recognition based on 3D Convolutional Networks

Rong Chen, Yuanlong Yu and ZhiYong Huang College of Mathematics and Computer Science, FuZhou University, FuZhou,

- · A approach that learns spatiotemporal features based on spatio-temporal neural networks.
- The network follow the way that contacting two continuous convolutional layers to instead of a convolutional layer which its kernel size is bigger through synthetical consideration.
- The experiment results show that the model has better classification ability than hand-crafted feature extraction algorithm, we also compares the model with different depth neural networks, and further proves the superiority of the model.

2 8 9 **=**/=/=/

FrA2(2) 13:35-13:50

FrA2(4) 14:05-14:20

FrA2(6) 14:35-14:50

FrA2 Active Robot Perception (con't)

Session Chairs: Yuanlong Yu and Peng An

Room : THE RESIDENCE 2, 13:20-15:05, Friday, July 20, 2018

FrA2_2(7) 14:50-15:05

Recognition and classification of coal sample composition using KSVD

Min Jiang, Zhenghao Xi, and Yilun Liu Department of electronic and electrical engineering , Shanghai University Of Engineering Science, Shanghai, China.

Abstract—In order to solve the problem of coal sample images classification, this paper proposes a new method which includes a pre-processing of coal sample images and an advanced KSVD algorithm. The KSVD algorithm includes sparse coding (find sparse coefficient x) and dictionary update (find dictionary D), then we get an adaptive dictionary iteratively. Finally, we use SVM to solve the problem of coal sample images classification. For the classification of coal samples with no obvious features, the algorithm of this paper has been shown to be effective. Experiments show that the proposed algorithm has good stability and accuracy in classification of coal sample images.

FrA3 Simultaneous Localization and Mapping

Session Chairs: Yong Liu and Yan Zhuang

Room : THE RESIDENCE 3, 13:20-15:05, Friday, July 20, 2018

FrA3(1) 13:20-13:35

FrA3(3) 13:50-14:05

Distributed monocular multi-robot SLAM Xieyuanli Chen, Huimin Lu, Junhao Xiao and Hui Zhang Department of Automation, National University of Defense Technology, China A distributed multi-robot SI AM based on the robust monocular SLAM is proposed, by which a team of robots can cooperatively map the large-scale environment with high efficiency. · A relative pose calculation and map merging method is proposed, by which the monocular The mapping result of the proposed method. (a) shows multi-robot SLAM can be realized without any prior knowledge and large map overlaps. the corresponding Google map · Extensive experiments have been conducted of this experiment environn and the experimental results show that the (b) shows the global map obtained by the proposed distributed monocular multi proposed distributed monocular multi-robot SLAM system can be used in outdoor largerobot SLAM scale environments FrA3(5) 14:20-14:35 Visual Ego-motion Estimation by Learning Liang Liu, Linjian Zhang, Yong Liu Institute of Cyber-systems and Control, Zhejiang University, China · A learning based monocular camera Segara staty Allenter ego-motion estimation methods.

- Memory module captures the longterm motion feature in the consecutive image pairs
- The model doesn't matter with the optical flow or other flow-like subspace

<section-header><section-header><section-header><section-header><section-header><section-header><text><text>

FrA3(4) 14:05-14:20

FrA3(6) 14:35-14:50

FrA3 Simultaneous Localization and Mapping (con't)

Session Chairs: Yong Liu and Yan Zhuang

Room : THE RESIDENCE 3, 13:20-15:05, Friday, July 20, 2018

FrA3_2(7) 14:50-15:05

An Experiment Implementation of Outdoor Formation Flight

Hongkai Ye, Jiangcheng Zhu, Zhepei Wang, Chao Xu College of Control Science and Engineering, Zhejiang University, P. R. China

- A formation platform consists of quadrotors, communication link and ground control station
- An unified frame of reference to eliminate the effect of GPS error
- Both static and dynamic errors are considered to determine the minimal margin between agents
- Jonker-Volgenant and RVO algorithm used to generate control input

Experiment of formation of 12 quadrotors

FrA4 Visual Servo Control

Session Chairs: Jian Chen and Baoquan Li

Room : THE RESIDENCE 4, 13:20-15:05, Friday, July 20, 2018

FrA4(1) 13:20-13:35

Partially Calibrated Camera based Pose Estimation of Mobile Robots With Application to Visual Tracking Yang Li, Jian Chen*, Kaixiang Zhang, and Xinfang Zhang College of Control Science and Engineering, Zhejiang University, Hangzhou, China

- A new method for relative pose estimation with a monocular camera
- Partially calibrated camera with uncertainty of focal-length
- Works with both coplanar and non-planar scenes
- · Visual trajectory tracking

Visual Tracking Platform

PID

FrA4(3) 13:50-14:05

Fractional Order Visual Servo Control For Fillet Seam Tracking Weipeng Liu and Haojie Zhang School of Control Sciences and Engineering, Hebei University of Technology, Tianjin 300130, China Hebei Control Engineering Technology Research Center, Tianjin 300130, China A visual system with laser structured light is developed to measure the deviation A decoupling visual detection model is presented to gain approximately uncoupled relationship the fractional-order PI^λD^μ controller is

 the fractional-order *P1^D^a* controller is designed to improve the adjustment range and the control ability
 Block diagram of visual servo control system based on fractional-order

FrA4(5) 14:20-14:35

FrA4(2) 13:35-13:50

A Review of Intelligent Control Algorithms Applied to Robot Motion Control

Qian Zhang and Fei Tong College of Internet of Things, Hohai University, China Xiaoying Sun College of Mechanical and Electrical, Hohai University, China Hua Chen Mathematics and Physics Department, Hohai University, China.

- Single control strategies have been used for motion control and path tracing of robot
- Hybrid control methods also have an essential role to play in robot control
- Future trends in control of robot

FrA4(4) 14:05-14:20

A Review of Robot Control with Visual Servoing

Xiaoying Sun and Xiaojun Zhu College of Mechanical and Electrical, Hohai University, China Qian Zhan College of Internet of Things, Hohai University, China Hua Chen Mathematics and Physics Department, Hohai University, China

- Robot vision control systems are classified from different angles and play important roles
- Position-based visual servo system, image-based visual servo system is focused onThe future of robot vision servo research

FrA4(6) 14:35-14:50

FrA4 Visual Servo Control (con't)

Session Chairs: Jian Chen and Baoquan Li

Room : THE RESIDENCE 4, 13:20-15:05, Friday, July 20, 2018

FrA4_2(7) 14:50-15:05

CNN based Wildlife Recognition with Super-pixel Segmentation for Ecological Surveillance

Yulin Song, Hongpeng Wang, Fulai Xu and Jingtai Liu Tianjin Key Laboratory of Intelligent Robotics, Nankai University, China Sheng Li School of Life Sciences, Peking University, China

- Propose an effective combination on the challenging low-resolution camera-trap imagery dataset.
- · Prove it's effective to apply super-pixel segmentation into image size normalization.
- Collected and annotated a standard camera-trap dataset of 14 common wildlife species.

FrA5 Cyber Robotics

Session Chairs: Qi Song and Zhi Han

Room : REGENCY ROOM 3, 13:20-14:50, Friday, July 20, 2018

FrA5(1) 13:20-13:35

Robot Learning by Demonstration Interaction System Based on Multiple Information

Fei Wang Huan Qi Yunwen Huang Xingqun Zhou, Yucheng Long Faculty of Robot Sci. & Eng., Northeastern University, China

 This paper proposes an interactive robot learning system, which uses wearable sensors that can detect surface electromyography signals (sEMG) and inertial information.

 By introduction of Programming by Demonstration (PBD), as a priori knowledge of the crawling operation, the convergence speed and learning efficiency of the reinforcement learning process are obviously superior to the traditional Q learning algorithm.

FrA5(3) 13:50-14:05

An MDP-based Task Allocation Model for A Class of Uncertain Human-Machine System

Meng Ge State Key Lab of Rail Traffic Control & Safety, and Electronic and Information Engineering school, Beijing Jiaotong University, China Qi Song WeiNing Fang State Key Lab of Rail Traffic Control &Safety, Beijing Jiaotong University, China.

This paper proposes a model representing the task-operator allocation process for SSU-HMS, which not only considering the task uncertainty, but also considering the heterogeneity of human operators, the results of numerical simulations and experimental verification on MATB platform have verified the efficacy of the proposed method.

FrA5(5) 14:20-14:35

Adaptive Sliding Mode Observer-Based Force Feedback Control for Nonlinear Bilateral Teleoperators

Yunpeng Zhao, Kuo Li and Changchun Hua The Institute of Electrical Engineering, Yanshan University, China

- An improved adaptive sliding mode observer to estimate the external force
- The transparency of the system is improved by the designed force feedback control
- The allowable maximal transmission delays can be obtained by solving the specific LMI conditions

FrA5(2) 13:35-13:50

Evaluation of Human Comfortable Following Model for Service Robots

Yue Sun *, Lei Sun and Jingtai Liu Institute of Robotics and Automatic Information System and Tianjin Key Laboratory of Intelligent Robotics, Nankai University, China

- The necessary of future motion expectation
- and natural interaction for human following.
- An intelligent following system based on user comfortable feeling and human factors
 A comprehensive performance evaluation
- A comprehensive performance evaluation index of human following system.
- The proposed model considering human comfort performs better than traditional human following model.

FrA5(4) 14:05-14:20

FrA5(6) 14:35-14:50

Gravity Compensation of KUKA LBR IIWA through Fast Robot Interface

Che Hou, Yiwen Zhao, Guoli Song the State Key Laboratory of Robotics, Shenyang Institute of Automation, the Chinese Academy of Sciences (CAS), Shenyang,China. Junchen Wang, School of Mechanical Engineering & Automation, Beihang University, Beijing, China.

- Torque control on the KUKA LBR IIWA by Fast Robot Interface(FRI)
- Gravity compensation for the direct teching task
- · Gravity parameter identification of KUKA LBR IIWA

FrA6 Best Paper Session

Session Chairs: Jizhong Xiao and Qining Wang

Room : REGENCY ROOM 1, 13:20-14:50, Friday, July 20, 2018

FrA6(1) 13:20-13:35

Design, Fabrication, and Analysis of a Sensorized Soft Robotic Gripper

Jawad Mehmood Butt, Hesheng Wang and Radan Khan Department of Automation, Shanghai Jiao Tong University, China

- Design, fabrication and analysis of human inspired soft robotic gripper with haptic and position feedback
- Characterization of sensors is performed to validate the experimental results
- The rigid as well as fragile object are grasped
 The future of action is to extend in multi-
- The future of soft robotics is to entertain multimodal perception and our work is one of the early presentation of the future

FrA6(3) 13:50-14:05

Robot Teaching and Learning Based on "Adult" and "Child" Robot Concept

Qi Hong¹, Lianqing Liu², Hongtai Cheng³ and Heping Chen⁴ 1. Shenzhen Institute of Information Technology; 2.Shenyang Institute of Automation 3. Northeast University; 4. Texas State University, USA

 Safety and robustness are critical issues in robotic manufacturing.

- An "Adult" and "Child" robot concept is proposed to deal with these two issues.
 An "Adult" robot can teach a "Child" robot to make corrections. The "Child" robot can adapt to uncertainties.
- Experimental platforms were developed. Preliminary results are quite promising.

Proposed "Adult" and "Child" Robotic System

FrA6(5) 14:20-14:35

Image-Sequence-Based Mobile Robot Localization

Xingliang Dong, Jing Yuan and Qinxuan Sun College of Computer and Control Engineering, Nankai University, China. Fengchi Sun and Yalou Huang College of Software, Nankai University, China.

- The places in environments are modeled by different image sequences according to the spatial density.
- Using an image sequence to represent a place can overcome the disadvantages of using a single frame image.
- The complete and stable features of each image sequence are learned from the LSTM.

FrA6(2) 13:35-13:50

A Cross Complementarity Method for Simultaneous Endeffector Selection and Grasp Planning Liang Ji, Hongxiang Yu, Yue Wang and Rong Xiong State key Laboratory of Industrial Control and Technology, Zhejiang University Jiafan Zhang ABB Corporate Research China, Shanghai We propose a method of end-effector selection and robust graspable point selection for various Which gripper obiects. · A cross complementarity framework is proposed for graspable region selection with suitable end-effector Predict the grasp affordance of all end-effectors given the depth image by fully convolutional networks A grasp sampling method that takes full advantage of the global information

FrA6(4) 14:05-14:20

FrA6(6) 14:35-14:50

FrPoB Poster Session 2 Session Chairs: Xiao Liang and Donyang Bie Room : FOYER, 1/F, 14:50-15:20, Friday, July 20, 2018

FrPoB(1) 14:50-15:20

FrPoB(3) 14:50-15:20

Iterative Learning Control for Singular Systems with Fixed Initial Shift

Ya Zhu, Panpan Gu, Senping Tian and Xiangyang Li School of Automation Science and Engineering, South China University of Technology, China

Abstract: The iterative learning control problem for a class of discrete singular systems with fixed initial shift is studied. Based on the nonsingular transformation method, the considered discrete singular systems are transformed into the difference-algebraic systems, then an iterative learning control algorithm is proposed and the corresponding state limiting trajectory is presented. It is shown that the algorithm can guarantee that the system state converges uniformly to the state limiting trajectory. Furthermore, the initial rectifying strategy is applied to the discrete singular systems for eliminating the effect of the fixed initial shift. Under the action of the initial rectifying strategy, the system state can converge to the desired state trajectory over all the discrete time points within the prespecified finite time interval. Finally, an example is given to illustrate the effectiveness of the proposed method.

Index Terms: Discrete singular systems, iterative learning control, fixed initial shift.

FrPoB(5) 14:50-15:20

Contact State Classification in Industrial Robotic Assembly Tasks Based on Extreme Learning Machine

Sisi Zhang, Qi Jiang, Yibin Li, Fengming Li, Rui Song

School of Control Science and Engineering, Shandong University Jinan, 250061, China

In industrial robotic assembly process, the work surrounding environment is generally described by Contact State (CS). In this paper, to solve the problem of contact state recognition, contact state classification based on Extreme Learning Machine (ELM) is proposed in industrial robotic assembly process and extended the neural network to kernel learning. ELM is superior to accuracy and speed of classification, owing to node generation being independent of training data, ELM with kernel (ELM-kernel), based on the basic classifier ELM, is applied to classify contact state of the complex assembly process. Results have shown that contact state can be recognized by the proposed classification method and the performance of ELM kernel is better than ELM. So that more accurate information of contact states can be provided for the robot favoring the assembly tasks.

FrPoB(2) 14:50-15:20

Research on Intelligent Excitation Cubicle Based on dsPIC

Xiujuan Bao and Tao Zhang College of Computer and Control Engineering, Nankai University, China Shanyou Lou College of Engineering, Yantai Nanshan University, China

ŧ

System principle diagram

- This paper focuses on the principle and function of the intelligent detection and control modules in the intelligent excitation cubicle
- the necessary hardware circuits of the excitation cubicle are provided

 A software program is compiled by mixed programming of C language and dsPIC assembly language

FrPoB(4) 14:50-15:20

FrPoB(6) 14:50-15:20

A Reinforcement Learning Method for Humanoid Robot Walking

Yunda Liu¹, Sheng Bi¹, Min Dong¹, Yingjie Zhang¹, Jiangcheng Chen² and Jialiang Huang 1:South China University of Technology, Guangzhou, Guangdong 510006 China 2:Shenzhen Academy of Robotics, Shenzhen, Guangdong 518000 China

- In this paper, we describe a model-free reinforcement learning method for gait controlling of humanoid robots, which combines Q-learning with Radial Basis Function Network.
- The approach is applied to the controllers on hip joints of humanoid robots that receives sensory data and constantly adjusts the outputs of steering engines on hip joints.

FrPoB Poster Session 2 (con't) Session Chairs: Xiao Liang and Donyang Bie Room : FOYER, 1/F, 14:50-15:20, Friday, July 20, 2018

FrPoB_2(7) 14:50-15:20

Facial expression recognition based on deep convolutional neural network

Kejun Wang, Jing Chen, Xinyi Zhang, Liying Sun Harbin Engineering University, College of Automation, Harbin 150001, China wangkejun@hrbeu.edu.cn

In interpersonal communication, facial expressions serve as an important way for people to communicate with each other. Through small changes of the face, people can express a variety of emotions. However, the existing facial expression recognition technology has the disadvantages of low recognition rate, slow speed and poor generalization. Based on these problems, we propose a new facial expression recognition method which uses the convolutional network based on convolution block to realize the recognition of facial expression. Firstly, we expand the existing expression database to effectively improve the generalization performance of training samples and solver other issues such as single background; Secondly, for the convolution block in convolutional neural network, multi-layer small convolution kernels are mostly used instead of large convolution kernel. This not only reduces the parameters and improves the practical application of convenience, but also makes the network more sensitive to image details and more significant recognition iffect. In this paper, we use three different methods to experiment on 12 expressions. The above method has the obvious advantage that the error rate of expression recognition is reduced to 13.7%. The experimental results show that the proposed method has a good recognition rate and training speed, which has a certain promotion effect and reference value for more accurate facial expression recognition in the future.

FrPoB_2(9) 14:50-15:20

A Semi-Supervised Learning Method using Deep Conv-Deconv Network and Robust-KSH for Image Retrieval

Yi Li^{1,2}, Mingyang Wan¹ and Bin Xie^{1,2}

1.Information Science and Engineering, Central South University, China 2.Mobile Health Ministry of Education - China Mobile Joint Laboratory, Xiangya Hospital Central South University, China

- A semi-supervised learning method with deep Conv-Deconv network and Robust-KSH is proposed for image retrieval
- Deep Conv-Deconv network is an unsupervised learning method based on encoder-decoder structure
- Robust-KSH is more robust and less computational complexity than
 Supervised Hash with Kernels

FrPoB_2(11) 14:50-15:20

Grasp Planning for Multi-fingered Hand in Blind Grasping

Xiubo Xu, Yongyao Li, Ming Cong and Dong Liu Institute of Mechanical Engineering, Dalian University of Techonology, China Yu Du

Department of Mechanical Engineering, University of British Columbia, Canada

 A method of blind grasping is provided, with force sensors and given geometric information.

The final grasping may reach the maximum stability and minimum force.

Grasping an Object Resulting from the Method

FrPoB_2(8) 14:50-15:20

Mouse Behavior Recognition Based on Convolution Neural Network

> Shanshan Zhou and Lin Xu Institute of Robotics and Automatic Information System, Nankai University, China

- Mouse behavior recognition has an important role in basic and clinical neuroscience.
- This paper summarizes videos into single images and develops a 2D CNN model to analyze mouse behavior by using these images as model inputs.
- Seven behaviors, including drinking, eating, grooming, hanging, rearing, walking and micromovements of the head are able to be classified by our model.

 The method is simple but powerful because of utilizing 2D CNN models directly on video data.

FrPoB_2(10) 14:50-15:20

Modeling Contact State of Industrial Robotic Assembly using Support Vector Regression

Fengming Li, Qi Jiang, Yibin Li, Meng Wei, Rui Song School of Control Science and Engineering, Shandong University Jinan, 250061, China

In industrial robotic assembly process, the work surrounding environment is generally described by contact state when vision-based systems fail for occluded parts. To address the problem of contact state recognition, the paper proposes an assembly process modeling method based on Support Vector Regression (SVR) and Particle Swarm Optimal (PSO), which constructs a model by mapping the relationship between assembly contact state and robotic executive action. The model of SVR, whose parameters is optimized by PSO, used to predict the next motion of robot. The effectiveness and accuracy of the hybrid model based on SVR and PSO are further demonstrated by experiments using fasten-assembly rocess of low-voltage apparatus automotive assembly. The results show that the proposed model is capable of modeling the complex assembly process of low-voltage apparatus to construct the assembly. rule base and lay the foundation for improving the flexibility and rapidity of small assembly.

FrPoB_2(12) 14:50-15:20

Institute of Complexity Science, College of Automation and Electrical Engineering, Qingdao University, China

- We study the variation of the convergence rate when a superposition system is joined.
- When there is an eigenvector x of λ_2 satisfying $\widetilde{L}_{X \neq 0}$, the multiplicity of λ_2 is changed
- By using the equality of eigenvalues, the situation of how the convergence rate changes is analyzed.

FrPoB Poster Session2 (con't) Session Chairs: Xiao Liang and Donyang Bie

Room : FOYER, 1/F, 14:50-15:20, Friday, July 20, 2018

FrPoB 3(13) 14:50-15:20

The Application of digital flexible intelligent manufacturing system in machine manufacturing

industry Yefeng Liu, Yuan Zhao, Lin Tao, Kexue Zhao, Kangju Li Liaoning Key Laboratory of Information Physics Fusion and Intelligent Manufacturing for Grade CNC Machine, Fushun 113122; 2. College of Mechanical and Vehicle Engineering, Shenyang Institute of Technology, Fushun 113122 Liaoning, China)

The digital workshop refers to the manufacturing resources, operation and product as the core. On the reality existing manufacturing systems, the digital data of product design in the digital environment, by computer simulation and optimization of virtual manufacturing in the production process.

