EEE IEEEACMA 2018 Robotics and Automation Society 2018 IEEE International Conference on

Mechatronics and Automation

AUGUST 5-8, 2018 CHANGCHUN, CHINA

Conference Proceedings Conference Digest

Co-sponsored by IEEE Robotics and Automation Society Changchun Institute of Optics, Fine Mechanics and Physics Beijing Institute of Technology Kagawa University

Technically Co-sponsored by

National Natural Science Foundation of China, China **Chinese Mechanical Engineering Society** Chinese Association of Automation Key Laboratory of Convergence Medical Engineering System and Healthcare Technology, The Ministry of Industry and Information Technology, Beijing Institute of Technology, China The Institute of Advanced Biomedical Engineering System (BIT) Tianjin Key Laboratory for Control Theory & Applications in Complicated Systems, Tianjin University of Technology State Key Laboratory of Robotics and System (HIT)

The Robotics Society of Japan The Japan Society of Mechanical Engineers Japan Society for Precision Engineering The Society of Instrument and Control Engineers Beijing Institute of Technology University of Electronic Science and Technology of China Harbin Engineering University Changchun University of Science and Technology University of Electro-Communications Optics and Precision Engineering

Conference Digest

2018 IEEE International Conference on Mechatronics and Automation

IEEE ICMA 2018

Changchun, China August 5 - 8, 2018

Cosponsored by

IEEE Robotics and Automation Society Changchun Institute of Optics, Fine Mechanics and Physics, China **Beijing Institute of Technology** Kagawa University, Japan Technically cosponsored by National Natural Science Foundation of China **Chinese Association of Automation** Chinese Mechanical Engineering Society The Robotics Society of Japan Japan Society for Precision Engineering The Society of Instrument and Control Engineers The Japan Society of Mechanical Engineers **Beijing Institute of Technology** Harbin Engineering University University of Electronic Science and Technology of China **University of Electro-Communications** Tianjin Key Laboratory for Control Theory & Applications in Complicated Systems, Tianjin University of Technology, China Changchun University of Science and Technology Key Laboratory of Convergence Medical Engineering System and Healthcare Technology, the Ministry of Industry and Information

Technology, School of Life Science and Technology (BIT)

Optics and Precision Engineering

State Key Laboratory of Robotics and System (HIT)

IEEE ICMA 2018 PROCEEDINGS

Additional copies may be ordered from:

IEEE Service Center	
445 Hoes Lane	
Piscataway, NJ 08854 U.S.A.	
IEEE Catalog Number:	CFP18839-PRT
ISBN	978-1-5386-6074-4
IEEE Catalog Number (CD-ROM):	CFP18839-CDR
ISBN (CD-ROM):	978-1-5386-6072-0

Copyright and Reprint Permission:

Copyright and Reprint Permission: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923. For reprint or republication permission, email to IEEE Copyrights Manager at pubs-permissions@ieee.org. All rights reserved. Copyright ©2018 by IEEE.

The papers in this book comprise the proceedings of the meeting mentioned on the cover and title page. They reflect the author's opinions and, in the interest of timely dissemination, are published as presented and without change. Their inclusion in this publication does not necessarily constitute endorsement by the editors or the Institute of Electrical and Electronics Engineers, Inc.

The Institute of Electrical and Electronics Engineers, Inc.

Foreword

On behalf of the IEEE ICMA 2018 Conference Organizing Committee, it is our great pleasure, an honor, and a privilege to welcome you to Changchun for the 2018 IEEE International Conference on Mechatronics and Automation. This conference reflects the growing interests in the broad research areas of mechatronics, robotics, sensors and automation.

ICMA 2018 marks the 15th edition of the IEEE ICMA annual conference series. We are proud to announce that a high number of **635** papers were submitted from **28** countries and regions, including **611** contributed papers, **24** papers for organized sessions, and **422** papers were accepted for oral or poster presentation at the conference after a rigorous full-paper review process, achieving an acceptance rate of less than **67%**. Presentations at ICMA 2018 are organized in **7** parallel tracks, for a total of **62** sessions, including **1** poster session, taking place during the three conference days. We are fortunate to be able to invite four distinguished speakers to deliver Keynote Speech and plenary talks.