This paper constructs the physical structure of the whole system and gives the detailed design of workshop management and control system, intelligent logistics

system, three flexible digital processing unit. By sensors, radio frequency identification (RFID) device operation, need to monitor, connection, interactive tools, materials, logistics trolley, machine tools, gages real-time workshop, and information of all kinds of Figure 1. The Application of digital logistics process and processing needs, flexible intelligent manufacturing system of digital form and the combination of Internet and build a

flexible intelligent manufacturing system in machine manufacturing industry

FrPoB 3(15) 14:50-15:20

local workshop net.

Quantifying cell-fibronectin adhesion forces by AFM single-cell force spectroscopy

Dan Dang^{1, 2}, Xiaofei Liu², Mi Li³, Bin Liu^{3*} 1 College of mechanical engineering, Northeastern University, Shenyang 2 Medical equipment College, Shenyang Pharmaceutical University, Shenyang 3 State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang

· The advent of atomic force microscopy (AFM) provides a powerful tool for investigating the physical behaviors of single native cells with nanometer spatial resolution. By attaching individual cells onto the cantilever of AFM cellular adhesion forces can be quantified, and this technique is called single-cell force spectroscopy (SCFS). In this work, we used AFM-based SCFS to detect adhesion forces between different cells (including cancerous cells and normal cells) and fibronectin, which improves our understanding of cellular adhesion behaviors

detachment forces of six different types of cell lines measured by single-cell force spectroscopy

FrPoB_3(17) 14:50-15:20

Hybrid Control for Human-Powered Augmentation Exoskeleton

Qiming Chen, Hong Cheng, Wenqin Shen, Rui Huang, Xinhua Chen Center for Robotics, University of Electronic Science and Technology of China Chengdu, China

- · In the proposed hybrid control strategy, swing leg and stance leg are controlled separately
- · Zero-force control strategy is employed to swing leg to shadow the motion of pilots.
- · Zero-load control strategy is employed to stance leg to reduce the gravity of load.
- · A system named HUALEX is designed and the efficiency of hybrid control is demonstrated.

FrPoB 3(14) 14:50-15:20

Detecting False Data by CUSUM Algorithm Synergy with UKF

LIU Zhongxi, HUANG Manyun, WEI Zhinong and SUN Guogiang College of Energy and Electrical Engineering, Hohai University, China NI Ming, LI Manli

- NARI Group Corporation, State Grid Electric Power Research Institute, China
- Bad Data Detection (BDD) is vulnerable to false data injection attacks
- · We propose an improved cusum algorithm to
- detect false data injection attack The algorithm also synergy with the
- Unscented Kalman Filter(UKF).
- The proposed algorithm tested on IEEE-14 systems successfully.

FrPoB 3(16) 14:50-15:20

FrPoB 3(18) 14:50-15:20

FrB1 Modeling and Control of Piezoelectric Actuators

Session Chairs: Yonghong Tan and Long Cheng

Room : THE RESIDENCE 1, 15:20-16:50, Friday, July 20, 2018

<section-header><section-header><section-header><section-header><text><text><text><text>

FrB1(3) 15:50-16:05

FrB1(5) 16:20-16:35

FrB1(2) 15:35-15:50

Design of a Compact 1-DOF Piezo-Driven Flexure Stage for Vertical Micro/Nano-Positioning

Zeyi Wu and Qingsong Xu Department of Electromechanical Engineering, University of Macau, Macao, China

- A new compact 1-DOF compliant stage driven by a piezoelectric actuator is designed for micro/nano-positioning in vertical direction
- An orthogonal compound bridge-type displacement amplifier is introduced for compact design
- Design variables are optimized by multiobjective genetic algorithm
- FEA simulation results indicate that the stage provides the motion range of 181.18 µm and supports the maximum load of about 80 N

FrB1(4) 16:05-16:20

Characteristics of a Decoupled 2-DOF Nano-positioning Stage

Fujun Wang*, Zhichen Huo, Yanling Tian, and Dawei Zhang Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University,

- A novel 2-DOF nano-positioning stage with compact configuration and new bridge type amplifier.
- The analytical model based on Euler-Bernoulli beam theory is established to analyze the characteristics of positioning stage.
- Finite element analysis is conducted and the results indicate that the proposed positioning stage has the amplification ratio of 5.9, as well as the input stiffness of 24.9 N/µm.

Schematic diagram of 2-DOF nano-positioning stage

FrB1(6) 16:35-16:50

FrB2 Space Robotics

Session Chairs: Fan Zhang and Zhonghua Hu

Room : THE RESIDENCE 2, 15:20-16:50, Friday, July 20, 2018

Inertia Parameters Identification and Control of Post-capture Combination by Tethered Space Robot

Yingbo Lu, Panfeng Huang, and Zhongjie Meng

School of Astronautics, Northwestern Polytechnical University, China

TSR System configuratio

Fig. 1. Obstacle

avoidance strategy.

- Post-capture combination's full three attitude angles are considered in the dynamic model
- Linear regression form is constructed for combination's physical parameters identification
- Recursive least squares is employed to obtain the combination's physical parameters.

Collision Free Path Planning for Multi-Section Continuum Manipulators Based on A Modal Method Xingyao Yu, Xueqian Wang, Deshan Meng, Houde Liu Graduate School at Shenzhen, Tsinghua University, China Bin Liang Department of Automation, Tsinghua Universit and Research Institute of Tsinghua University in Shenzhen, China

- Modify classical modal method to make it applicable for continuum manipulators' constant curvature kinematics.
- Use modal functions to generate a backbone curve that captures macro geometric features and meets tip position constraints.
- Treat one section as variable length link in fitness process.
- Implement "repelling" strategy to avoid obstacles and track pre-defined path.

FrB2(5) 16:20-16:35

FrB2(2) 15:35-15:50

A Trajectory Planning Method for Rapid Capturing an Unknown Space Tumbling Target Jianqing Peng, Wenfu Xu*, Senior Member, IEEE, Zhonghua Hu, Harbin Institute of Technology, Shenzhen Bin Liang Tsinghua University, Beijing

- The kinematics of a dual-arm space robot system is introduced.
- The attitude dynamic equations of the tumbling target are derived and the motion characteristics of a space tumbling target is analyzed.
- An efficient trajectory planning method for rapid capturing of a space tumbling target is introduced.
- Two typical simulation cases are discussed.

FrB2(6) 16:35-16:50

FrB3 Surgical Robotics

Session Chairs: Zhijiang Du and Yu Dai

Room : THE RESIDENCE 3, 15:20-16:50, Friday, July 20, 2018

FrB3(1) 15:20-15:35

Fuzzy-PID Hybrid Control Strategy for Pneumatic Driven Surgical Robot

Yi Fu^{1,2}, Baoliang Zhao¹, Ying Hu¹, Shoubin Liu², Youhui Qian³, Yanhui Wan³ ¹Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China ²Harbin Institute of Technology at Shenzhen, China ³The Second People's Hospital of Shenzhen · China

- Robotic systems for Magnetic Resonance Imaging (MRI) guided interventional surgery are highly demanding.
- Pneumatic system is one of the most commonly
- used driving modes in MRI environment.
 Due to the nonlinearity, hysteresis and gas compressibility, it is a common problem for the position control of pneumatic system.
- This paper proposes a fuzzy-PID hybrid control algorithm which has the advantage of low overshoot, high accuracy and high adaptability.

FrB3(3) 15:50-16:05

Automatic Tracking Motion Based on Flexible Forbidden Virtual Fixtures Design in Robot Assisted Nasal Surgery

Qingwen Zheng, Yucheng He, Xiaozhi Qi, Peng Zhang, Suiping Tan, Bing Li

Harbin Institute of Technology at Shenzhen Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences

- A new security motion control model for different nasal cavity shapes is proposed.
- Flexible forbidden virtual fixture based on hyperboloid can effectively constraint the spatial movement of robot.
- The tracking motion control strategy based on VFs can completely liberate the doctor's hands.
- Great design of human-machine interaction with input filter improves efficiency of robot.

FrB3(5) 16:20-16:35

A Fast Automatic Segmentation Method Based on Improved Hammer Elastic Registration

Jiawen Yan, Bo Pan, and Yili Fu State Key laboratory of robotics and system, Harbin Institute of Technology, China

- An automatic pre-extraction method is proposed based on elastic registration
- Improved Hammer algorithm is exerted to realize elastic registration between ultrasound images with and without instrument
- The difference of deformed image and image with instrument is made to obtain the instrument contour

Elastic deformed ultrasound image

FrB3(2) 15:35-15:50

Real-time Error Compensation Strategy Based on BP Neural Network for Master-Slave Control Jiafu Yi, Zhijiang Du, Hongjian Yu*, Shaodong Li and Wenlong Yang

State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin, Heilongjiang, China

- The mapping between small increment in
- Cartesian space and joint space is established.
 A real-time error compensation strategy based on neural network is proposed.
- The simulation based on 3-degree of freedom (3-DOF) master-slave system is carried out

Following error of master manipulator before compensation (mm)

FrB3(4) 16:05-16:20

Needle Intervention Robot-Assisted Driving System with Augmented Haptic Force Feedback Facility

Xiangzhan Kong, Xingguang Duan, Amjad Ali Syed, Yonggui Wang and Ping Li

Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, China

- This research presents novel tablemounted 4-DOFs surgical robot on slave side to achieve required position and orientation, through which the surgical needle can be inserted and extracted with augmented force feedback facility.
- Surgical results in beef and chicken are slightly different due to the difference in tissue physical properties

Experimental octap of nooale arring force rooale

FrB3(6) 16:35-16:50

Disturbance Observer based Sliding Mode Control for Robot-assisted Minimally Invasive Surgical System with Stochastic Time Delay

Ai Dong and Zhiyuan Yan and Zhijiang Du State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China

- Disturbance observer is proposed to acquire the slave-environment interaction force information
- Projection based gradient estimator is employed to online estimate the unknown environmental parameters
- A novel communication architecture is designed that works under varying stochastic time delay
- Sliding mode control is utilized to make the tracking error as small as possible

Slave manipulator for RMIS

FrB4 Cyber Physical Systems

Session Chairs: Guanglie Zhang and Xian Guo

Room : THE RESIDENCE 4, 15:20-16:35, Friday, July 20, 2018

FrB4(1) 15:20-15:35

FrB4(3) 15:50-16:05

Robust Diagnosability and Robust Prognosability of Discrete-Event Systems Revisited

Xiang Yin, and Shaoyuan Li

Department of Automation and Key Laboratory of System Control and Information Processing, Shanghai Jiao Tong University, Shanghai 200240, China.

- New approaches for the verification of robust diagnosability and robust prognosability in DES.
- The complexity of the proposed algorithms are polynomial in both the number of states and the number of possible models.

FrB4(5) 16:20-16:35

FrB4(2) 15:35-15:50

A Fast Method for Chinese Liquor Recognition

Hui-Rang Hou, Ying-Jie Liu and Qing-Hao Meng School of Electrical and Information Engineering, Tianjin University, China

- To solve recognition issue of Chinese liquors, a novel liquor recognition method (coding method) is proposed in this paper. Use Arial 28pt font in bold face for the title
- Ten gas sensors were used in our e-nose system. Based on the multi-sensors, the coding method is proposed.
- Our proposed method have been verified by the classification of five kinds of liquors and the true-fake liquor recognition.

Experimental system.

FrB4(4) 16:05-16:20

Sliding Mode Based Current Sharing Control of Parallel Cuk DC-DC Converters

Yangfei Feng College of Automation, Chongqing University, China (e-mail:291606143fyf@gmail.com) Rui Ling

College of Automation, Chongqing University, China

- A sliding mode based current-sharing control approach.
- Achieving the current-sharing control for the parallel cuk dc-dc converters
- Sliding mode voltage and current controls
 The converter with the presented control has the advantage of good dynamic
- has the advantages of good dynamic performance and robustness.

The parallel Converter

FrB5 Specialized Robot

Session Chairs: Heping Chen and Ning Sun

Room : REGENCY ROOM 3, 15:20-16:50, Friday, July 20, 2018

FrB5(1) 15:20-15:35

Robot Learning from Human Demonstration of Peg-in-Hole Task

Peng Wang, Jinxin Zhu, Wei Feng, Yongsheng Ou Shenzhen Institutes of Advanced Technology, CAS

 Introduced a learning framework for pegin-hole assembly tasks in which robots learn assembly skills from human demonstrations

· By using GMM to encode demonstration information, the robot learns stiffness changes, rather than manually adjusting the stiffness of the model.

FrB5(3) 15:50-16:05

An Energy Optimal Foot Trajectory for the Hydraulic Actuated Quadruped Robot

Kun Yang, Lelai Zhou, Xuewen Rong and Yibin Li Control Science and Engineering department, Shandong University, China

Simplified model of the

right-front leg of the robot

the commands fusion scheme

- · An energy model including mechanical power and the heat rate was established.
- · The dynamic equation of the single leg model was obtained using Lagrangian method.
- · An Energy Optimal Foot Trajectory based on Fourier series was proposed
- · The energy consumption was compared with a foot trajectory based on the cubic spline interpolation.

Event-based Planning and Control for **Teleoperation of Hot Line Work Robot** Yang Wang, Xiaoming Mai Department of Artificial Intelligence and Robotics, The Guangdong Electric Power Research Institute of Guangdong Power Grid Corporation, Guangzhou, China Jiangcheng Chen, Sheng Bi, Yu Cheng, Ning Xi Department of Industrial and Manufacturing Systems Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR · A HLWR prototype consists of a joystick and a robot arm is established. Robot Robot · An event-based planning and control HLWR planner Controller method for the teleoperation of a HLWR is proposed and tested. Motion Fusion of manual operation and automatic operation is realized. Human Operato Joystick Manual-automatic fusion control enable the HLWR to cope with some Figure The block diagram of unexpected events during its working.

FrB5(2) 15:35-15:50

FrB5(4) 16:05-16:20

FrB5(6) 16:35-16:50

FrB6 Best Student Paper Session

Session Chairs: Tao Liu and Juanjuan Zhang

Room : REGENCY ROOM 1, 15:20-16:50, Friday, July 20, 2019

FrB6(1) 15:20-15:35

Attack-state Estimation for Cyber-Physical Systems: A GraphTheory Perspective

Wentao Zhang, Zhiqiang Zuo and Yijing Wang School of Electrical and Information Engineering, Tianjin University, Tianjin, P. R. China

- The attacked state recovery problem by virtue of the graph theory perspective is studied.
- Some new results are induced, as well as some comparisons are given in contrast with the existing results.
- Numerical examples are presented to show the efficiency of the derived theoretical results.

FrB6(3) 15:50-16:05

Space Registration and Experiment of Craniotomy Robot

Tengfei Cui and Xingguang Duan* and Dingqiang Han and Anji Ma and Huanyu Tian Intelligent Robotics Institute, Beijing Institute of Technology, China Email:ctflychina@163.com

In view of the characteristics of high complexity and high risk of craniotomy, a robotic system of intelligent human craniotomy was developed. This paper mainly expounds the registration scheme of robot, operating tool and skull coordinate system in the craniotomy robot system, and carries out the cranial model test. Experimental results show that the registration accuracy of the spatial registration scheme is high, and it is feasible to meet the needs of the craniotomy system.

FrB6(5) 16:20-16:35

Deep learning for manipulator visual positioning

H.Cheng, J. Xin, Y.M.Yao, D.Liu Information and control department,Xi'an University of Technology, China Y.M. Zhang

Mechanical and Industrial Engineering department, Concordia University,Canada Abstract/Vaul serving is an important issue in the field of robotics. Meanwhile, it is a challenging problem in the field of colv usual serving its tar nables the cholo to position in universe no choic on yuing the current image feature, without having to known any model information about the citylect before positioning method based on deep kenning. The positioning universe is an obtain the current issue a welltrained obtained of the colocit and the colocit and the colocit and propose a manipulator visual positioning method based on deep kenning. The positioning universe is an obtain the class tabel and location information of all the object in the first frame image, which is captured by the camera mounted on the robot. Then, user randomy baseles object to be manipulated through human-computer interaction according to the result of recognition and detection, and the object's class label and location information is also acquired by mainpulator robotics control system. In the sequence of subsequent images, robotics control system can detect the object to be manipulated thousen of subsequent images, robotics control system can detect the object to be manipulated to begin the universe features, that is 2D image pixel coordinates of the object to be manipulated to visual positioning method can position an universe to control the manipulator to position and universe by the user in the first frame image. Experimental results show that our manipulator visual positioning method can position an universe visual visual backing method. The bases, we design the visual adapting to be result of recognition having to known any model information about the object prior to the positioning task execution, and it is an effective manipulator visual positioning on unknown object method.

FrB6(2) 15:35-15:50

FrB6(4) 16:05-16:20

FrB6(6) 16:35-16:50

FrC1 System Modeling

Session Chairs: Fujun Wang and Mingzhu Sun

Room : THE RESIDENCE 1, 17:00-18:00, Friday, July 20, 2019

Schematic diagram of

wind tunnel experiments

- · Aeroelastic energy harvester (EH) is developed to support wireless sensor nodes
- Two kinds of airfoil model (NACA6412 and NACA23012) are tested for airflowstructure coupling
- Maximum voltage 4.60V and 9.12V can be reached in wind tunnel experiments

FrC1(3) 17:30-17:45

to estimate the parameters.

FrC1(2) 17:15-17:30

Virtual Keyboard Based on MEMS Sensors and Fusion of Accelerometer and Gyroscope

Chao Lian, Haifang Wang, Yuliang Zhao*, et al. Control Engeering Dept, Northeastern University at Qinhuangdao, China

- · The attitude angle and accelerometer data were extracted for the keystroke recognition.
- · KNN classifier is applied and shows a higher recognition accuracy than other classifiers
- · The best recognition correct rate of two sensors on one hand is 94%

FrC1(4) 17:45-18:00

FrC2 Micro and Nano Manipulation Robotics

Session Chairs: Guanglie Zhang and Yanding Qin

Room : THE RESIDENCE 2, 17:00-18:00, Friday, July 20, 2018

FrC2(1) 17:00-17:15

Construction of 3D micro-tissue based on electrodeposition and robotic manipulation

Zhiqiang Zheng, Huaping Wang*, Qing Shi, Jianing Li, Juan Cui, Tao Sun, Qiang Huang, and Toshio Fukuda

School of Mechatronical Engineering Beijing Institute of Technology Beijing, China

In this paper, a novel 3D cell laden microstructure assembly method was proposed, which is based on the rail-guided micromanipulation system and GelMA initial fixation method.

Patterning Micro-nano Structures Based on Tipassisted Electrohydrodynamic Jet Printing

Wuhao Zou, Haibo Yu, Peilin Zhou, Yangdong Wen and Lianqing Liu

The State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, China

- Tip-assisted EHD printing achieves greater
- printing resolution of high-viscosity materialsSmaller patterns can be printed without a finer

 Micro-nano patterning structures smaller than the nozzle inner diameter can be printed

nozzle

Pattern experimental results of tip-assisted EHD-printing

FrC2(2) 17:15-17:30

FrC2(4) 17:45-18:00

<section-header><section-header><list-item><list-item><list-item><list-item></table-row><table-container>

FrC3 Bio & Smart Sensing Session Chairs: Wenli Zhou and Han Zhang

Room : THE RESIDENCE 3, 17:00-18:00, Friday, July 20, 2018

FrC3(3) 17:30-17:45

FrC3(4) 17:45-18:00

FrC4 Intelligent Surveillance and Detection

Session Chairs: Jizhong Xiao and Hongpeng Wang

Room : THE RESIDENCE 4, 17:00-18:00, Friday, July 20, 2018

FrC4(1) 17:00-17:15

Accurate Recognition of Volleyball Motion Based on Fusion of MEMS Inertial Measurement Unit and Video Analytic

Kaiqiao Peng, Yuliang Zhao*, Xiaopeng Sha, Wenqian Ma School of Control Engineering , Northeastern University at Qinhuangdao, China Yufan Wang and Wen j. Li*

Department of Mechanical and Biomedical Eng., City University of Hong Kong

- Volleyball skill were assessed utilizing MEMS Inertial Measurement Unit (IMU) data and recorded videos.
- Six key characteristics of spiking motion were extracted to evaluate players of 3 different levels.
- One player's 12 trails of spike were recognized by neural network with 89.6% recognition rate.

FrC4(3) 17:30-17:45

Smart Surveillance: a Nature Ecological Intelligent Surveillance System with Robotic Observation Cameras and Environment Factors Sensors Jinchao Zhu, Hongpeng Wang, Danhua Han, Jingtai Liu

1 Institute of Robotics and Automatic Information System, Nankai University,

Tianjin 2 Tianjin Key Laboratory of Intelligent Robotics, Tianjin

- Our EIS system consists of environment factors sensors and robotic observation cameras.
- Robotic pan-tilt-zoom cameras detect wildlife and sequentially track them actively according to their rarity.
- Several such stations form a smart surveillance system to detect wildlife and monitor environment factors.

Illustration of nature ecological intelligent surveillance system

FrC4(2) 17:15-17:30

Foreground Extraction of Surveillance Video under Complex Background

> Yue Yu and Hong Pan Xinde Li School of Automation, Southeast University, China

- Present a novel foreground object extraction method based on an improved ViBe algorithm
- Use a median filter to reduce false detections

Apply grayscale projection algorithm to stabilize the image for video clips with camera jitter

Foreground Object Extraction on Videos in Background of Water surface

FrC4(4) 17:45-18:00

FrC5 Unmanned Aerial Vehicle

Session Chairs: Bin Xian and Xiao Liang

Room : REGENCY ROOM 3, 17:00-18:15, Friday, July 20, 2018

FrC5(1) 17:00-17:15

Attitude Tracking Control of Quadrotor with Disturbances using Sliding Mode Method

Nigar Ahmed and Mou Chen College of Automation, Nanjing University of Aeronautics and Astronautics, Nanjing, China

- Nonlinear tracking control strategies using sliding mode control Techniques
- Development of control scheme in Continuous time (CT) and Discrete time (DT) domain
- DT model of Quadrotor is obtained using approximation of discrete time equivalent
- model (ADEM) • Criteria for matched disturbance rejection.

FrC5(3) 17:30-17:45

PSO-Optimized Fuzzy Control for Four-Rotor Unmanned Aerial Vehicle with Suspended Load

Peili Du, Jian Huang and Dongrui Wu Key Laboratory of Ministry of Education for Image Processing and Intelligent Control, Huazhong University of Science and Technology, China Feng Ding

School of Computer Science, South-Central University for Nationalities, China

- A three-dimensional dynamic model for this system is established.
- A fuzzy controller optimized by PSO algorithm is applied to the UAV's stability control and the suspended load's anti-swing control.
- An experimental platform was built, the design of the controller is verified by simulation and experiment

Displacement-based Formation Control with Phase Synchronization in a Time-Invariant Flow Field

Qianyun Yao, Shirong Liu, Na Huang School of Automation, Hangzhou Dianzi University, China

- We study formation control for constant-speed unicycle-type agents in a time-invariant flow field.
- Lyapunov-based design of displacement formation control approach was described.
- A combination of formation shape and phase control in a time-invariant flow field was reached.
- The validity of the proposed algorithms is confirmed by theoretical derivation and numerical simulation.

Model of the system in

three-dimensional space

Figure caption is optional,

use Arial 18pt

Figure 1 The trajectory and convergence of a four-agent group with phase control and displacement-based formation in a uniform flow field.

FrC5(2) 17:15-17:30

Paper Title: Robust Control Design for The Quadrotor UAV with A Suspended Payload

Author: Sen Yang, and Bin Xian* Affiliation: School of Electrical and Information Engineering, Tianjin University Tianjin 300072, P.R.China E-mail: xbin@tju.edu.cn

Abstract: In this article, the problem of the trajectory tracking control for the system of the quadrotor UAV with a suspended load is studied. By employing the backstepping technology, the virtual control law is designed to track the target trajectory of the position of the quadrotor. And for the swing angle of the suspended load, a RISE(robust integral of the sign of the error)-based controller is proposed. The stability of the closed loop system is proved via Lyapunov stability theory. Finally, the performance of the proposed control strategy is shown via simulation results.

FrC5(4) 17:45-18:00

Technical Sessions

July 21st, 2018

SaPoA Poster Session 3

Session Chairs: Ning Sun and Xuebo Zhang

Room : PREFUNCTION, 10:00-10:30, Saturday, July 21, 2018

Figure: Simulation results

closed-loop system

 Simulation results verify the good performance of this proposed fuzzy controller.

SaPoA(3) 10:00-10:30

Model Reference Adaptive Control for Time-Delay Systems Zhenggiang Zhang School of Engineering, Qufu Normal University, Rizhao 276826, China Chao Guo Institute of Automation, Qufu Normal University, Qufu 273165, China This paper restudies output feedback MRAC for a class of SISO systems with a known state time-delay The general solution in the generalized inverse matrix is used to relax the premise A special L-K functional with a adjustable parameter is constructed The closed-loop system isstable in the sense that all closed-loop signals are The responses of the

SaPoA(5) 10:00-10:30

bounded.

SaPoA(2) 10:00-10:30

Real time Writing Reproduction by Robot Arm. Dezhou Zhang, Jianxin Chen, Ming Zhang, Hui Ji Key Lab of Broadband Wireless Communication and Sensor Network Technology, Nanjing University of Posts and Telecommunications, Ministry of Education, Nanjing, China Control the robot to write in real time with a 3 camera Kinect Dynamic hand tracking algorithm according to deep information with the 3D (Dimension) camera N-RPRI real time interpolation algorithm for the robot to let it write continuously

SaPoA(4) 10:00-10:30

SaPoA(6) 10:00-10:30

SaPoA Poster Session 3 (con't)

Session Chairs: Ning Sun and Xuebo Zhang

Room : PREFUNCTION, 10:00-10:30, Saturday, July 21, 2018

SaPoA_2(7) 10:00-10:30

Analytic Solution Study for a 7-DOF Redundant Robot Manipulator

Lei Yang and George Zhang Shenzhen Academy of Robotics Shenzhen, P. R. China

Design of A Predictive Attitude Controller for A

Quadrotor Helicopter

Youyuan He, Haokun Wang and Aipeng Jiang School of Automation, Hangzhou Dianzi University, China

This paper aims to design a predictive controller for a quadrotor

· System dynamic model is presented based on the Newton

· The linear model is augmented to take unmodeled dynamics

· Using unconstrained MPC algorithm to achieve offset-free

Euler formalism and been linearized

and/or disturbances into account

- A typical redundant manipulator with 7 DOF (degree of freedom) is presented.
- Joint 3 and Joint 5 are not on the same plane.
 An extra constraint is introduced in inverse kinematics.
- The geometric solution was combined with algebraic solution.

SaPoA 2(9) 10:00-10:30

helicopter

SaPoA_2(8) 10:00-10:30

Structure Design and Kinematics Analysis of Omni-directional Mobile Platform

Yan Zhang, Lanshen Guo, Minglu Zhang, Xiaoling Lv The School of Mechanical Engineering, Hebei University of Technology, Tianjin, China Ixl000418@163.com

In order to achieve the advantages of the robot such as omni-directional movement in a limited space, precise positioning, position adjustment, and so on. The Mecanum omni-directional mobile platform is designed.Through the use of the contents of TRIZ technology innovation method, the functional structure of omnidirectional mobile robot is established. As this platform is used in petroleum, chemical and other hazardous environment inspection, the need for platform explosion-proof design; Then by analyzing the geometric model of Mecanum wheel roller, the roller parameter equation is established, and the finite element simulation analysis of the roller is carried out.Finally, using ADAMS software to simulate the omni-directional mobile robot, through the simulation results, the omni-directional motion of the robot is verified.

SaPoA_2(10) 10:00-10:30

SaPoA_2(11) 10:00-10:30

tracking performance

SaPoA_2(12) 10:00-10:30

SaPoA Poster Session 3 (con't)

Session Chairs: Ning Sun and Xuebo Zhang

Room : PREFUNCTION, 10:00-10:30, Saturday, July 21, 2018

SaPoA 3(13) 10:00-10:30

Visual Servoing of Mobile Robot with Setting **Desired Pose Arbitrarily**

Zhiwei Song, Baoquan Li, and Wuxi Shi School of Electrical Engineering and Automation, Tianjin Polytechnic University, P. R. China

- This paper can address visual servoing without prerecorded desired images by a novel strategy
- · The content includes the setting of the feature points and the relationship between coordinate systems.
- · Simulation results signify that this control strategy can drive the robot to the arbitrarily set desired

entiometer

SaPoA 3(15) 10:00-10:30

Research on Kinematics Modeling of Soft Manipulator

Ying Zhang, Yao Sun and Lina Hao School of Mechanical Engineering and Automation, Northeastern University. China

- · The soft manipulator has the characteristics of large deformability, nonlinearity, strong coupling, time-varying and infinite dimensions, and it is a distributed parameter system.
- · The existing kinematics modeling methods of soft manipulator are summarized, and the advantages and limitations of each method are analyzed.
- · A pneumatic soft arm with handle is designed. Drive control process of pneumatic arm The kinematics model of the arm is established. MATLAB, and proved by

SaPoA_3(17) 10:00-10:30

simulated by

experiment.

Bipartite Containment Tracking With Prescribed Performance of Nonlinear Multi-Agent Systems With Hysteresis Inputs

Tao Yu and Lei Ma

- School of Electrical Engineering, Southwest Jiaotong University, China
- · Bipartite containment tracking of multi-agent systems with hysteresis constraints is studied · The interaction network is represented by a
- signed directed graph · A distributed low-complexity control law for
- nonlinear multi-agent systems is proposed Both transient and steady state performance
- of tracking errors are guaranteed

SaPoA 3(14) 10:00-10:30

A rapidly convergent projected Hestenes-Stiefel conjugate gradient algorithm for optimal robust controller of bipedal walking robots Zhongbo Sun, Yufeng Lian, Shuaishi Liu and Yantao Tian 1.Key Laboratory of Bionic Engineering of Ministry of Education, Jilin University, China 2.Department of Control Engineering, Changchun University of Technology, China (1) A rapidly convergent projected Hestenes-Stiefel conjugate gradient method is presented and investigated to an optimal robust controller of bipedal walking robots by using a novel design method. (2) In order to demonstrate the feasibility and effectiveness of the algorithm, we will conduct numerical simulations on the model of 5-link The results of projected bipedal walking robot.

(3) it is reasonable to infer that the projected Hestenes-Stiefel conjugate gradient approach can be used in real-time systems.

Fletcher-Reeves and Hestenes-Stiefel method

SaPoA 3(16) 10:00-10:30

SaPoA_3(18) 10:00-10:30

SaA1 Human Abilities and Robotic Assistance 1

Session Chairs: Tao Liu and Qining Wang

Room : THE RESIDENCE 1, 13:20-14:50, Saturday, July 21, 2018

SaA1(1) 13:20-13:35

SaA1(3) 13:50-14:05

Gait Adaptable Human-Robot Interaction System and its Application to a Robotic Walker Lei Wang and Tao Liu State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, China Jingang Yi Department of Mechanical and Aerospace Engineering, Rutgers University, UŚA · A novel human-robot interaction system for human walking companion and gait adaption was developed. · Four IMUs attached to human lower limbs were used to detect gait. · A pressure sensor was used to measure human-robot interaction force. · With the system, a robotic walker was Human-robot interaction system controlled to accompany human walking.

SaA1(5) 14:20-14:35

Two new indices to assess gait disturbances applied
to anterior cruciate ligament reconstructed knees
H. Sobral, A. Paulo Coimbra, M. Crisóstomo
Institute of Systems and Robotics, Electrical and Computer Engineering Department, University of Coimbra, Portugal
J. P. Ferreira, A. Vieira
Institute Superior of Engineering of Coimbra, Quinta da Nora, Portugal
P. Lemos, J. Pinheiro
Physical and Rehabilitation Medicine, University of Coimbra, Portugal
Tao Liu
State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, China
 Two new gait indices – the Normal Gait Index (NGI) and the Abnormal Gait Index (AGI) including a symmetry measurement were developed.
 Each instrumented shoe has 8 force sensors in its sole.
 Gait data from 5 males subjected to the reconstruction of their anterior cruciate ligament 3 or 4 years ago were collected.
 The proposed indices and the graphical representations can be used in a software for real time gait analysis and assess the arthrosis risk.

SaA1(4) 14:05-14:20

Human Periodic Rebalancing Modelling of a Rider-Bicycle System

Yanhui Wang, Zhiwei Zhou, Guocong Liu, Haofan Pang and Tao Liu State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou João Paulo Ferreira

The institute of Superior of Engineering of Coimbra, Quinta da Nora Jingang Yi

Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway

- Rider-bicycle system model describes rider-bicycle dynamics and rider balancing control strategies
- Rider balancing control models with proportional-derivative-like structures including time delays
- Model optimization and system stability analysis

SaA1(6) 14:35-14:50

SaA2 Mobile Robot 1

Session Chairs: Ming Yue and Chenguang Yang

Room : THE RESIDENCE 2, 13:20-14:35, Saturday, July 21, 2018

SaA2(1) 13:20-13:35

SaA2(3) 13:50-14:05

- A teleoperation system for omnidirectional
- mobile robot(TSOMR) is proposed.
- A share control scheme combining potential field method and human control is used.
 The mobile robot's surrounding information is

omnidirectional mobile

robot

- The mobile robot's surrounding information is captured by a depth camera.
- Attractive potential field is generated by operator's sEMG signal and repulsive potential field is generated by obstacles.

SaA2(5) 14:20-14:35

Trajectory Tracking Control and Physical Constraints Considered for Omni-directional Wheeled Mobile Robot with Active Casters

Yin Hu, Xuebo Zhang, Peiyao Shen and Yongchun Fang

Contribution and advantages of this paper : 1) Proposing a MPC-based tracking control approach for the OWMR, which solves the problem of guaranteeing the multimotor coordination and satisfies the physical constraints of the motors;

 Demonstrating the performance of the MPC controller and comparing with the PID controller by simulation results.

Figure1: The OWMR platform

SaA2(2) 13:35-13:50

A biological model for robotic cognitive mapping and global planning

Yingxue Cui, Dong Liu, Qiang Zou, Ming Cong, Haiyun Zhang School of Mechanical Engineering, Dalian University of Technology, China

- This paper proposes a novel cognitive computation model, which integrates grid cell, place cell and episodic memory.
 And a navigation approach based on
- episodic memory was proposed. A shortest path can be chosen using
- events reorganization.Experiments performed on a mobile robot show that cognitive maps of the real environment can be efficiently built.
- And the experiment results indicate that the robot can efficiently navigate to target destinations.

SaA2(4) 14:05-14:20

An autonomous multi-vehicles queue following control system with vision and laser and simulation on ROS

Qi Yang, Shirong Liu School of Automation, Hangzhou Dianzi University, China

- We study an autonomous vehicle queue following control system based on leaderfollower model.
- The wheeled mobile robots obtain information only from laser together with the vision system.
- The effectiveness is validated by simulation experiments through Gazebo simulator of Robot Operating System(ROS).

Target

Figure 1 The followers are tracking the leader autonomously.

SaA3 Advanced control of mechatronic systems 1

Session Chairs: Huimin Ouyang and Shengquan Li

Room : THE RESIDENCE 3, 13:20-14:50, Saturday, July 21, 2018

SaA3(1) 13:20-13:35

SaA3(3) 13:50-14:05

SaA3(5) 14:20-14:35

SaA3(4) 14:05-14:20

SaA3(6) 14:35-14:50

SaA4 Multi-Agents and Networked Systems 1

Session Chairs: Weisong Zhou and Jianlei Zhang

Room : THE RESIDENCE 4, 13:20-14:50, Saturday, July 21, 2018

SaA4(1) 13:20-13:35

SaA4(3) 13:50-14:05

Adaptive finite-time attitude coordination control for spacecraft formation

Yang Lin, Jianting LYU, Xin Wang and Shangjun Zhang Heilongjiang Provincial Key Laboratory of the Theory and Computation of Complex Systems, Heilongjiang University, China

- Finite-time attitude coordiantion control problem for spacecraft formation
- The spacecraft attitude synchronization in the presence of external disturbances
- The finite-time attitude synchronization problem for multiple spacecraft system with actuator faults

spacecraft Formation

SaA4(5) 14:20-14:35

SaA4(4) 14:05-14:20

SaA4(6) 14:35-14:50

SaPoB Poster Session 4

Session Chairs: Ning Sun and Xuebo Zhang

Room : FOYER, 1/F, 14:50-15:20, Saturday, July 21, 2018

SaPoB(1) 14:50-15:20

Modeling Method of Security and Stability Control Device for Intelligent Substation Based on IEC61850

HUANG Ling, WANG JiLin, and TANG Guanjun NARI Technology co. LTD. China

- Summering traditional SSCD information and interface, and proposing intelligent SSCD information and interface demand;
- Organizing the SSCD's input, output, internal fixed value, alarm, fault, and action logic;
- Building information exchange, data read and write, report, control, replacement, setting and file service model:
- Developing the IEC6180 modeling method and software for SSCD.

Multi-objective Congestion Dispatch in Active Distribution Network with Flexible Charging/Discharging of Electric Vehicle Chang-Qiang Ding¹ and Chun-Ping Li² ¹School of Electrical Engineering, Dalian University of Technology, China Bing Liu² ²State Grid Dalian Electric Power Co, Ltd, China

 Minimizing the charging/discharging cost of EV owners and power generation cost of controllable DGs

SaPoB(2) 14:50-15:20

Making full use of EVs' transfer capability of charging and discharging time

 Solving the congestion problem by adjusting the charging/discharging service fee

SaPoB(4) 14:50-15:20

SaPoB(3) 14:50-15:20

Research on Meteorological Monitoring and Warning Platform for Typhoon Disaster of Transmission and Distribution Lines

Bin Chen, Shengwen Shu and Xiaojun Guo Electric Power Research Institute of State Grid Fujian Electric Power Co., Ltd., China Jinzhong Zhang

Jinzhong Zhang Nanjing Upbest Information Technology Co., Ltd., China

- A meteorological monitoring and warning platform was designed;
- The platform integrates the information resources and eliminates the "Isolated Data Island" phenomenon;
- Software component technology and big data mining technology were employed.

SaPoB(5) 14:50-15:20

Development of Efficient Management Platform and Data Interface Module for Photovoltaic Power Station

Power Station Jun Yang, Zhengxi Li and Jiatian Gan (Qinghai Province Key Laboratory of Photovoltaic Grid Connected Power Generation Technology, China) Jinzhong Zhang (Nanjing Upbest Information Technology Company, China) • Efficient management platform and data

- interface module software system for PV power station is developed Software is based on B/S architecture of Java
- 2 Platform Enterprise Edition (J2EE)Hierarchical architecture is designed
- according to component-based serviceoriented architecture(SOA)
- Components and services are built through object-oriented approach based on JAVA.

Line load rate in the ADN in the two modes

Software interface of efficient management platform

SaPoB(6) 14:50-15:20

SaPoB Poster Session 4 (con't)

Session Chairs: Ning Sun and Xuebo Zhang

Room : FOYER, 1/F, 14:50-15:20, Saturday, July 21, 2018

SaPoB_2(7) 14:50-15:20

Detecting False Data Injection Attacks on Modern Power System Based on Jensen-Shannon Distance

Manyun Huang, Zhinong Wei, Guoqiang Sun, et al; College of Energy and Electrical Engineering, Hohai University, China. Ming Ni, Manli Li. NARI Group Corporation (State Grid Electric Power Research Institute), China.

 A false data injection attack detection method based on the Jensen-Shannon Distance (JSD) is presented to address the false data attack in power systems.

compared with the state

prediction-based method

- The distribution of measurement variations under attacks deviates from that under normal working conditions, leading to the deviation of the calculated JSD from the normal value.
- The proposed method proves more stable compared with the state prediction-based false data detection method in Fig. 1.

SaPoB_2(9) 14:50-15:20

SaPoB_2(11) 14:50-15:20

A Real-time Schedule Optimization of Massive **Electric Vehicles and Energy Storage System Based** on Grey Wolf Optimizer Bin Liu and Zhukui Tan Electric Power Research Institute of Guizhou Power Grid Co., Ltd., China Zhenning Pan, Dezhi Wang and Tao Yu School of Electric Power, South China University of Technology, China (scutpanzn@163.com) al-time coordinated schedule model for massiv electric vehicles and energy storage system is proposed considering the accurate constrains of each EV and the safe operation of the distribution network. Firstly, the Grey Wolf Optimizer is adapted to calculate the charging/discharging strategy of EV clusters and ESS.Then, allocation algorithm based on energy buffer factor consensus is proposed to make detail strategy for each EV in the cluster considering accurate constrains. The simulation results show that, the model proposed has a great performance on massive EVs Framework of the r and ESS real time scheduling optimization.

SaPoB_2(10) 14:50-15:20

SaPoB_2(12) 14:50-15:20

SaPoB Poster Session 4 (con't)

Session Chairs: Ning Sun and Xuebo Zhang

Room : FOYER, 1/F, 14:50-15:20, Saturday, July 21, 2018

SaPoB_3(13) 14:50-15:20

SaPoB_3(15) 14:50-15:20

Development of Parallel Restoration Strategy for Chongqing Power System in China Changcheng Li, Pei Zhang, Yin Xu, Jinghan He and Pinghao Ni School of Electrical Engineering, Beijing Jiaotong University, China Li Feng and Fan Mu

State Grid Chongqing Electric Power Company, China

- Considering topology and power flow, a modified label propagation algorithm is applied for network partitioning.
- A near optimal restoration scheme with minimum restoration time is determined by greedy algorithm.
- It helps system operators to develop restoration plans and enhance the system reliability.

Partitioning scheme of Chongqing power system

SaPoB_3(17) 14:50-15:20

Architecture design of distributed power flow controller system based on centralized control

Qu Xiaolei, Zhu Kaiyang, Zhu Shijing, and Chen Xiong NARI Technology Co., Ltd., China

- The distributed power flow controller (DPFC) is a kind of power flow controller consisting of many small single-phase sub-control units installed on the transmission line dispersedly.
 The DPFC is characteristic of light weight,
- small footprint and low cost.
 This paper proposes a new DPFC system architecture based on distributed installation and centralized control model, and a data interaction architecture based on LORA wireless communication. The paper introduces the software and hardware design scheme of this control system.

SaPoB_3(14) 14:50-15:20

A Novel Control Operation Switching Strategy in Virtual Synchronous Generator Chenyu Zhang

State Grid Jiangsu Electric Power Company Research Institute, China Huiyu MIAO School of Electrical Engineering, Southeast University, China

- Switch the distributed generator inverter between VSG control and PQ control according to the requirements
- Propose a VSG operation mode seamless switching control strategy
- Simulation results verify the effectiveness of the strategy

 Output active power, reactive power, current, voltage smooth change

- 10-

╺┋──┶┋

Active power contro

diagram

SaPoB_3(16) 14:50-15:20

SaPoB_3(18) 14:50-15:20

SaPoB Poster Session 4 (con't)

Session Chairs: Ning Sun and Xuebo Zhang

Room : FOYER, 1/F, 14:50-15:20, Saturday, July 21, 2018

SaPoB_4(19) 14:50-15:20

Mathematical Modeling and Control of the Quad Tilt-rotor UAV

Dawei Shen and Qiang Lu Hangzhou Dianzi University

The quad tilt-rotor unmanned aerial vehicle (TRUAV) exhibits special application value due to its unique rotor structure. However, it has the complex operating characteristics of both the tension vector control and the air rudder control such that the flight control problem is difficult. In this paper, the theory of classical mechanics is applied to establish the mathematical models of the quad TRUAV in helicopter mode and transition mode . On this basis of the proposed models, the flight attitude controller of the transition mode from the helicopter mode to the airplane mode is designed by the backstepping method. This proposed controller can make the quad TRUAV achieve smooth transition. The simulation results verify the correctness and feasibility of the proposed scheme.

SaPoB_4(20) 14:50-15:20

an event-triggered communication scheme.

Event-Triggered Distributed Continuous-Time Optimization Based on Multi-Agent Systems

Min Hu and Qiang Lu Hangzhou Dianzi University

We have proposed an event-triggered distributed continuoustime optimization algorithm in this paper. Also, we have used the singleintegrator dynamic systems and all agent communicate in an undirected communication topology. Our purpose is to reduce the communication resources with each other in the process of making all the agents reach consensus. Based on the algorithms we proposed above, all agents reach consensus through the convex optimization and a great number of communication burdens have been relaxed through the eventtriggered method. Compared with the time-triggered communication, a great number of communication resources have been relaxed. The simulations verify the

effectiveness of the above algorithms. In the next, we will study the relative problems about double-integretor dynmaics, discrete time systems using

SaB1 Human Abilities and Robotic Assistance 2

Session Chairs: Xiaodong Zhang and Ningbo Yu

Room : THE RESIDENCE 1, 15:20-16:50, Saturday, July 21, 2018

SaB1(1) 15:20-15:35

IMU-Based Gait Phase Recognition for Stroke Survivors: Preliminary Results Yu Lou, Rongli Wang, Jingeng Mai, Ninghua Wang, Qining Wang

College of Engineering, Peking University, Beijing 100871, China; Department of Rehabilitation Medicine, First Hospital, Peking University, Beijing 100034, China

• We present an inertial measurement unit based gait phase detection system for stroke survivors.

 Three stroke survivors were recruited with varying degrees of walking disability to test the system. A recognition accuracy higher than 97% was obtained. IMU-based gait phase recognition system for stroke survivors

人生人

SaB1(3) 15:50-16:05

Simulating the effect of ideal load support for walking with heavy loads

Pu Duan and Zhuoping Duan The State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, China

- This paper investigated the effect of ideal load support for walking with heavy loads with musculoskeletal model in OpenSim.
- From a theoretical aspect the biological influence of load support exoskeletons on humans was explored.
- Simulation results showed that the ideally applied vertical support force had limited benefit in metabolic cost reduction but possibly more useful in local fatigue relief.

SaB1(5) 16:20-16:35

SaB1(2) 15:35-15:50

Sensing and Data Analysis for Assessing Human Balance Ability

Song Wang and Ning Xi, *Fellow, IEEE* Department of Industrial and Manufacturing Systems Engineering, The University of Hong Kong, Hong Kong

- This paper presents the development of a novel balance sensor for assessing human balance ability.
- This balance sensor can detect tread force distribution under feet with high resolution.
 Experiment is done to capture tread force
- distribution variation videos from different human balancing actions.
- 3D convolutional neural network is developed to classify different human actions.

SaB1(4) 16:05-16:20

SaB1(6) 16:35-16:50

Modeling and Simulation of Transporting Elderly Posture of Multifunctional Elderly-Assistant and Walking-Assistant Robot

Khaled Kadry Hamza, Xiaodong Zhang, Xiaoqi Mu., Randolph Odekhe, and Ahmad Bala Alhassan

School of Mechanical Engineering, Shaanxi Key Laboratory of Intelligent Robot, Xi'an Jiaotong University, Xi'an, 710049, China

- an investigation into the modeling and simulation of elderly-assistant and walking-assistant robot of transportation posture using mass-spring-damper concept has been presented.
- The dynamic equations of the model were derived using the Lagrange's equation of motion.
- MATLAB simulations results of the dynamic equations have been performed to study the dynamic behavior of the system.
- The vibration analyses of the robot subjected to a pulse input signal demonstrated that the results will provide useful information for the selection of appropriate control strategy for the person's ride comport.

SaB2 Mobile Robot 2

Session Chairs: Ji Xiang and Baoguan Li

Room : THE RESIDENCE 2, 15:20-16:50, Saturday, July 21, 2018

Monocular Wide Baseline Stereo Measurement Using High-speed Catadioptric System

Shaopeng Hu, Mingjun Jiang, Takeshi Takaki and Idaku Ishii Department of System Cybernetics, Hiroshima University, Japan

· Only one camera used as two virtual cameras

in limited space

• Full image resolution · Parameters adjusted by ultrafast pan-tilt mirrors

SaB2(2) 15:35-15:50

SaB2(4) 16:05-16:20

Application of octree map in robotic environment reconstruction

Yi CHENG , Xiaovu TONG School of Electrical Engineering and Automation Tianjin Polytechnic University, P.R. China

- · This paper aiming at resolving the shortcomings of point cloud maps.
- An octree-based 3D reconstruction method is presented.
- · The performance of the proposed approach is evaluated with both simulated and real data
- The experimental results show that the octree map can effectively optimize the reconstruction.

A image resolution is 0.04 of Octree Map

SaB2(6) 16:35-16:50

SaB3 Advanced control of mechatronic systems 2

Session Chairs: Dianwei Qian and Yougang Sun

Room : THE RESIDENCE 3, 15:20-16:50, Saturday, July 21, 2018

SaB3(1) 15:20-15:35

· The designed controller needs no payloadswing feedback.

SaB3(3) 15:50-16:05

Derivative and Integral Terminal Sliding Mode Control of Uncertain Multiple Robots Yafei Xi and Dianwei Qian North China Electric Power Unversity

This paper introduces the format control problem of multi-robot. The formation model is present. The derivative-integral terminal sliding mode control law is. The stability of the control syster analyzed in the sense of Lyapunc Some simulation results are illustrated.

SaB3(5) 16:20-16:35

A Motion Planning Method Based Vision Servo for Free-Flying Space Robot Capturing A **Tumbling Satellite**

Minghe Jin, Guocai Yang, Yechao Liu, Xiaoyu Zhao and Hong Liu the State Key Laboratory of Robotics and System, Harbin Institute of Technology, China

- · Dynamics of tumbling satellite and capture strategy
- Visual measurement and algorithm of trajectory planning
- · The control scheme and simulation verification

The control scheme of the free-flying space robot

Research on Elastic Effect of the Frame Excited by Inertia Load of the Trolley

Zhen Qiao School of Mechanical Engineering Department, Tongji University, China Yougang Sun and Dashan Dong Logistics Engineering College, Shanghai Maritime University, China

- A planar three-dimensional dynamic model of container crane and its kinetic equations were presented.
- Design Rules for Cranes fails to estimate the elastic effect of the structure well .

Inertia loads are magnified beyond estimate because of the vibration of the elastic frame.

SaB3(4) 16:05-16:20

Optimization for Uncertain Euler-Lagrange **Systems** Chao Sun, Zhi Feng and Guoqiang Hu School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore · In this paper, we consider a distributed timevarying formation and optimization problem for a group of robots with uncertain Euler-Lagrange dynamics · A distributed penalty based algorithm is proposed to solve the distributed time-varying formation and optimization problem. Applications in a minimum Compared with the existing work, the travelled distance problem formation configuration can vary as time

evolves.

SaB4 Multi-Agents and Networked Systems 2

Session Chairs: Jinliang Wang and Youqing Wang

Room : THE RESIDENCE 4, 15:20-16:50, Saturday, July 21, 2018

SaB4(1) 15:20-15:35

SaB4(3) 15:50-16:05

Cascaded Control Design for a Stabilized Pan-Tilt Camera Platform on a Quadrotor UAV

Baolu Liu, Jianchuan Guo, Jiahui Rong and Baoquan Li School of Electrical Engineering and Automation, Tianjin Polytechnic University, Tianjin

- The Quadrotor UAV carrying a stabilized camera platform can effectively improve the adaptability to environment.
- The optical axis of the camera is stabilized by inertial rate stabilization controller.
- The visual tracking controller achieves the detection and tracking of targets.
- The superiority performance of the proposed cascaded controller is verified by laboratory experiments.

SaB4(5) 16:20-16:35

Dynamic Trajectory Planning of Collaborative Robots in Target Capture Task

Guodong Liu, Yong Jiang and Xiaowei Tan College of Information Science and Engineering, Northeastern University, Shenyang, China State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China Iluguodong@sia.cn

In this paper, a new method(APF-RV) for collision avoidance is proposed, which combined APF method with RV method. The core of this algorithm is to deal with dynamic and static obstacles respectively. A new sample approach is used to get the distances between the robot and obstacles in its workspace, which is based on human body identification procedures. These distances are used to generate repelling forces (APF method) or repulsive vectors (RV method) which are processed in order to obtain smooth trajectory that avoid obstacles.. A series of experiments on the UR5 robot and the Kinect sensor confirmed the real-time effectiveness and good performance of the method.

Stabilized camera platform

SaB4(2) 15:35-15:50

SaB4(4) 16:05-16:20

SaB4(6) 16:35-16:50

SaC1 Human Abilities and Robotic Assistance 3

Session Chairs: Liang Peng and Guoli Song

Room : THE RESIDENCE 1, 17:00-18:30, Saturday, July 21, 2018

SaC1(1) 17:00-17:15

A Wearable Bionic Soft Exoskeleton Glove for Stroke Patients

Ziwen Liu Liang Zhao Peng Yu and Lianqing Liu The State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, China

- The structure design is based on the muscle anatomical model
- Achieve the natural movement patterns of precision grip and power grip
- The motion trajectory correlation between natural motion and device-assisted motion of hand reached 0.97

SaC1(2) 17:15-17:30

Robotic Arm Driven by a Hybrid Gaze-Brain Machine Interface with Continuous Shared Control during Reaching

Yanxin Wang, Junjie Shen, Hong Zeng and Aiguo Song School of Instrument Science and Engineering, Southeast University, China

The proposed shared

control system diagram

- A hybrid Gaze-Brain-robot interface is developed to input user's commands for continuously moving the robotic arm endeffector in 2D space
- We present a dynamical online arbitration between the user command and autonomous robot control
- Experimental results performed on 6 subjects have demonstrated that movements with shared control are safer and more efficient than those without

Smile Recognition Based on Support Vector Machine and Local Binary Pattern

Zheng Huang, Guoli Song, Yiwen Zhao and Xingang Zhao Shenyang Institue of Automation, Chinese Academy of Science, China Jianda Han

College of Computer and Control Engineering, Nankai University, Country

- Machine learning method is used to identify whether a person is smiling or not.
- The recognition system is divided into 4 parts: image processing; human face detection; feature extraction and classification.
- Face detection based on the combination of Haar-like features and Adaboost.
- Figure 1 classification of smile
- LBP is used for feature extraction and SVM for classification.
- The accuracy of this system can reach 88.1%.

SaC1(5) 18:00-18:15

•An Assessment Method for Upper Limb Rehabilitation Training Using Kinect

Kaizhi Yang, Lina Tong, Rongkai Liu and Bingyang Liu Mechanical Electronic & Information Engineering, China University of Mining & Technology(Beijing), China Liang Peng*

Institute of Automation, Chinese Academy of Science, Beijing, China

- Proposes a rehabilitation training assessment method combined with virtual reality technology.
- The DTW algorithm result, the time duration and the amplitude influence the assessment result.
- The system can inform the patients how to modify their motion.

The view of training and assessment

SaC1(4) 17:45-18:00

Physiological response to emotion changes in robot-aided resistance training with cognitive and active force coexistence

Xiang Gao, Linlin Feng, Guozheng Xu, Guojian Huang, Wen Chen

Robotics Information Sensing and Control Institute Nanjing University of Posts and Telecommunications, Nanjing, China

- This study explores how to extract features of emotional physiological responses only related to cognition.
- The subjects were asked to do the IAPS experiment and rehabilitation resistance training.
- The sEMG signal data in the three target emotional states were analyzed by statistical analysis.

SaC1(6) 18:15-18:30

SaC2 Mobile Robot 3

Session Chairs: Qiang Lu and Menggang Li

Room : THE RESIDENCE 2, 17:00-17:45, Saturday, July 21, 2018

SaC2(1) 17:00-17:15

	A Localization Met Details Observation a
and the second sec	Chen Z The School of Control
Multiple Resolvable Group Estimation Based on	The School of Me
the GLMB Filter with Graph Theory	China
the olivit filter with order filteory	 Fish-eye camera ob long lens camera to
	 The QR code on the position and posture
LIU WEI FENG	 This system give sin
HANGZHOU DIANZI UNIVERSITY	and high definition of
	The system has high orientating accuracy

SaC2(2) 17:15-17:30

hod Based on Large Scene Tracking and Target about Small Quadruped Robot under Global Vision hang, Yibin Li and Xuewen Rong Science and Engineering, Shandong University, China Hui Čhai echinical Engineering, Shandong University, China Bo Su North Vehicle Research Institute, China

- oserve large field, guiding aim at the target.
- robot is used to indicate
- multaneously ge scenes observation of targets details.
- h positioning and in the experiments.

The performance of this system

SaC2(3) 17:30-17:45

Efficient Laser-based SLAM for Coal Mine Rescue Robots

Menggang Li, Hua Zhu, Shaoze You School of Mechanical and Electrical Engineering Jiangsu Collaborative Innovation Center of Intelligent Mining Equipment China University of Mining and Technology, Xuzhou 221008, China

In this paper, we propose a novel real-time 3D SLAM based on Normal Distributed Transform (NDT) which also take pose graph optimization and loop closure to further improve the consistency of mapping. We innovatively extract the floors and walls as plane nodes to construct constraints, in addition to applying pose nodes from the lidar odometry. Edges of the graph are constructed by the observation constraints between pose nodes and plain nodes. A simple and effective loop detection method is used via odometry-based in conjunction with appearance-based approach to conjunction with appearance-based approach to build a global consistent map.

SaC3 Automation in Space/Flying Robots

Session Chairs: Yizhai Zhang and Lianqing Liu

Room : THE RESIDENCE 3, 17:00-18:15, Saturday, July 21, 2018

SaC3(1) 17:00-17:15

Control system design of Spacecraft Mechanical Ground Support Equipment automatic storage system

Yang Yu, Hao Fu, Tiecheng Qiu, Zhe Wang Beijing Institute of Spacecraft Environment Engineering, China

- The Control system select Omron PLC as the main controller for centralized control.
- The system has a total of 273 input points, 147 output points.
- System has multiple photoelectric and travel switches safety sensors.

System's human-computer interaction control interface is easy to operate.

SaC3(2) 17:15-17:30

Neural Adaptive Fault-Tolerant Control for Attitude Tracking of Spacecraft Pengcheng Wang and Chenliang Wang School of Automation Science and Electrical Engineering,Beihang University, China Qinglei Hu and Bing Zhu

Ginglel Hu and Bing Zhu School of Automation Science and Electrical Engineering,Beihang University, China

- This paper investigates the problem of attitude tracking control with prescribed tracking performance for a spacecraft exposed to unknown inertial matrix and actuator failure.
- Neural Network, Fault-Tolerant, Prescribed Tracking Performance

SaC3(3) 17:30-17:45

Closed-loop Optimal Control of Tethered Robot during Nonplanar Orbital Transfer

Liang Sun, Ming Chen, Guowei Zhao and Wei Xu School of Asronautics, Beihang University, China

- Nonlinear equations are derived that describe the motion of the tethered robot system.
- The open-loop controller and an optimal feedback controller in closed-formed are proposed.
- The performance of the controllers is verified via the numerical simulation.

Typical Tethered Robot System

SaC3(5) 18:00-18:15

SaC3(4) 17:45-18:00

Vibration Control of Flexible Appendages in Space Tether Tugging System

Guowei Zhao, Wei Xu, Liang Sun and Ming Chen School of Astronautics, Beihang University, Beijing, China Dejin Li China Electronics Technology Group Corporation No.10 Research Institute, Chengdu, China

- · An input shaping control strategy suitable for rope combination
- Suppress vibration of flexible accessories during satellite orbit transfer
- The vibration of flexible appendages can be effectively avoided after input shaper

SaC4 Multi-agent systems and evolutionary game theory

Session Chairs: Dongmei Xie and Kun Li

Room : THE RESIDENCE 4, 17:00-18:15, Saturday, July 21, 2018

SaC4(1) 17:00-17:15

Distributed tracking control for second-order multi-agent systems with aperiodically intermittent position measurements

Fuyong Wang, Zhongxin Liu and Zengqiang Chen

College of Computer and Control Engineering, Nankai University, China

· This article investigates the distributed tracking control problem for second-order multi-agent systems with aperiodically intermittent position measurements. By introducing a distributed filter for each follower, a new kind of consensus protocol without velocity measurements is designed for second-order distributed tracking control. Some sufficient conditions are obtained such that the secondorder multi-agent systems can achieve consensus tracking, under the common assumption that each agent can only communicate with its neighbors intermittently. Finally, numerical simulations are provided to verify the theoretical analysis.

SaC4(3) 17:30-17:45

Tracking control of multi-agent systems with arbitrary weights

Lin Shi^a and Dongmei Xie^{a,b}

^aSchool of Mathematics, Tianjin University, Tianjin, People's Republic of China ^bSchool of Mathematics, Xinjiang Normal University, Urumqi, People's Republic of China

- · A sufficient condition to guarantee the positive stability of matrix H for arbitrary weights.
- · Which nodes should have direct connection with the leader?
- · What's the range size of the leader adjacency Tracking error of position.
- Some sufficient consensus tracking control conditions are obtained for MASs

coefficients?

SaC4(2) 17:15-17:30

Group Consensus for Second-order Nonlinear Multi-agent Systems with Time-delay

> Weixun Li Tianjin University of Technology and Education, China Limin Zhang Liaoning Technical University, China Wen Qin Nanjin University of Technology, China

- · Group consensus for second-order multi-agent systems with nonlinear dynamics and time delay was studied.
- · An appropriate protocol was given to guarantee the multi-agent systems reach group consensus with performance index under external disturbances .
- The group consensus control scheme with uncertainties was considered, sufficient conditions are obtained such that the multiagent systems can reach robust group consensus.

SaC4(4) 17:45-18:00

Technical Sessions

July 22nd, 2018

SuA1 Sliding Mode Control and Mechatronics 1

Session Chairs: Xiangyu Wang and Ning Wang

Room : THE RESIDENCE 1, 13:20-14:50, Sunday, July 22, 2018

SuA1(3) 13:50-14:05

SuA1(5) 14:20-14:35

SuA1(4) 14:05-14:20

SuA1(6) 14:35-14:50

SuA2 Connected and Automated Vehicles 1

Session Chairs: Yongfu Li and Yongsheng Qian

Room : THE RESIDENCE 2, 13:20-14:50, Sunday, July 22, 2018

- Micro-traffic Road
- Progressive Probabilistic Hough Transform

· A three-level framework to detect the lane line

SuA2(5) 14:20-14:35

Volume Measurement of Moving Irregular **Objects Using Linear Laser and Camera** Yantao Sun and Tangwen Yang Institute of Information Science, Beijing Jiaotong University, China

Xiaoqing Cheng and Yong Qin State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, China

- · A non-contact volume measurement method for irregular objects is proposed.
- · The truncated gaussian distribution is used to extract the center of light stripe.
- The measurement error is less than 4.5% at the distance of 2 meters away from the measurement devices

SuA2(6) 14:35-14:50

Optimization And Coordination Of Urban Railway Last Train Timetable

Xuexin Wang, Yongsheng Qian*, Junwei Zeng, and Xuting Wei School of Traffic and Transportation, Lanzhou Jiaotong University, Lanzhou ,China.

. In the last train time of the urban railway transits, the timetable optimization should first ensure the reachability of passengers. Due to the uncertain connection order of train in each line, in this paper, a 0-1 variable is introduced to describe the convergence of trains in the last train time and to establish a network transfer model. By adjusting the departure time of the train, a timetable optimization model with the objective of connecting maximum passengers is presented and solved by genetic algorithm. Finally, based on the analysis of the important transfer stations in Chengdu Metro Network, the validity of the model is verified. The results show that the overall number of connected passengers increased by 17.6%. This model can effectively improve the accessibility of passengers.

SuA3 Power Systems 1

Session Chairs: Qi Wang and Bingtuan Gao

Room : THE RESIDENCE 3, 13:20-14:50, Sunday, July 22, 2018

SuA3(1) 13:20-13:35

SuA3(3) 13:50-14:05

SuA3(5) 14:20-14:35

SuA3(4) 14:05-14:20

SuA3(6) 14:35-14:50

SuA4 Robotic Vision

Session Chairs: Yang Cong and Chenguang Yang

Room : THE RESIDENCE 4, 13:20-14:50, Sunday, July 22, 2018

SuA4(3) 13:50-14:05

SuA4(5) 14:20-14:35

Tracking for Grabing Robot Based on Multiple Feature

Yifan Wang, Fei Wang, Chen Liang, Wei Wu, Haobo Zhao, Yuze Zhang

Faculty of Robot Sci. & Eng., Northeastern University, China

- To solve problems encountered in capturing moving objects in the field of intelligent assembly, a modified algorithm based on correlation filtering and HOG is proposed.
- AlexNet depth network was used and the second layer of convolution was selected as the feature of target tracking.
- Through a lot of experiments, it was verified that the depth feature has high accuracy and robustness.

SuA4(4) 14:05-14:20

SuA4(6) 14:35-14:50

SuB1 Sliding Mode Control and Mechatronics 2

Session Chairs: Wei He and Qun Sun

Room : THE RESIDENCE 1, 15:20-16:50, Sunday, July 22, 2018

SuB1(1) 15:20-15:35

Discrete-Time Quasi-Sliding Mode Control of Induction Motors

Yong Feng, Xuanxuan Wen, Chen Xue Department of Electrical Engineering, Harbin Institute of Technology, China Xinhuo Yu, Fengling Han

School of Engineering, School of Science, RMIT University, Australia

· A DSMC is proposed for discrete-time systems and digitalized continuous systems.

- · It is developed to make the systems to satisfy the existence of the sliding mode.
- The DSMC is also applied for speed control of induction motors.

 The IM control system can achieve faster convergence and higher steady-state accuracy.

SuB1(3) 15:50-16:05

Second-order Non-singular Terminal Sliding Mode **Optimal Control of Uncertain Flexible Manipulator**

Fig.1 Field oriented vector

control system

Qinyuan Xu, Weihua Wang, Hongwei Xia, Yanmin Wang, Yong Feng Contribution :

- This paper proposes a second-order nonsingular terminal sliding mode(NTSM) optimal control approach for two-link flexible manipulator with uncertainty
- The system is decomposed into an input-output subsystem and a zero dynamics subsystem to solve its non-minimum phase problem
- > A second-order NTSM with two-layer sliding surface is proposed to eliminate the chattering by on the basis of relative degree
- The stability of zero dynamic subsystem is guaranteed by choosing parameters obtained by genetic algorithm.

SuB1(5) 16:20-16:35

precision monocular plane measurement for large field of view

Laigang Zhang Liaocheng University, China (zhanglaigang@ lcu.edu.cn) Yibin Li

Shandong University, China Yongjun Zhao MH Robot & Automation Co...Itd. China Qun Sun, Ying Zhao

Liaocheng University, China

In this paper high precision monocular plane measurement method with large FOV is proposed based on the FLPT that is constructed by multiple small targets. The small target is placed at 9 different positions on the measuring plane, and capture images. Multiple small plane targets are transformed into a large plane target by plane constraint. Calibrate camera by FLTP , the homography matrix of the measurement plane to the image plane is calculated to realize the plane measurement of the large field of view. The experimental results show that the proposed method has a high overall measurement accuracy.

SuB1(2) 15:35-15:50

Non-singular Terminal Sliding Mode Control of Inverter-Fed PMSM System with chattering elimination

Jian Wen, Qinbo Nie, Yanmin Wang, Member, IEEE, Qinyuan Xu, Yong Feng

Contribution:

- This paper proposes a novel non-singular terminal sliding mode (NTSM) control approach with function of chattering elimination for PMSM.
- The dead time and switching delay of inverter is considered and an integrated nonlinear model of PMSM, inverter and mechanical load is established.
- An improved NTSM control method with chattering elimination is proposed by using the concept of relative degree.
- An auxiliary adaptive control law is combined to overcome unknown uncertainties of inverter.

SuB1(4) 16:05-16:20

Research on Dynamic Speed Estimation Method for Asynchronous Motor

Jinyong Shangguan, Jinsen Hou, Zhenyou Wang, Jiali Hou and Chong Wang*

- School of Mechanical & Automotive Engineering, Liaocheng University, China
- According to previous researches, model reference adaptive system, sliding mode observer and Kalman Filtering with rather low dynamic characteristic were reported. The dynamic characteristics have therefore theoretically analyzed. Based on the mathematical model of asynchronous motor, speed estimation algorithms of model reference adaptive, sliding mode observer and dynamic speed estimator speed senseless models were established in MATLAB/SIMULNK software, the simulation results show that the dynamic speed estimation algorithm has better dynamic performance and excellent stability and reliability than other methods.

SuB1(6) 16:35-16:50

A Developed Firefly Algorithm for Multi-objective Path Planning Optimization Problem Peng Duan, Junqing Li, Hongyan Sang, Yuyan Han School of Computer Science, Liaocheng University, China Qun Sun School of Mechanical and Automotive Engineering, Liaocheng University, China · Grid map extension is realized to ensure the DfA NGGA-I safety of planned path. · Path length and path smoothness are selected as two important optimization objectives. · Different evolutionary operators are carried out to search the optimal solutions. 00 1120 1140 1160 1160 1220 1240 1260 1280 The well-known ZDT1 instance and the The approximate Pareto fronts on canonical NSGA-II are tested fully to make R, based on the two algorithms. comparison with the developed firefly algorithm

SuB2 Connected and Automated Vehicles 2

Session Chairs: Hao Zhu and Hongguang Pan

Room : THE RESIDENCE 2, 15:20-16:50, Sunday, July 22, 2018

SuB2(1) 15:20-15:35

A Beam Guardrail Detection Algorithm using Lidar for Intelligent Vehicle

Hao Zhu. Bin Guo Automotive Electronics and Embedded System Engineering Research Center, Department of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

- · Layered feature of Lidar scanning data is used to segment the point cloud into lines.
- Two novel features: corner feature and height feature
- · A clustering algorithm is used to remove some noise extracted points.

the performance of the proposed algorithm.

Figure Guardrail detection result

SuB2(3) 15:50-16:05

SuB2(5) 16:20-16:35

Air Visibility Prediction Based on Multiple Models

Hongguang Pan, Jikang Xue, Mengtao Huang, Xinyu Lei College of Electric and Control Engineering, Xi'an University of Science and Technology, Xi'an, China jkxue1993@163.com

- · Support vector machine and genetic neural network are used to predict the air visibility
- · Particle swarm optimization neural network is used to predict the air visibility
- · The three methods take temperature and humidity, PM2.5 concentration and PM10 concentration as input variables
- · The particle swarm optimization neural network is optimal method by comparing performance of three methods

SuB2(2) 15:35-15:50

SuB2(4) 16:05-16:20

SuB2(6) 16:35-16:50

SuB3 Power Systems 2

Session Chairs: Yingjun Wu and Bingtuan Gao

Room : THE RESIDENCE 3, 15:20-16:50, Sunday, July 22, 2018

SuB3(3) 15:50-16:05

SuB3(5) 16:20-16:35

State of Charge Based Decentralized Coordination Control for Multiple Bidirectional Power Converters in a Hybrid AC/DC Microgrid

Zeyan Lv, Pengcheng Yang, Yanghong Xia, College of Electrical Engineering, Zhejiang University Miao Yu and Wei Wei College of Electrical Engineering, Zhejiang University

- Researched a hybrid microgrid topology with energy storages in both AC side and DC side
- Proposed a SOC signal deliver strategy
- without communication lines

 Proposed a SOC management strategy for
- multiple bidirectional power converters

Hybrid microgrid topology with two energy storages

SuB3(4) 16:05-16:20

SuB3(6) 16:35-16:50

SuB4 Automation in Real-world Applications

Session Chairs: Tao Li and Guoli Song

Room : THE RESIDENCE 4, 15:20-16:50, Sunday, July 22, 2018

SuB4(1) 15:20-15:35

Data-Driven Modeling for PDF Shaping of Fiber Length Distribution in Refining Process

Mingjie Li and Ping Zhou State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, China

- Pulp quality in the refining process mainly depends on the shape of fiber length distribution
- Mean of fiber length is insufficient to describe the shape of fiber length distribution
- Data-driven modeling method is proposed for the PDF shaping of fiber length distribution

SuB4(3) 15:50-16:05

Modeling and Simulation of Electricity Retail Market with Oligopolistic Equilibrium Method

Chen Zhao, Shaohua Zhang, Xian Wang Department of Automation, Shanghai University, Shanghai, China Tao Li

Department of Mathematics, East China Normal University, Shanghai, China

- A Bertrand equilibrium model is established for retailers' bidding in the electricity retail market considering retailers' contract trading.
- Market share function is introduced to describe the differences in reputation among retailers.
 The existence and uniqueness of the Nash

Theoretical analysis and numerical simulation show retailer's market power can be mitigated by contract trading in the oligopolistic retail market.

SuB4(5) 16:20-16:35

equilibrium are proved

Adaptive robust model tracking control of nonlinear dynamical systems with unmatched disturbances

Yuchao Wang, Sanyan Chen, Wenrui Shi, Lijia Xu College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Yaan 625014, China

In this paper, the problem of adaptive robust model tracking for nonlinear dynamical systems with parametric uncertainties and unmatched disturbances has been studied. It has been assumed that the unmatched disturbances are continuous and have unknown upper bounds. It has been also assumed that the parameter uncertainties are unknown. An adaptive robust controller for tracking reference model have been proposed. In the presence of parameter uncertainties and unmatched disturbances, the tracking error can be guaranteed to be uniformly ultimately bounded by using our proposed controller. Finally, a numerical example is given to illustrate the validity of the proposed control scheme.

SuB4(2) 15:35-15:50

Logistics system: wind farm and its original equipment manufacturer

SuB4(4) 16:05-16:20

component.

Forecasting and Analysis of EUR/USD Exchange Rate Moving Direction with Support Vector Machine

Zhao A. and Zhang D. College of computer science and technology, Zhejiang University of Technology, China Shi J.Q.

College of computer science and technology, Zhejiang University of Technology, China

- Applied the forecasting model to the history data of per four hours of $\ensuremath{\mathsf{EUR}}\xspace/\ensuremath{\mathsf{USD}}\xspace$
- SVM with the new features is used as a classifier to forecast the direction
- · Have a futher adjust to the forecasted result of SVM

SuB4(6) 16:35-16:50

SuC1 Robot Control and Planning Session Chairs: Krzysztof R. Kozlowski and Chao Ren Room : THE RESIDENCE 1, 17:00-18:15, Sunday, July 22, 2018

SuC1(1) 17:00-17:15

SuC1(3) 17:30-17:45

Passivity-based Active Disturbance Rejection Control of an Omnidirectional Mobile Robot

Chao Ren¹, Yutong Ding¹ and Shugen Ma^{1,2} ¹School of Electrical and Information Engineering, Tianjin University, China ²Department of Robotics, Ritsumeikan University, Japan

- · A passivity-based active disturbance rejection control scheme is proposed.
- A modified reduced-order extended state observer is designed, to avoid the inverse operation of matrix.
- · The proposed approach effectively exploits the natural dissipation of the dynamics system.

· Simulations are conducted to verify the effectiveness of the proposed approach.

SuC1(5) 18:00-18:15

An Autonomous Air-Ground Cooperative Field Surveillance System with Quadrotor UAV and **Unmanned ATV Robots**

S. Zhang^{1,2}, H. Wang^{1,2}, S. He^{1,2}, C. Zhang^{1,2} and J. Liu^{1,2} 1. Institute of Robotics and Automatic Information System, Nankai University, Tianjin, China

2. Tianjin Key Laboratory of Intelligent Robotics, Tianjin, China

- · In this paper we present a cooperative system for field surveillance
- · The system consists of a Quadrotor UAV and a Unmanned ATV
- · The vehicles can work in the field environment autonomously

The Field Surveillance System

SuC1(2) 17:15-17:30

SuC1(4) 17:45-18:00

SuC2 Medical Robotics and Systems

Session Chairs: Airu Yin and Donghao Lv

Room : THE RESIDENCE 2, 17:00-18:15, Sunday, July 22, 2018

SuC2(1) 17:00-17:15

SuC2(3) 17:30-17:45

Study on the Optimal Electric Field Parameters of Electrode Based on Irreversible Electroporation

Donghao Lv, Xiaobo Yang, Yang Li, and Xinchun Wang School of Information and Technology, Inner Mongolia University of Science and Technology, China

- The model of electric field in different area of action lays the foundation for calculating the electric field distribution around the electrode
- Experimental results show that with the increase of electrode distance, the trend of non-connection and invagination are more and more obvious

 It is possible to find optimal parameters for tumor therapy to achieve an efficient killing effect on tumor and to minimize the side field distribution with pulse effects of surrounding normal tissue

SuC2(5) 18:00-18:15

SuC2(2) 17:15-17:30

A Shallow Neural Network based Short Text Classifier for Medical Community Question Answering System

Hong Cai and Ziwei Li and Cuiting Yan and Jie Liu and Airu Yin CCCE&CS, Nankai University, China

- We crawls and constructs a real Chinese medical Q&A dataset and conducts experimental verification.
- A shallow CNN is used to obtain key words and phrase features from the context through different sizes of filter and pooling strategies as well as learning characteristic-level sequence feature of sentences.
- Experiments illustrate the effectiveness of our method in domain of MCQA comparing with some popular approach in text classification from natural language processing

SuC2(4) 17:45-18:00

A Novel Method for Measuring the Flow Rate of High Viscous Fluid in Polymer Injection Well by Nonuniform Magnetic Field Electromagnetic Flowmeter

Yanjun Wang, Haoyu Li, Xingbin Liu, Longlin Chen and Ronghua Xie, Lianfu Han Harbin Institute of Technology, Harbin, China Daqing Oilfield Limited Company, Daqing, China Lihy@hit.edu.cn Dlts_liuxb@petrochina.com.cn

SuC3 Power Systems 3

Session Chairs: Congzhi Huang and Xiaoyan Sun

Room : THE RESIDENCE 3, 17:00-18:15, Sunday, July 22, 2018

SuC3(1) 17:00-17:15

A Wind Turbine Classification Method Using Fuzzy C-means Algorithm Based on Self-adjusting Chaotic Particle Swarm Optimization

Zhiwei Xue¹, Xiaohui Lu¹, Qiang Guo², Longying Zhang², Songtao Zhang³, Congzhi Huang³ 1. State Grid Shanxi Electric Power Company, Taiyuan, 030001, China

2. State Grid Shanxi Electric Power Research Institute, Taiyuan, 030001, China School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China

E-mail: hcz190@ncepu.edu.cn

Abstract—A wind turbine classification method using fuzzy c-means algorithm based on self-adjusting chaotic particle swarm optimization (SACPSOFCM) is proposed in this paper. According to the historical operating data, wind turbines are classified into several classes with different running state using SACPSOFCM. The wind turbines running in good condition and with stable and high power output are given the dispatch priority. The calculation of the subsequent load command dispatch will be greatly reduced based on the calculation. It is verified by experiments that wind turbines can be correctly classified by SACPSOFCM according to real operating data, and the experimental results prove the clustering performance superiority of SACPSOFCM over the fuzzy c-means algorithm based on particle swarm optimization (PSOFCM).

SuC3(3) 17:30-17:45

Output Feedback Switching Controller Design for LTI System with H2 Performance Realizations

Weilin Wu, Wei Xie, Wei He, Langwen Zhang College of Automation Science and Technology, South China University of Technology

 This paper focuses on designing a switching controller, which includes several LTI controllers designed beforehand and independently for a specific LTI plant. All these controllers are capable of stabilizing the plant with corresponding H2 control performance criterions. It's possible to find a suitable state space realization for any given family of controller transfer matrices, which not only guarantees certain H2 performance of the overall closed-loop system under arbitrary switching but also guarantees corresponding H2 performance of local subsystems at each switching points

SuC3(5) 18:00-18:15

Interval Day-ahead Load Forecast of Micro Grid with Fuzzy Similar Data Selection and Gaussian Process

Hui Shao, Xiaoyan Sun, Lin Zhao and Jingren Wang School of Information and Control Engineering, China University of Mining and Technology, China ÷

- A fuzzification method of the most important features impacting the load forecast is presented.
- The similar data selection based on the fuzzified features and dynamic time warping is proposed.
- The Gaussian process with the fuzzified features is trained to obtain the load interval forecast

SuC3(2) 17:15-17:30

Adaptive Control for Hysteresis motor driving servo System with Preisach Model

Xuehui Gao and Bo Sun Department of Mechanical and Electrical Engineering, Shandong University of Science and Technology, China

Adaptive control results

and Tracking error

- · An adaptive controller is proposed for hysteresis motor driving servo system
- The hysteresis nonlinearity is described by Preisach model
- High order neural network(HONN) estimates
- the unknown parameters · Tracking error is represented as a scalar error

· Lyapunov function guarantees the stability of the closed-loop system

SuC3(4) 17:45-18:00

sliding mode control of the dc-dc converter based on high-gain observer

Hebin Wang, Chunhong Han, and Rui Bai

Liaoning University of Technology Jinzhou, China,

- The Model of Buck Converter
- · Design of the Buck Converter With High Gain Observer
- Design of The Sliding Mode Control Based on High Gain Observer

95

ramework of our

algorithm

SuC4 Structural Analysis and Evolutionary Dynamics of Complex Systems Session Chairs: Chengyi Xia and Guoyuan Qi Room : THE RESIDENCE 4, 17:00-18:15, Sunday, July 22, 2018

SuC4(1) 17:00-17:15

SuC4(3) 17:30-17:45

A fast graph clustering algorithm based on the belief dynamics Hui-Jia Li, School of Management Science and Engineering,

Central University of Finance and Economics, Beijing 100080, China. (email:hjli@amss:ac:cn) Zhan Bu,

Jiangsu Provincial Key Laboratory of E-Business, Nanjing University of Finance and Economics, Nanjing 210003, China.

Chengyi Xia

School of Computer Communication and Engineering, Tianjin University of Technology, Tianjin 300384, China.

The traditional optimization or heuristic methods are usually used based on the assumption that clusters are groups of nodes similar to each other, they often compare the internal and external cohesion of a subgraph. However, to obtain an acceptable accuracy, these methods usually have a high-level computational complexity. To detect the cluster configuration with a high speed, in this paper, we introduces a new algorithm that discovers the network clusters using the limit state of the belief dynamics, model we proposed. Under the strict convergence condition of belief dynamics, the cluster labels of the corresponding node will converge to the ideal states. The algorithm is very fast and its computational complexity is O(N) for sparse networks, which is very easy to implement. Extensive simulations using both synthetic benchmark networks and realworld networks.

SuC4(5) 18:00-18:15

A Novel Community Detection Algorithm Based on the Node Correlation Strength in Complex Networks

Yongping Luo, Li Wang, Shiwen Sun, Chengyi Xia Key Laboratory of Intelligence Computing and Novel Software Technology, Tianjin University of Technology, China

- The node correlation strength is proposed and used to measure the similar nodes;
- A novel algorithm based on the node correlation strength is proposed and named NCS;
- The number of community given by the NSC algorithm is consistent with the actual number;
- The time complexity of the NCS algorithm is close to O(n + m).

Exploring small-world property of brain network during fatigue-driving

A Hamiltonian Conservative chaotic system

Guoyuan Qi

School of Electrical Engineering and Automation

Tianjin Polytechnic University, China

-3000

Weidong Dang and Zhongke Gao School of Electrical and Information Engineering, Tianjin University, China

- Conducting simulated driving experiments to explore the change of small-world property in brain network
- Phase lag index is applied to construct the brain functional network from EEG signals
- the small-world property increases after the driving fatigue occurs
- Providing an insight into the self-optimizing mechanism of brain for maintaining efficient information processing

Driving simulator device and experimental scene settings

111111

Figure 1 Number of

communities given by the current algorithms

SuC4(2) 17:15-17:30

1. Literature review and problem

2. Modelling of a 4D Euler equation

1. Analysis of 4D Hamiltonian chaotic

Modelling of a Hamiltonian conservative

chaotic system with Large Lyapunov

statements

exponent

system

Author Index

Index of Authors

CC: Session Chair

			Chen, Jian	CC	FrA4
Δ			Chen, Jiangcheng		FrB5
- ~ -					FrPoB
Alhassan, Ahmad		SaB1	Chen, Jianling		FrA1
An, Haibo		FrB6	Chen, Jie		SaPoA
An, Peng		FrA2	Chen, Jing		FrPoB
	CC	FrA2	Chen, Junjun		FrC3
			Chen, Lei		FrA4
- R -			Chen, Ming		SaC3
В					SaC3
Bai, Rui		SuC3	Chen, Mou		FrC5
Bao, Jiatong		FrA6	Chen, Ning		SuB3
Bao, Xiujuan		FrPoB	chen, peng		FrA4
Bey, Henrik		FrA6	Chen, Qi		SuB4
Bhutta, M Usman Maqbool		FrB6	Chen, Qiming		FrPoB
Bi, Sheng		FrB5	Chen, Rong		FrA2
		FrB6	Chen, Songsong		SuA3
		FrPoA	o. T		SuB3
		FrPoB	Chen, Tao		FrC2
Bi, Yuping		SaPoB	Chen, Wen		SaC1
Bian, Jingwei	~~	Sab2			FrA3
Bie, Donyang	00	FrPoA	Chen, Xinnua		FIPOB
Dia Liana	UU	FIPOB	Chen, Xinwei		SuC2
Bin, Liang		FIBZ	Chen, Xu		Sapoa
BIII, LIU Bu Vienve			Chen, Auelong		FIPUA
Bu, Alanye			Chen, Zengqiang		
Du, Zildii Butt Jowed Mehmood		SuC4	Chen, Zheng		FIC3
Bull, Jawad Merimood		FIAO	Cheng Han		Sarub ErB6
-			Cheng Hong		FrDoA
- C -			Cherig, Hong		FrPoR
CAL Bin		SaPoA	Cheng Hongtai		FrA6
Cai Hong		SuC2	Cheng Jianxin		SaPoA
cai minoxue		FrA2	Cheng Long		FrB1
Cai Wenijan		SaPoB	choing, zong	CC	FrB1
Cai, Xingpu		SuB3	Cheng, Xiaoging	00	SuA2
Cao. Fengkui		FrA3	CHENG. Yi		SaB2
Chai. Hui		SaC2	Cheng, Yu		FrB5
Chai, Junwei		SaPoB			FrB6
Chang, Ji		FrPoA	Chi, Yudong		SaC2
Chang, Jian		FrB5	CHU, Xiaoguang		SaPoA
		SuC1	Coimbra, Paulo		SaA1
Chang, Yuan		FrA3	Cong, Ming		FrPoB
Chen, Bin		SaPoB			SaA2
Chen, Donglei		FrC2	Cong, Yang		SuA4
chen, haiyong		FrA4			SuA4
Chen, Hao		SuA2		CC	SuA4
Chen, Haotian		FrA3	Crisóstomo, Manuel		SaA1
Chen, He		SaA3	Cui, Jianfeng		FrA4
		SaA3	Cui, Tengfei		FrB6
Chen, Heping		FrA6	Cui, Yingxue		SaA2
		FrB5	Cuie, Li		SuC2
	CC	FrB5			
		SaA1	- D -		
		SuA4			
		SuC1	Dai, Yu	CC	FrB3
Chen, hongjun		SaPoB	Dang, Dan		FrPoB
Chen, Hua		FrA4	dang, weidong		SuC4
		FrA4	Deng, Li		SuB2
Chen, Jiahai		FrA2	Deng, Li-ping		FrPoA
		FrA2	Deng, Qi		SuA1
Chen, Jiaming		SaPoA	Deng, Xin		SaA3
Chen, Jian		⊢rA4	Dezni, Wang		SaPoB

Ding, Changqiang Ding, Chao Ding, Feng Ding, Ke Ding, Peng Ding, Shihong Ding, Weidong Ding, Yutong Dong, Ai Dong, Dashan Dong, Hongli Dong, Min dong, mingjie Dong, Ruili Dong, Shu-yang Dong, Shu-yang Dong, Xingliang Du, Haibo Du, Jiacheng Du, Weng Du, Peili Du, Yu Du, Zhijiang Duan, Peng Duan, Pu Duan, Zhuoping	сс	SaPoB FrA3 FrC5 SaB4 SuA1 SuA1 SuA1 FrPoA SuC1 FrB3 SaA4 SaB3 FrA1 FrPoB FrA2 FrB1 SuB2 FrA6 FrPoA SuA1 SuA1 SuA1 SuA1 SuA1 SuA1 SuA2 FrC5 FrPoB FrB3 FrB3 FrB3 SuB1 SaB1 FrB3 FrB6 SaB1
 - F - Fan, Jie Fan, Zhen Fang, Dandan Fang, Jin fang, qiang Fang, Qiang Fang, Weining Fang, Weining Fang, Yongchun Fei, Fei Fei, Fei Fei, Peng Feng, Li Feng, Linlin Feng, Yangfei Feng, Yong Feng, Zhi Feng, Zhi		FrPoA FrB4 FrA2 SaA4 FrA3 FrA5 SaA2 SaA3 SaA3 SaA3 SaPoA FrC1 FrPoB FrC3 SaPoB SaC1 SaPoB SaC1 SaPoB SaC1 SaPoB SaC1 SaPoB SaC1 SaPoB SaC1 SaPoB SaC1 SaPoB SaC1 SaPoB SaC1 SaPoB SaC1 SaPoB SaC1 SaPoB SaC1 SaB3 SaC1
Ferreira, João Fu, Hao Fu, Lingkun		SaA1 SaA1 SaC3 SuB4
Fu, Yi Fu, Yili		FrB3 FrB3
Fu, Zhimin Fukuda, Toshio		SaA4 FrC2

- G -		
Gan, Jiatian		SaPoB
		SaPoB
One Directory		SuA3
Gao, Bingtuan	66	SuA3
		SuB3
	СС	SuB3
Gao, Ciwei		SuA3
		SuB3
Gao, Haitao		FrB5
		SaB3
Gao, linwu		SaR1
Gao, Qiming		SuA4
Gao, Qing-ji		FrPoA
Gao, Xiang		SaC1
Gao, Xiaohan		FrA5
Gao, Xuehui		SuC3
Gao, Ying		SaPoA
Gao, Zhongke		SuC4
Gaupiun Tang		SaPoB
Ge Meng		FrA5
Ge, Ming-Feng		SaC4
geng, yanjuan		SaC1
Gu, Deying		SuA4
Gu, Feng		SaB4
Gu, Panpan		FrPoB
Gu, Yufeng		FrA3
Guan, Wenyuan		FrPoA
Guan, Xiantu Guan, Xong		FIC5 SuB4
GuanKun Jin		SuB4
Guo. Bin		SuB2
Guo, Chao		SaPoA
Guo, Chenguang		FrB5
Guo, Jianchuan		SaB4
Guo, Lanshen		SaPoA
Guo, Qiang		SuC3
Guo, Shijie		FrC1
Guo, Alan	CC	FIP0B ErB4
Guo Xiaoiun	00	SaPoB
quo, xin		SaC1
Guo, Xuemei		FrPoA
Guoqiang, Sun		FrPoB
- H -		
haixia shang		FrC3
hamza, khaled		SaB1
Han, Chunhong		SuC3
Han, Danhua		FrC4
Han, Dingqiang		FrB6
Han, Jianda		FrA5
		FrC4
		SaB4
Han Yuwan		SaC1
Han Zhi		FrA5
	CC	FrA5
Hao, Jiasheng		FrPoA
Hao, Lina		SaPoA
Hao, Xu		SuB3

SuB2

He, Ailin

He, Jinghan		SaPoB	Huijuan, Lu		SaB2
		SuA3	Huo, Xianxu		SuA3
		SuB3	Huo, Zhichen		FrB1
He, Liujin		SaA1			
He, Ping		FrB6	- -		
He, Shubao		SuC1	- Late 9. Late Late		0-00
He, Wei		SaA4	Ishii, idaku		Sab2
	<u> </u>	SuC3			
			- J -		
He Xionaviona		SaPoR	li Hui		SaPoA
He Youvuan		SaPoA			SaPoB
He Yucheng		FrB3	ol, Rahya		SaPoB
He Yuging		SaB4	Ji Liang		FrA6
Hemina. Zhena		FrB2	Jia. Jun		SaPoB
Hiller, Markus		FrA6	,		SaPoB
Hofmann, Christian		FrA6	Jia, Kai		FrPoA
Hong, Liang		SuC2	Jia, Ruiming		SaA2
Hong, Qi		FrA6	Jia, Rurui		FrB1
Hong, Zeqi		SuB3	jian, wen		SuB1
Hongxi, Xue		SuC2	Jiang, Aipeng		SaPoA
Hou, Che		FrA5	Jiang, Min		FrA2
hou, huirang		FrB4	Jiang, Mingjun		SaB2
Hou, Jiali		SuB1	Jiang, Pengchun		SuB2
Hou, Jie		SaB4	Jiang, Qi		FrPoB
Hou, Jinsen		SuB1			FrPoB
Hou, Ting		FrA1	Jiang, Qing		SuB2
		FrA1	Jiang, Xietu		SaA2
Hu, Guoqiang		SaB3	Jiang, Xuepu		Sapos
Hu, Jianmin		FIB4	Jiang, Yong		Sab4
			Jiang, Zhijie		SUAZ
Hu lin-Bo		FICZ SaC4	Jidi III Ig, II Jilin Wang		SaPoB
Hu Min		SaPoB	Jin Minghe		SaB3
		SaPoB	Jin Shanhai		FrC1
Hu Qinglei		SaC3	Jin Yonggao		FrC1
Hu. Shaopeng		SaB2	iuan, cui		FrC2
HU. Tianiiang		FrA3	Jac., ea.		
Hu, Yin		SaA2	IZ.		
Hu, Ying		FrB3	- n -		
Hu, Zhengyang		SuA3	Kang, Jie		FrPoA
Hu, Zhonghua		FrB2	Kang, Yu		FrPoA
		FrB2			FrPoA
	CC	FrB2	Kong, Xiangzhan		FrB3
Hua, Changchun		FrA5	Kong, Zhiwei		SaPoB
hua, hean		SaA3	Kou, Liwei		SaB2
Huang, Chengwei		SaA3	Kozlowski, Krzysztof R.		SuC1
		SaPoA		CC	SuC1
Huang, Congzhi	00	SuC3	Kuang, Yiqun		FrPoA
Uluara Quallar		SuC3			
Huang, Guojian		SaCi	- L -		
Huang, lialiang		FrPoR	Lei Daijang		SuA2
Huang Jian		FrC5	Lei Jianiun		SuA2
Huang Manyun		SaPoB	Lei Xinvu		SuB2
Huang, Mengtao		SuB2	Lemos. Pedro		SaA1
Huang, Na		FrC5	Li. Baoquan		FrA4
Huang, Panfeng		FrB2		CC	FrA4
Huang, Rui		FrPoB		CC	SaB2
Huang, Shihui		SaB3			SaB4
Huang, Yalou		FrA6	Li, Bin		FrB5
Huang, Yanli		SaA4	Li, Bing		FrB3
		SaB4			FrB4
Huang, Yi		FrA2	Li, Bingbing		FrC4
Huang, Yunwen		FrA5	Li, Changcheng		SaPoB
Huang, Zheng		SaC1	Li, Chen		SuA3
Huang, ZhiYong		FrA2	Li, Chunping		SaPoB
huaping, wang		FrC2	Li, Chunyuan		SaPoA

Li, Congjian		FrB6	Li, Zhihao
Li, Deizhi		SuB3	Li, Zhijun
Li, Dejin		SaC3	-
Li. Dezhi		SuA3	
Li Fenamina		FrPoB	li Ziwei
Li, i chghing		FrPoB	Lian Chao
Li Cong			Lian Vufana
Li, Gang		FrC3	Lian, Yufeng
li, guanglin		SaC1	Liang, Bin
Li, Hong		SaB2	Liang, Chen
li, hongyang		FrPoA	Liang, Dong
Li, Hui-Jia		SuC4	
Li, Jing		SaB2	Liang, Jiaqi
		SaB2	Liang, Wei
Li. Junaina		SuB1	Liang, Xiao
li kang		FrPoA	3, 11
Li Kangiu		FrPoB	
	<u> </u>	SaC4	Liona Vinvi
	00		
		FIAD	LIAO, Qinghai
Li, Lianhui		FrPoB	Lin, Jiaxi
li, lin		SuA3	Lin, Lei
Li, Manli		FrPoA	Lin, Shanrong
		SaPoB	Lin, Wanbiao
Li, Menggang		SaC2	Lin, Yang
	CC	SaC2	Lina, Hao
Li, Mengnan		SuB4	Ling, Huang
Li Mengya		FrPoA	
Li Mi		FrPoR	
		SUB4	
		Sub4	
		Sach	Liu, Baolu
Li, Pengpeng		SaC3	Liu, Bin
Li, Rongjie		SaA1	liu, bin
Li, Shaodong		FrB3	Liu, Bing
Li, Shaoyuan		FrB4	Liu, Bingyang
li, sheng		FrA4	Liu, Changqing
Li, Shengguan		• • •	Line Dimen
		SaA3	Liu, Ding
	СС	SaA3 SaA3	Liu, Ding Liu. Dong
	СС	SaA3 SaA3 SuA1	Liu, Ding Liu, Dong
	СС	SaA3 SaA3 SuA1 Er∆1	Liu, Ding Liu, Dong
Li, Tao	СС	SaA3 SaA3 SuA1 FrA1	Liu, Ding Liu, Dong Liu, Dongfang
Li, Tao	cc	SaA3 SaA3 SuA1 FrA1 SuB4	Liu, Ding Liu, Dong Liu, Dongfang
Li, Tao	сс	SaA3 SaA3 SuA1 FrA1 SuB4 SuB4	Liu, Ding Liu, Dong Liu, Dongfang Liu, Guang
Li, Tao	сс	SaA3 SaA3 SuA1 FrA1 SuB4 SuB4 FrPoA	Liu, Dong Liu, Dongfang Liu, Guang Liu, Guacong
Li, Tao Li, Wei Li, Weihao	сс	SaA3 SaA3 SuA1 FrA1 SuB4 SuB4 FrPoA SaA2	Liu, Ding Liu, Dong Liu, Dongfang Liu, Guang Liu, Guocong Liu, Guodong
Li, Tao Li, Wei Li, Weihao Li, Weixun	сс	SaA3 SaA3 SuA1 FrA1 SuB4 SuB4 FrPoA SaA2 FrB5	Liu, Ding Liu, Dong Liu, Dongfang Liu, Guang Liu, Guocong Liu, Guodong Liu, Hong
Li, Tao Li, Wei Li, Weihao Li, Weixun Li, Wen Jung	сс	SaA3 SaA3 SuA1 FrA1 SuB4 SuB4 FrPoA SaA2 FrB5 FrC4	Liu, Ding Liu, Dong Liu, Dongfang Liu, Guang Liu, Guocong Liu, Guodong Liu, Hong Liu, Houde
Li, Tao Li, Wei Li, Weihao Li, Weixun Li, Wen Jung Li, Wenxing	сс	SaA3 SaA3 SuA1 FrA1 SuB4 SuB4 FrPoA SaA2 FrB5 FrC4 SaA1	Liu, Ding Liu, Dong Liu, Dongfang Liu, Guang Liu, Guocong Liu, Guodong Liu, Hong Liu, Hong Liu, Houde Liu, Huaping
Li, Tao Li, Wei Li, Weihao Li, Weixun Li, Wen Jung Li, Wenxing Li, Xiangyang	сс	SaA3 SaA3 SuA1 FrA1 SuB4 SuB4 FrPoA SaA2 FrB5 FrC4 SaA1 FrPoB	Liu, Ding Liu, Dong Liu, Dongfang Liu, Guang Liu, Guocong Liu, Guodong Liu, Hong Liu, Hong Liu, Houde Liu, Huaping
Li, Tao Li, Wei Li, Weihao Li, Weixun Li, Wen Jung Li, Wenxing Li, Xiangyang li, xiaomao	сс	SaA3 SaA3 SuA1 FrA1 SuB4 SuB4 FrPoA SaA2 FrB5 FrC4 SaA1 FrPoB SuA4	Liu, Ding Liu, Dong Liu, Dongfang Liu, Guang Liu, Guocong Liu, Guodong Liu, Hong Liu, Hong Liu, Houde Liu, Huaping Liu, Jie
Li, Tao Li, Wei Li, Weihao Li, Weixun Li, Wen Jung Li, Wenxing Li, Xiangyang Ii, Xiaomao Li, Xinde	сс	SaA3 SaA3 SuA1 FrA1 SuB4 SuB4 FrPoA SaA2 FrB5 FrC4 SaA1 FrPoB SuA4 FrC4	Liu, Ding Liu, Dong Liu, Dongfang Liu, Guang Liu, Guocong Liu, Guodong Liu, Hong Liu, Hong Liu, Houde Liu, Huaping Liu, Jie Liu, Jie
Li, Tao Li, Wei Li, Weihao Li, Weixun Li, Wen Jung Li, Wenxing Li, Xiangyang Ii, xiaomao Li, Xinde Li, Yang	сс	SaA3 SaA3 SuA1 FrA1 SuB4 SuB4 FrPoA SaA2 FrB5 FrC4 SaA1 FrPoB SuA4 FrC4 FrC4 FrC4	Liu, Ding Liu, Dong Liu, Dongfang Liu, Guang Liu, Guocong Liu, Guodong Liu, Hong Liu, Hong Liu, Houde Liu, Huaping Liu, Jie Liu, Jingtai
Li, Tao Li, Wei Li, Weihao Li, Weixun Li, Wen Jung Li, Wenxing Li, Xiangyang Ii, xiaomao Li, Xinde Li, Yang	сс	SaA3 SaA3 SuA1 FrA1 SuB4 SuB4 FrPoA SaA2 FrB5 FrC4 SaA1 FrPoB SuA4 FrC4 FrA4 FrA4 FrB6	Liu, Ding Liu, Dong Liu, Dongfang Liu, Guang Liu, Guocong Liu, Guodong Liu, Hong Liu, Hong Liu, Houde Liu, Huaping Liu, Jie Liu, Jie
Li, Tao Li, Wei Li, Weihao Li, Weixun Li, Wen Jung Li, Wenxing Li, Xiangyang Ii, xiaomao Li, Xinde Li, Yang	сс	SaA3 SaA3 SuA1 FrA1 SuB4 SuB4 FrPoA SaA2 FrB5 FrC4 SaA1 FrPoB SuA4 FrC4 FrA4 FrA4 FrB6 SuC2	Liu, Ding Liu, Dong Liu, Dongfang Liu, Guang Liu, Guocong Liu, Guodong Liu, Hong Liu, Hong Liu, Houde Liu, Huaping Liu, Jie Liu, Jie
Li, Tao Li, Wei Li, Weihao Li, Weihao Li, Weixun Li, Wen Jung Li, Wenxing Li, Xiangyang Ii, xiaomao Li, Xinde Li, Yang	сс	SaA3 SaA3 SuA1 FrA1 SuB4 SuB4 FrPoA SaA2 FrB5 FrC4 SaA1 FrPoB SuA4 FrC4 FrA4 FrA4 FrB6 SuC2 ErPoP	Liu, Ding Liu, Dong Liu, Dongfang Liu, Guang Liu, Guocong Liu, Guodong Liu, Hong Liu, Hong Liu, Houde Liu, Huaping Liu, Jie Liu, Jingtai
Li, Tao Li, Wei Li, Weihao Li, Weixun Li, Wen Jung Li, Wenxing Li, Xiangyang Ii, Xiaomao Li, Xinde Li, Yin Li, Yi	сс	SaA3 SaA3 SuA1 FrA1 SuB4 SuB4 FrPoA SaA2 FrB5 FrC4 SaA1 FrPoB SuA4 FrC4 FrA4 FrB6 SuC2 FrPoB FrPoB SuS5	Liu, Ding Liu, Dong Liu, Dongfang Liu, Guang Liu, Guocong Liu, Guodong Liu, Hong Liu, Hong Liu, Houde Liu, Huaping Liu, Jie Liu, Jingtai
Li, Tao Li, Wei Li, Weihao Li, Weixun Li, Wen Jung Li, Wenxing Li, Xiangyang Ii, xiaomao Li, Xinde Li, Yang Li, Yi	сс	SaA3 SaA3 SuA1 FrA1 SuB4 SuB4 FrPoA SaA2 FrB5 FrC4 SaA1 FrPoB SuA4 FrC4 FrA4 FrA4 FrB6 SuC2 FrPoB FrB5 Fr25 Fr25	Liu, Ding Liu, Dong Liu, Dongfang Liu, Guang Liu, Guocong Liu, Guodong Liu, Guodong Liu, Hong Liu, Hong Liu, Houde Liu, Huaping Liu, Jie Liu, Jingtai
Li, Tao Li, Wei Li, Weihao Li, Weixun Li, Wen Jung Li, Wenxing Li, Xiangyang Ii, xiaomao Li, Xinde Li, Yang Li, Yi Li, Yi	сс	SaA3 SaA3 SuA1 FrA1 SuB4 SuB4 FrPoA SaA2 FrB5 FrC4 SaA1 FrPoB SuA4 FrC4 FrA4 FrA4 FrB6 SuC2 FrPoB FrB5 FrPoB	Liu, Ding Liu, Dong Liu, Dongfang Liu, Guang Liu, Guocong Liu, Guodong Liu, Guodong Liu, Hong Liu, Hong Liu, Houde Liu, Huaping Liu, Jie Liu, Jingtai
Li, Tao Li, Wei Li, Weihao Li, Weixun Li, Wen Jung Li, Wenxing Li, Xiangyang Ii, xiaomao Li, Xinde Li, Yang Li, Yi Li, Yi	сс	SaA3 SaA3 SuA1 FrA1 SuB4 SuB4 FrPoA SaA2 FrB5 FrC4 SaA1 FrPoB SuA4 FrC4 FrA4 FrA4 FrA6 SuC2 FrPoB FrB5 FrPoB FrPoB	Liu, Ding Liu, Dong Liu, Dongfang Liu, Guang Liu, Guocong Liu, Guodong Liu, Guodong Liu, Hong Liu, Hong Liu, Houde Liu, Huaping Liu, Jie Liu, Jingtai
Li, Tao Li, Wei Li, Weihao Li, Weixun Li, Wen Jung Li, Wenxing Li, Xiangyang Ii, xiaomao Li, Xinde Li, Yang Li, Yi Li, Yi	сс	SaA3 SaA3 SuA1 FrA1 SuB4 SuB4 FrPoA SaA2 FrB5 FrC4 SaA1 FrPoB SuA4 FrC4 FrA4 FrA4 FrA6 SuC2 FrPoB FrB5 FrPoB FrPoB SaB3	Liu, Ding Liu, Dong Liu, Dongfang Liu, Guang Liu, Guocong Liu, Guodong Liu, Guodong Liu, Hong Liu, Hong Liu, Houde Liu, Huaping Liu, Jie Liu, Jingtai
Li, Tao Li, Wei Li, Weihao Li, Weixun Li, Wen Jung Li, Wenxing Li, Xiangyang Ii, xiaomao Li, Xinde Li, Yang Li, Yi Li, Yi	сс	SaA3 SaA3 SuA1 FrA1 SuB4 SuB4 FrPoA SaA2 FrB5 FrC4 SaA1 FrPoB SuA4 FrC4 FrA4 FrA4 FrA6 SuC2 FrPoB FrB5 FrPoB FrPoB SaB3 SaC2	Liu, Ding Liu, Dong Liu, Dongfang Liu, Guang Liu, Guocong Liu, Guodong Liu, Guodong Liu, Hong Liu, Houde Liu, Huaping Liu, Jie Liu, Jie Liu, Jingtai
Li, Tao Li, Wei Li, Weihao Li, Weixun Li, Wen Jung Li, Wenxing Li, Xiangyang Ii, xiaomao Li, Xinde Li, Yang Li, Yi Li, Yi	сс	SaA3 SaA3 SuA1 FrA1 SuB4 SuB4 FrPoA SaA2 FrB5 FrC4 SaA1 FrPoB SuA4 FrC4 FrA4 FrC4 FrA4 FrB6 SuC2 FrPoB FrB5 FrPoB FrPoB SaB3 SaC2 SuB1	Liu, Ding Liu, Dong Liu, Dongfang Liu, Guang Liu, Guocong Liu, Guodong Liu, Guodong Liu, Hong Liu, Houde Liu, Huaping Liu, Jie Liu, Jie Liu, Jingtai
Li, Tao Li, Wei Li, Weihao Li, Weixun Li, Wen Jung Li, Wenxing Li, Xiangyang Ii, xiaomao Li, Xinde Li, Yang Li, Yi Li, Yi Li, Yibin	сс	SaA3 SaA3 SuA1 FrA1 SuB4 SuB4 FrPoA SaA2 FrB5 FrC4 SaA1 FrPoB SuA4 FrC4 FrA4 FrA4 FrA4 FrB6 SuC2 FrPoB FrB5 FrPoB FrPoB SaB3 SaC2 SuB1 FrPoA	Liu, Ding Liu, Dong Liu, Dongfang Liu, Guang Liu, Guocong Liu, Guodong Liu, Hong Liu, Hong Liu, Houde Liu, Huaping Liu, Jie Liu, Jie Liu, Jingtai
Li, Tao Li, Wei Li, Weihao Li, Weixun Li, Wen Jung Li, Wen Jung Li, Wenxing Li, Xiangyang Ii, xiaomao Li, Xinde Li, Yang Li, Yibin	сс	SaA3 SaA3 SuA1 FrA1 SuB4 SuB4 FrPoA SaA2 FrB5 FrC4 SaA1 FrPoB SuA4 FrC4 FrA4 FrA4 FrB6 SuC2 FrPoB FrB5 FrPoB FrPoB SaB3 SaC2 SuB1 FrPoA SaPoA	Liu, Ding Liu, Dong Liu, Dongfang Liu, Guang Liu, Guocong Liu, Guodong Liu, Hong Liu, Houde Liu, Houde Liu, Huaping Liu, Jie Liu, Jie Liu, Jingtai Liu, Jingtai
Li, Tao Li, Wei Li, Weihao Li, Weixun Li, Wen Jung Li, Wenxing Li, Xiangyang Ii, xiaomao Li, Xinde Li, Yang Li, Yi Li, Yibin	сс	SaA3 SaA3 SuA1 FrA1 SuB4 SuB4 FrPoA SaA2 FrB5 FrC4 SaA1 FrPoB SuA4 FrC4 FrA4 FrA4 FrB6 SuC2 FrPoB FrB5 FrPoB FrB5 FrPoB SaB3 SaC2 SuB1 FrPoA SaPoA SuA2	Liu, Ding Liu, Dong Liu, Dongfang Liu, Guang Liu, Guocong Liu, Guodong Liu, Hong Liu, Houde Liu, Houde Liu, Huaping Liu, Jie Liu, Jie Liu, Jie Liu, Jingtai Liu, Jingtai
Li, Tao Li, Wei Li, Weihao Li, Weixun Li, Wen Jung Li, Wenxing Li, Xiangyang Ii, xiaomao Li, Xinde Li, Yang Li, Yi Li, Yibin	CC CC	SaA3 SaA3 SuA1 FrA1 SuB4 SuB4 FrPoA SaA2 FrB5 FrC4 SaA1 FrPoB SuA4 FrC4 FrA4 FrA4 FrB6 SuC2 FrPoB FrB5 FrPoB FrB5 FrPoB SaB3 SaC2 SuB1 FrPoA SaPoA SuA2 SuA2	Liu, Ding Liu, Dong Liu, Dongfang Liu, Guang Liu, Guocong Liu, Guodong Liu, Hong Liu, Houde Liu, Houde Liu, Huaping Liu, Jie Liu, Jie Liu, Jingtai Liu, Jingtai
Li, Tao Li, Wei Li, Weihao Li, Weihao Li, Weixun Li, Wen Jung Li, Wenxing Li, Xiangyang Ii, xiaomao Li, Xinde Li, Yang Li, Yi Li, Yibin	сс	SaA3 SaA3 SuA1 FrA1 SuB4 SuB4 FrPoA SaA2 FrB5 FrC4 SaA1 FrPoB SuA4 FrC4 FrA4 FrA6 SuC2 FrPoB FrB5 FrPoB FrB5 FrPoB SaB3 SaC2 SuB1 FrPoA SaPoA SuA2 SuA2 FrPoA SaPoA SuA2 FrPoA	Liu, Dong Liu, Dongfang Liu, Guang Liu, Guocong Liu, Guodong Liu, Guodong Liu, Hong Liu, Houde Liu, Houde Liu, Huaping Liu, Jie Liu, Jie Liu, Jie Liu, Jingtai Liu, Jingtai
Li, Tao Li, Wei Li, Weihao Li, Weihao Li, Weixun Li, Wen Jung Li, Wenxing Li, Xiangyang Ii, xiaomao Li, Xinde Li, Yang Li, Yi Li, Yi Li, Yibin Li, Yongfa Li, Yongfu	сс	SaA3 SaA3 SuA1 FrA1 SuB4 SuB4 FrPoA SaA2 FrB5 FrC4 SaA1 FrPoB SuA4 FrC4 FrA4 FrA4 FrA6 SuC2 FrPoB FrB5 FrPoB FrB5 FrPoB SaB3 SaC2 SuB1 FrPoA SaPoA SuA2 FrPoB FrPoA SuA2 FrPoB FrPoB FrPoB FrPoB FrPoB FrPoB FrPoB FrPoA	Liu, Ding Liu, Dong Liu, Dongfang Liu, Guang Liu, Guocong Liu, Guodong Liu, Hong Liu, Houde Liu, Houde Liu, Huaping Liu, Jie Liu, Jie Liu, Jie Liu, Jingtai Liu, Jingtai Liu, Jinkun Liu, Kaijian Liu, Kunbin Liu, Lei Liu, Liang Liu, Liang Liu, Lianging
Li, Yong Jami Li, Wei Li, Weihao Li, Weihao Li, Weixun Li, Wen Jung Li, Wenxing Li, Xiangyang Ii, xiaomao Li, Xinde Li, Yang Li, Yang Li, Yi Li, Yibin Li, Yongfa Li, Yongfu Li, Yonggao Li, Zerui	сс	SaA3 SaA3 SuA1 FrA1 SuB4 SuB4 FrPoA SaA2 FrB5 FrC4 SaA1 FrPoB SuA4 FrC4 FrA4 FrA4 FrB6 SuC2 FrPoB FrB5 FrPoB FrPoB SaB3 SaC2 SuB1 FrPoA SaPoA SuA2 FrPoB FrPoB FrPoB FrPoA SaPoA SuA2 FrPoB FrPoA SaPoA	Liu, Ding Liu, Dong Liu, Dongfang Liu, Guang Liu, Guocong Liu, Guodong Liu, Hong Liu, Hong Liu, Houde Liu, Huaping Liu, Jie Liu, Jie Liu, Jie Liu, Jingtai Liu, Jingtai
Li, Tao Li, Wei Li, Weihao Li, Weihao Li, Weixun Li, Wen Jung Li, Wenxing Li, Xiangyang Ii, xiaomao Li, Xinde Li, Yang Li, Yang Li, Yi Li, Yibin Li, Yongfa Li, Yongfu Li, Yongfu	сс	SaA3 SaA3 SuA1 FrA1 SuB4 SuB4 FrPoA SaA2 FrB5 FrC4 SaA1 FrPoB SuA4 FrC4 FrA4 FrA4 FrA6 SuC2 FrPoB FrB5 FrPoB FrPoB SaB3 SaC2 SuB1 FrPoA SaPoA SuA2 SuA2 FrPoB FrPoA SaPoB FrPoA SaPoB FrPoA SaPoB SaD3	Liu, Ding Liu, Dong Liu, Dongfang Liu, Guang Liu, Guocong Liu, Guodong Liu, Hong Liu, Hong Liu, Houde Liu, Huaping Liu, Jie Liu, Jie Liu, Jie Liu, Jingtai Liu, Jinkun Liu, Jizhu Liu, Kaijian Liu, Kunbin Liu, Kunbin Liu, Liang Liu, Liang Liu, Lianqing
Li, Yang yanu Li, Wei Li, Weihao Li, Weihao Li, Weixun Li, Wen Jung Li, Wenxing Li, Xiangyang Ii, xiaomao Li, Xinde Li, Yang Li, Yang Li, Yi Li, Yi Li, Yibin Li, Yongfa Li, Yongfu Li, Yongfu	сс	SaA3 SaA3 SuA1 FrA1 SuB4 SuB4 FrPoA SaA2 FrB5 FrC4 SaA1 FrPoB SuA4 FrC4 FrA4 FrA4 FrA6 SuC2 FrPoB FrB5 FrPoB FrB5 FrPoB SaB3 SaC2 SuB1 FrPoA SaPoA SuA2 SuA2 FrPoB FrPoA SaPoB FrPoA SaPoB SaPoB SaPoB	Liu, Ding Liu, Dong Liu, Dongfang Liu, Guang Liu, Guocong Liu, Guodong Liu, Hong Liu, Hong Liu, Houde Liu, Huaping Liu, Jie Liu, Jie Liu, Jie Liu, Jingtai Liu, Jingtai Liu, Kaijian Liu, Kaijian Liu, Kunbin Liu, Lei Liu, Liang Liu, Lianqing
Li, Verie (J. J. J	сс	SaA3 SaA3 SuA1 FrA1 SuB4 SuB4 FrPoA SaA2 FrB5 FrC4 SaA1 FrPoB SuA4 FrC4 FrA4 FrA6 SuC2 FrPoB FrB5 FrPoB FrB5 FrPoB SaB3 SaC2 SuB1 FrPoA SaPoA SuA2 SuA2 FrPoB FrPoA SaPoB FrPoA SaPoB FrPoA SaPoB SaPoB SaPoB SaPoB SaPoB FrC2 SuB2 Fr22 SuB2 Fr22 SuB3	Liu, Ding Liu, Dong Liu, Dongfang Liu, Guang Liu, Guocong Liu, Guodong Liu, Hong Liu, Hong Liu, Houde Liu, Huaping Liu, Jie Liu, Jie Liu, Jie Liu, Jingtai Liu, Jinkun Liu, Kaijian Liu, Kaijian Liu, Kunbin Liu, Liang Liu, Liang Liu, Lin

SaA2 SuA4 SuC2 FrC1 SaPoA FrB2 SuA4 SaPoB SuA3 FrC4 FrB6 СС FrC5 СС FrPoA СС FrPoB SuB3 FrPoA FrC4 SaPoA SaA4 SuC2 SaA4 SaPoA SaPoB SuB3 SaPoB SaPoA SaB4 FrPoA FrPoB SaPoB SaC1 SaB4 FrB6 FrPoB SaA2 SaA4 SaB4 FrA3 SaA1 SaB4 SaB3 FrB2 FrA2 FrA2 SuC2 FrA4 FrA5 FrC4 SaC3 SuC1 SuC2 SaPoA SaPoA FrPoA FrB4 SuA1 SaPoA FrA3 FrA6 FrC1 FrC2 FrC4 SaC1

СС

SaC3 SaPoA SuA1

SuB2 FrPoB

Liu, Meiqin		FrB4	Ma, Wenqian		FrC4
Liu, Ming		FrB6	Ma, Xiaoping		FrPoA
		FrPoA	Ma, Xin		SaB3
Liu, Pipi		SaA4	Mai, Jingeng		SaB1
Liu, Rongkai		SaC1	Mai, Xiaoming		FrB5
Liu, Shenyu		FICT	Manii, Li		FIP0B
Liu, Shirong		FIC0 SaA2	Manyun Huang		SUBS FrDoB
Liu Shoubin		FrB3	MEL Fei		SaPoB
Liu. Shu		SuA3	Mei. Jun		SaPoB
liu, shuai		FrA1	- ,		SuA3
Liu, Shuaishi		SaPoA	Mei, Lei		SaA3
Liu, Tao	CC	FrB6	Meng, Deshan		FrB2
		SaA1	meng, qinghao		FrB4
		SaA1	Meng, Xiao		FrA5
	~~	SaA1	MIAO, Huiyu		SaPoB
Liv. Maiferra	CC	SaA1	Ming, Ni		FrPoB
			Mu Eap		SUDS
liu, Wenvue		FrC3	Mu, Fan Mu, Xiaogi		SaF0B SaB1
Liu. Xiaofei		FrPoB			OUDI
Liu, Xiuhua		SaA1	NI		
Liu, Yang		FrPoA	- IN -		
LIU, Yang		FrPoB	Ni, Ming		FrPoA
Liu, Yan-Jun		SaPoA			SaPoB
Liu, Yechao		SaB3	Ni, Pinghao		SaPoB
Liu, Yefeng		FrPoB			SuA3
LIU, YI		FrPoA			SuA3
liu, yingjie		F1B4 SoA4	Ni Yuahua		
Liu, Yong		SaA4 FrΔ3	Ni Yuanhua	CC	FrA1
Lid, Tong	CC	FrA3	Nigar Ahmed	00	FrC5
		SaA3			
		SaPoA	0		
Liu, Yueying		FrA1	-0-		
Liu, Yunda		FrPoB	Odekhe, Randolph		SaB1
Liu, Zhi-Wei		SaC4	Ou, Xianhua		SaPoB
Liu, Zhongxi		SaPoB	Ou, Yongsheng		FrB5
		SaC4	Ouyang, Huimin	~~	SaA3
Liu, Ziwen		Sac I SuC1			SaAS SaC1
Long Yucheng		FrA5	ouyang, yalao		0401
Lou, Shanvou		FrPoB	D		
Lou, Yu		SaB1	- P -		
Lu, Biao		SuA1	Pan, Bo		FrB3
Lu, Huimin		FrA3	Pan, Haipeng		FrC1
Lu, Mingquan		SaB2	Pan, Hong		FrC4
Lu, Qiang		SaPoB	Pan, Hongguang	~~	SuB2
	~~	SaPoB	Den Linen	CC	SuB2
	CC	SaC2	Pan, Ligan Don Minagiona		SaPoB ErDoA
			Pan, Mingqiang Panfeng, Huang		FIFUA FrB2
Luo. Guoshena		FrC3	Pang, Haofan		SaA1
Luo, Yongping		SuC4	Particke, Florian		FrA6
Lv, Donghao		SuC2	Pathan, Radan		FrA6
	СС	SuC2	Peeta, Srinivas		SaPoA
Lv, Wenjun		FrPoA	Peng, Jianqing		FrB2
Lv, Xiaoling		SaPoA	- - - - - - - - - -		FrB2
Lv, Zeyan		SuB3	Peng, Kaiqiao		FrC4
Lyu, Jianting		58A4	Peng, Liang	66	SaC1
Lyu, Jilicilau		Jan4	Pena Yonggang		
N 4			Pinheiro. João		SaA1
- IVI -					
Ma, Anji		FrB6	0		
Ma, Chunlei		FrPoA	- \		
Ma, Lei		SaPoA	Qi, Guoyuan		SuC4
Ma, Shugen		SuC1		CC	SuC4
Qi, Qi, Qi, Qia	Huan Juntong Xiaozhi n, Dianwei		FrA5 FrC5 FrB3 SaB3	Shi, Yukun Shicheng, V Shu, Sheng Sobral, Hele	
--------------------------	--	----	------------------------------	---	
Qia	n, Yongsheng	CC	SaB3 SuA2	Song, Aigu	
Qia	n, Youhui	CC	SuA2 FrB3	Song, Guol	
qiai Qia	ng, nuang io, Zhen		SaB3		
Qin	, Chaoyun		SaPoB	Song lions	
Qin	, Jiahu		FrPoA	Song, Jiano	
Qin	, Wen		FrC1	Song, Qi	
QIII	, randing	СС	FIBT FrC2	Song, Rong	
Qin	, Yong		SuA2	Song, Rui	
qing	g, shi vuan xu		FrC2 SuB1		
Qiu	, Hanzhao		FrA5	song, yulin	
Qiu	, Tiecheng		SaC3	Song, Zhiw	
Qiu	, Yihang		FrB4	Su, Bo	
Qiu	Yu		FrG2 FrA4	SUN BO	
Qu,	, Jijun		FrPoB	Sun, Chang	
Qu,	Linan		SuA3	Sun, Chao	
Qu,	, Xiaolei Vina		SaPoB	Sun, Fengo	
Qu,	, Ying		SUB4	Sun Guogi	
C	D			Sun, Hao	
- 1			- • •	Sun, Hui	
Rat	nman, Muhammad Rameez Ur		FrA4 SuB2	Sun, Lei	
Rer	n, Chao		SuC1	Sun, Li	
		CC	SuC1	Sun, Liang	
Rer	n, Hengle		FrPoA	Quere de la circles en	
Rer	n, Shunyan		SaA4 SaB4	Sun, Lining Sun, Living	
Ror	ng, Jiahui		SaB4	Sun, Mingz	
Ror	ng, Xuewen		FrB5	Sun, Ning	
			SaB3 SaC2		
	0				
- (5 -		0-01		
Sar Sar	nuel, Oluwarotimi Williams		SaC1 SuB1	Sun, Qinjiai Sun, Qinxua	
Sha	a, Xiaopeng		FrC4	,	
Sha	an, Danlei		SuA2	Sun, Qun	
sha	ing, peng		SaC1		
sha	angguan, sinyong io, haiwen		SuB1 SuA3	Sun, Shiwe	
Sha	ao, Hui		SuC3	SUN, Winst	
Sha	ao, Zhenzhou		SuB4		
She	en, Dawei		SaPoB	Sun, Xiaoju	
She	en. Juniie		SaP0B SaC1	Sun, Alaoya	
She	en, Peiyao		SaA2	Sun, Xiaoyi	
She	en, Wenqin		FrPoB	6 • • •	
She	en, Xiao EN Vaiina		SaB4 ErDoP	Sun, Yanta	
She	en. Zhihang		SaB1	Sun, rigian Sun, Yongk	
Shi	, J.Q.		SuB4	Sun, Youga	
Shi	, Lin		SaC4	C	
Shi	, Qiuyue		SaPoA		
Shi	Tailong		SaPOA FrA2	SUN, YUDO Sun Yue	
Shi	, Wuxi		FrA4	Sun, Zhiyor	

ikup		SoP4
		SaD4
eng, vvang		Suc2
hengwen		SaPoB
, Heloísa		SaA1
Aiguo		FrA6
0		SaC1
Guali		ErA5
Guoii		0-04
	~~	Sach
	CC	SaC1
		SuB4
	CC	SuB4
lianchao		SuC2
liatao		
QI	~~	FIA5
	CC	FrA5
Rong		SaB1
Rui		FrPoB
		FrPoB
		SaB3
ulin		FrΔ4
Zhiwoi		SaPoA
ZIIIwei		
		Sacz
ibei		FrPoA
Зо		SuC3
hangyin		SaA4
hao		SaB3
enachi		FrA3
		FrA6
luogiang		SaDaR
las		
		FIGT
lui		SaPoB
ei		FrA5
		SuC2
i		SaPoA
iang		SaC3
0		SaC3
ining		ErC2
ining		
iying	~~	FIPOB
lingzhu	CC	FrC1
ling	CC	FrB5
		SaA3
	CC	SaPoA
	CC	SaPoB
		SaA3
		SuΔ1
Vinijona		
linjiang		FIAT
linxuan		FIA6
		FrPoA
lun		SuB1
		SuB1
	CC	SuB1
hiwen		SuC4
Ninston		FrB4
Winston .		ErC2
1 t		
laojun		FIA5
laoyan		SuC3
	CC	SuC3
iaoying		FrA4
		FrA4
antao		SuA2
ïoian		SuB3
íongkun		Sal4
ungkun 'aussas		San4
ougang		SaA4
		SaB3
	CC	SaB3
ubo		SaB1
lue		FrA5
hiyong		FrB6

Sun, Zhongbo		SaPoA	Wang, Guoli Wang, Haifang		FrPoA FrC1
- T -			Wang, Han		SuB2
Tai Wei		SuB3	Wang, Haojing Wang, Haokun		SaPoA
Takaki Takeshi		SaB2	Wang, Hebin		SuC3
Tan Hua-chun		SuB2	Wang Hesheng		FrA6
Tan Jiaiu		FrPoA	Wang Hongpeng		FrA4
Tan, Jindong		FrB6			FrC4
, , , , , , , , , , , , , , , , , , ,		SuB4		CC	FrC4
tan, min		FrPoA			SaC3
TAN, Rong		FrPoB			SuC1
Tan, Suiping		FrB3	Wang, Jianhui		SaA1
Tan, Xiaowei		SaB4	Wang, Jianqiang		SuA2
Tan, Yonghong		FrB1	Wang, Jianxin		FrA5
	CC	FrB1	Wang, Jingren		SuC3
Tang, Dengqing		FrA3	Wang, Jinli		SuA3
Tang, Hongru		FrA6			SuA3
Tang, Huaibin		FrA1	Wang, Jin-Liang		SaA4
Tang, Jing-ge		FrB5			SaB4
tang, qing		FrA3		CC	SaB4
Tang, Xiao		SuB2	Wang, Junchen		FrA5
Tang, Yandong		FrA5	Wang, Kejun		FrPoB
Tang, Yaohan		FrPoA	Wang, Lei		SaA1
Tang, Yi		FrPoA	Wang, Li		SuC4
T N I		SuB3	Wang, Lijun		SaPoA
Tang, Yunua		Sapob	Wong Luijo		Sapoa
		SUAZ	Wang, Lujia		
Tao, Ku		SUA4 ErDoP			FICO SoDoA
			Wang, Naman Wang, Ning		
		SaPoB	Wang, Ning	CC	SuA1
Thielecke lörn		ErA6	Wang Ninghua	00	SaR1
Tian Guobui		SaB3	Wang, Ringhda Wang Peng		FrB5
Tian Huanyu		FrB6	wang pengcheng		SaC3
Tian Senping		FrPoB	Wang Pengyuan		FrA4
Tian, Xincheng		SaB3	Wang, Ping		SaPoB
Tian, Yanling		FrB1	Wang, Qi	CC	SuA3
		FrB1			SuB3
Tian, Yantao		SaPoA	Wang, Qining	CC	FrA6
Tong, Fei		FrA4			SaA1
Tong, Lina		SaC1		CC	SaA1
TONG, Xiaoyu		SaB2			SaB1
Toshio, Fukuda		FrC2	Wang, Rongli		SaB1
			Wang, Shanren		FrPoA
- V -			Wang, Shichen		SaB2
•					SaB2
Vieira, Alexandra		SaA1	Wang, Sijia		SuA3
			wang, Song		SaB1
- W -			Wang, Lingting		FrA4
Mon Minguong		F r D o D	Wang, Wei		FIA3
Wan, Mingyang Wan, Yanhui			Wang, Xian Wang, Xiangyu	<u> </u>	
Wall, falliul Wang Binghing		SaDoP	Wang, Xiangyu Wang, Xiaodan		
Wang, Dingbing		SuA3	Wang, Xiaouan Wang, Xin		SaΔ4
Wang Bingchang		FrA1	Wang, Xin Wang, Xinchun		SuC2
Wang, Eingenang	CC	FrA1	Wang, Xinonan Wang Xinyu		SuC4
Wang Chenliang	00	SaC3	Wang Xudong		SuB4
Wang, Chong		SuB1	Wang, Xuexin		SuA2
Wang, Dezhi		FrPoA	Wang, Yang		FrB5
WANG, Fei		FrA5	Wang, Yangjun		FrPoA
		SaA1	Wang, Yanhui		SaA1
		SuA4	Wang, Yanxin		SaC1
		SuA4	Wang, Yibin		SaPoA
Wang, Fujun		FrB1	Wang, Yifan		SuA4
		FrB1	Wang, Yijing		FrB6
	CC	FrC1	Wang, Ying		SuA3
Wang, Fuyong		SaC4	Wang, Yonggui		FrB3

Wang, Youqing		SaB4	Xie, Dongmei	CC	SaC4
	CC	SaB4	Xie, Wei		SuC3
Wang, Yuchao		SuB4	xin, Jin		SaB2
Wang, Yue		FrA6	Xin, Jing		FrB6
Wang, Yufan		FrC4	xin, zhou		SaPoB
Wang, Zhanshan		SaA4	Xinfang, Zhang		FrA4
Wang, Zhe		FrPoA	Xina. Li		SaPoA
		SaC3	xing xuvan		SaC1
Wang Zhen		SuC4	Xing, Xuyun Xingyao, Yu		ErB2
Wang Zhenyou		SuB1	Xingyuo, Tu Xingzi Bi		ErB2
Wang, Zhenyou		ErA2	Xingzi, Di Xiang Bang		ErA6
Wang, Zuprop		CUA4	Xiong, Kong		
wang, zuman		SuA4			
vvel, Hongxing		SuB4	Xu, Changbao		FrPoA
Wei, Lei		FrPoA	Xu, Chao		FrA3
Wei, Meng		FrPoB	Xu, Fang		FrPoA
Wei, Wei		SaPoB	xu, fulai		FrA4
		SuB3	Xu, Guozheng		SaC1
Wei, Xuting		SuA2	Xu, Juanjuan		FrA1
Wei, Zhinong		SaPoB	Xu, Lin		FrPoB
Weixun, Li		SaC4			FrPoB
Wen, Xianhe		SuC1	Xu, Qingshan		SuA3
Wen, Xuanxuan		SuB1	Xu, Qingsong		FrB1
Wen. Yangdong		FrC2	Xu. Rui		FrPoA
Wu Changcheng		FrC1	Xu Wei		SaC3
Wu Di		SuA1			SaC3
Wu Dongrui		ErC5	Xu Wenfu		ErB2
		FrPoA			FrB2
Wu, Jinung		FrBoA	Yu Yizobuo		ErA2
Wu, Shuangiang					
wu, Shuangjiang		FICT			FIPOB
vvu, Snuo		FrC3	Xu, Yin		Sapob
Wu, Wei		SuA4			SuA3
Wu, Weilin		SuC3			SuA3
Wu, Xiangyu		SuA3			SuB3
Wu, Xichun		SaPoB	Xu, Yuan		SaA2
		SuA3	Xue, Cuihong		FrPoA
Wu, Yinan		SaPoA	Xue, Jikang		SuB2
Wu, Yingjun		SuB3	Xue, Yusheng		FrPoA
	CC	SuB3	Xue, Zhiwei		SuC3
Wu. Yu		SuA2	Xuemina. Li		SaPoB
Wu. Yue		SaB2	Xuegian, Wang		FrB2
Wu Zevi		FrB1			
110, 201		1101			
N /			- Y -		
- X -			Yop Cuiting		SUCO
Vi Ning			Van Esi		
AI, NING		FIBD			FIAS
		FIB6	Yan, Huaguang		SUA3
		SaB1			SuB3
xi, yafei		SaB3	Yan, Jiawen		FrB3
Xia, Chaopeng		SuA3	Yan, Lei		FrB2
Xia, Chengyi		SuC4	Yan, Peng		SuA4
		SuC4	Yan, Zhiyuan		FrB3
	CC	SuC4	Yan, Zichen		SaA4
Xia, Yanghong		SaPoB	Yang, Chenguang		SaA2
		SuB3		CC	SaA2
xia, zevang		SaC1			SuA4
Xian Bin		FrC5		CC	SuA4
, and , bin	00	FrC5		00	FrPoΔ
Viang li	00	SoB2	Yang Dobua		
Alariy, Ji	66	Sabz	Yang Cuasai		CoD2
Viena Vieven			Tany, Guodal		SaDa
Alang, Alnyan		SUA4	rang, jun		Sapob
xiao, Jiznong	CC	FrAb			SaPoB
		FrC4	Yang, Kaizhi		SaC1
	CC	FrC4	Yang, Kun		FrB5
Xiao, Junhao		FrA3	Yang, Lei		SaPoA
Xiaoping, Ma		SaB2	Yang, Libin		SuA3
Xie, Bin		FrPoB	Yang, Liying		SaB4
Xie, Cheche		FrPoA	Yang, Longwen		FrPoA
Xie, Dongmei		SaC4	Yang, Min		FrC1
· · · ·		-	U /		

yang, peng		FrA4	Yuan, Liang	
Yang, Pengcheng		SuB3	Yuan, Quan	
Yang, Qi		SaA2	YUAN, Xiaodong	
Yang, Qinmin		SuB4	Yuan, Yuan	
Yang, Sen		FrC5	Yue, Longchuan	
Yang, Shaokun		FrPoA	Yue, Ming	
Yang, Tangwen		SuA2		CC
Yang, Lie		SaC1		
Yang Wanlong		SdAS ErD2	- Z -	
Yang Xiaobo		SuC2	Zang Haiviang	
Yang Xiaolong		SuB2	Zeng, Haixiang Zeng, Hong	
rang, viaciong		SuB2	Zeng Junwei	
Yang, Xiuvi		FrA5	Zeng, Qiang	
Yang, Yang		SaC1	Zeng, Zhen	
Yang, Yongbiao		SaPoB	Zhan, Shaodong	
Yang, Yueqiang		FrPoA		
YANG, Yun		SaPoB		
yang, zhan		FrC2	Zhan, Zhikun	
Yang, Zhanji		SuA2	Zhang, Biao	
Yanjun, Li		SaB2	Zhang, Chen	
Yanjun, Wang		SuC2	Zhang, Cheng	
yanmin, wang		SuB1	ZHANG, Chenyu	
Maradi Mira		SuB1	Zhang, D.	
Yanzi, Miao		Sabz	znang, Dan	
Yao, Sun		SaPoA	Zhang Dawei	
Yao Xianshuang		SaA4		
Yao Xiaomei		FrA6	Zhang Dezhou	
Yao, Yong		SuA3	Zhang, Fan	
		SuB3	5, 5,	СС
Yao, Yu-meng		FrB6	Zhang, George	
Ye, Haoyang		FrPoA	Zhang, Guanglie	
Ye, Hongkai		FrA3		
Ye, Xi		SaA3		СС
Yi, Jiafu		FrB3		
Yi, Jingang		SaA1		CC
N/1 1/2 1		SaA1	Zhang, Guangming	
YI, KUI		SaB4	Zhang, Guilin	
YIN, AIRU	<u> </u>	SuC2	Zhang, Halyun Zhang, Han	<u> </u>
Vin Viana	CC	SuC2 ErB4		CC
		FrB2		
Yingbo, Eu Yingiun Wu		SuB3	Zhang, haojie Zhang, Huanshui	
Yongchun Fang Prof		SuA1	Zhang, Hui	
Yongxin, Liu		SuC2	Zhang, Jiafan	
You, ShaoZe		SaC2	Zhang, Jian	
Yu, Dongmeng		FrB5		
Yu, Haibo		FrC2	Zhang, Jianlei	
Yu, Haisheng		FrA1		СС
Yu, Hongjian		FrB3	Zhang, Jin	
Yu, Hongxiang		FrA6	Zhang, Jinzhong	
Yu, Miao		SuB3		
Yu, Ming		FrPoA		~~
YU, NINGDO	~~	SaB1	Zhang, Juanjuan	CC
Vu Dong	CC	SaB1	Zhang, Kaixiang	
ru, Peng		Sac I ErDoA	Zhang, Langwon	
10, 100		SaPoA	Zhang, Langwen Zhang, Lei	
Yu Yang		FrA2	zhang limin	
,		SaC3	Zhang, Linijan	
Yu, YuanLong		FrA2	Zhang, Long	
-	СС	FrA2	Zhang, Longying	
Yu, Yue		FrC4	Zhang, Menghua	
Yuan, Hongxing		FrA2	Zhang, Ming	
Yuan, Jing		FrA6	Zhang, Minglu	
		FrPoA	Zhang, Pei	
Yuan, Liang		SuA4	Zhang, Peng	

SuC1 FrPoA SaPoB FrA2 FrPoA SaA2 SaA2

SaPoB SaC1 SuA2 SaPoA SaA1 FrB4 FrB4 FrC2 FrC1 FrA3 SaC2 SuC1 SaPoB SuB4 SaPoA SaPoA FrB1 FrB1 SaPoA FrB2 FrB2 SaPoA FrB4 FrB4 FrB4 FrC2 FrC2 SaA3 SaC2 SaA2 FrC3 FrC3 FrA4 FrA1 FrA3 FrA6 SaC4 SuB2 SaC4 SaA4 SuA2 SaPoB SaPoB SaPoB FrB6 FrA4 SuB1 SuC3 SuB3 FrB5 FrA3 SuB3 SuC3 SaB3 SaPoA SaPoA SaPoB FrB3

Zhang, Peng Zhang, Qian
Zhang, Senlin Zhang, Shangjun Zhang, Shaohua Zhang, Shiyong Zhang, Sisi Zhang, Songtao Zhang, Tao
Zhang, Weiguo Zhang, Wentao Zhang, Xiaodong
Zhang, Xiaolu Zhang, Xinghui Zhang, Xinyi Zhang, Xinyu Zhang, Xuebo
Zhang, Yan Zhang, Yanan Zhang, Yiduo Zhang, Ying Zhang, Ying Zhang, Yinlong Zhang, Yizhai Zhang, Yuzhai Zhang, Yuzhe Zhang, Yuzhe Zhang, Zhengqiang Zhao, A. Zhao, Baoguo Zhao, Baoliang Zhao, Chen Zhao, Guowei
Zhao, Haobo zhao, kexue zhao, kuang Zhao, Kuang zhao, Liang Zhao, Lin Zhao, Minghui zhao, quan zhao, xiaoguang Zhao, Xiaoyu Zhao, Xin Zhao, Xingang Zhao, Xinlong Zhao, Yang Zhao, Ying Zhao, Yiwen
Zhao, Yongjun zhao, yuan Zhao, Yue Zhao, Yuliang
Zhao, Yunbo Zhao, Yunpeng ZHENG, Jianyong Zheng, Qingwen Zheng, Shuang

	SaB1
	FrA4
	FrA4
	FrB4
	SaA4
	SUD4
	Suc I ErDoP
	ErDoB
	SuA4
	SaPoB
	ErB6
	SaB1
CC	SaB1
	FrB5
	FrB5
	FrPoB
	FrA2
	FrPoB
	SaA2
	SaA2
СС	SaPoA
СС	SaPoB
	SaPoA
	FrPoA
	FrA4
	SaPoA
	FrPoB
	FrB6
CC	SaC3
	FrB6
	FrPoA
	SuA4
	SaPoA
	SuB4
	SuA3
	FrB3
	SuB4
	SaC3
	SaC3
	SuA4
	FrPoB
	FrA3
	FrA3
	SaC1
	Suc3
	FIP0B
	FIPUA SeD2
	SdD3 ErDoA
	SaC1
	FrPoB
	SuB1
	Fr45
	SaC1
	SuB1
	FrPoR
	FrPoB
	FrC1
	FrC4
	FrPoA
	FrA5
	SaPoB
	FrB3
	SuA4

zheng, xuemei Zheng, You zheng, yuan zhenning, pan Zhijian Ji, Prof.		FrPoA FrA2 FrA3 SaPoB FrA1 FrPoB
Zhinong, Wei zhiping, Liu zhiqiang, zheng Zhirui, Zhao Zhongjie, Meng Zhongxi, Liu Zhou, Bin Zhou, Chongkai Zhou, Chujie Zhou, Haixiang zhou, Han Zhou, Han Zhou, Jie Zhou, Lelai Zhou, Lena Zhou, Meng		FrPoB FrC3 FrC2 SaPoA FrB2 FrPoB FrPoA FrB1 FrPoB SuA4 FrA3 FrA3 SaB1 FrB5 FrPoA SaB2
Zhou, Mo		FrA2
Zhou, Mu		SuB2 SuB2
Zhou, Peilin		FrC2
Zhou, Wei		SaPoB
Zhou, Weisong		SaA4
	CC	SaA4
Zhou, Wenjuan		SuA2
Zhou, Wenli	00	FrC3
Zhou, Xinggun		FrA5
zhou, yong		FrA3
Zhou, Yong		FrA3
Zhou, Zhengyuan		FrA3
Zhou, Zhihao		SaA1
Zhou, Zhiwei Zhu, Bing		SaA1 SaC3
Zhu, Erlin		SaB3
Zhu, Hao		SuB2
	CC	SuB2
Zhu, Hua		SaC2
Zhu, Jiangcheng		FrA3
Zhu, Minavue		SaC3
zhu, peican		SuC4
Zhu, Qianxiang		FrPoB
Zhu, Wenwu		SuA1
Zhu, Xiaojun		FrA4
Znu, Ya Zhuang Yan		FIPOB FrA3
	CC	FrA3
zhuikui, Tan		SaPoB
Zong, Jin		SaPoB
Zou Eongobon		SuA3
Zou, rengshan Zou, Qiang		SaA2
Zou, Wuhao		FrC2
Zuo, Zhiqiang		FrB6