We are very glad that you are joining us at IEEE ICMA 2018 in Changchun to live this unique experience. The main objective of IEEE ICMA 2018 is to provide a forum for researchers, educators, engineers, and government officials involved in the general areas of mechatronics, robotics, sensors and automation to disseminate their latest research results and exchange views on the future research directions of the related fields. IEEE ICMA 2018 promises to be a great experience for participants from all over the world, with an excellent technical program as well as social activities.

We would like to express our most sincere appreciation and thanks to all of our sponsoring societies and organizations and to all the individuals who have contributed to the organization of this conference. Our special thanks are extended to our colleagues in the Program Committee for their thorough review of all the submitted papers, which is vital to the success of this conference. We must also extend our thanks to our Organizing Committee and our volunteers who have dedicated their time toward ensuring the success of this conference. Last but not least, we thank all the contributors for their support and participation in making this conference a great success. Finally, we wish you a great conference and enjoyable stay in Changchun, China.

Jianli Wang General Chair

James K. Mills General Chair

Aiguo Ming

Program Chair

Shuxiang Guo

Organizing Chair

Welcome Remarks

It is my honor to welcome you to attend the 2018 IEEE International Conference on Mechatronics and Automation (IEEE ICMA 2018) on behalf of Changchun Institute of Optics, Fine Mechanics and Physics, CAS. We are delighted to host the Conference which marked as the 15th edition of the IEEE ICMA among the annual conference series. The Conference reflects the growing interests in the broad research areas of mechatronics, robotics, sensors and automation.

To begin with, I would like to make a brief introduction to Changchun Institute of Optics, Fine Mechanics and Physics. Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP) was founded in 1952 focusing on luminescence, applied optics, optical engineering, and precision mechanics and instrumentation. There are currently 2,056 professionals working at CIOMP, including 3 CAS academicians, 256 professors and 638 associate professors. CIOMP has formulated an integrated "Research, Industry, and Education", and is increasing its abilities to realize the full potential of a wide range of endeavors. CIOMP now hosts an International Optoelectronic Innovation Cluster, 6 State Key Laboratories and research centers, and 2 CAS Key Laboratories. There are more than 20 high-tech companies in the CAS Changchun Optoelectronics Industrial Park with investment support from CIOMP and total assets of 403 million USD.

It is sincerely hoped that IEEE ICMA 2018 will provide a forum for researchers, educators, engineers, and government officials involved in the general areas of mechatronics, robotics, sensors and automation to disseminate their latest research results and exchange views on the future research directions of the related fields.

Finally, on behalf of Changchun Institute of Optics, Fine Mechanics and Physics, I would like to express my sincere gratitude to all of the sponsoring societies and organizations as well as all the individuals contributed to the organization of the Conference. Also, special thanks are owed to all the authors, session organizers, plenary and keynote speakers, exhibitors for contributing their research works and making IEEE ICMA 2018 a successful and fruitful event. To all participants, I extend my heartfelt welcome and thanks for attending this event, wish your stay here in Changchun, China, is very pleasant and enjoyable.

President of CIOMP Advisory Council Chair of IEEE ICMA 2018

IEEE ICMA 2018 Conference Digest

Table of Content

Foreword

Welcome Remarks
IEEE ICMA 2018 Conference Committees
Organizing Committeesii International Program Committeeiv
IEEE ICMA 2018 Cosponsorsxi
General Information
Conference Informationxviii
Conference Venuexviii
Conference Registrationxx
Internet Accessxx
Social Eventsxx
Technical Program
Keynote Speech and Plenary Talks
Keynote Speech and Plenary Talksxxiii World Youth Development Workshops on Opto-Mechatronics
Keynote Speech and Plenary Talksxxiii World Youth Development Workshops on Opto-Mechatronicsxxxix Program at Glancexxxix
Keynote Speech and Plenary Talksxxiii World Youth Development Workshops on Opto-Mechatronicsxxxix Program at Glancexxxix Technical Session Schedulexk
Keynote Speech and Plenary Talksxxiii World Youth Development Workshops on Opto-Mechatronicsxxix Program at Glancexxxix Technical Session Schedulexk Floor Map of Conference Roomsxk
Keynote Speech and Plenary Talksxxiii World Youth Development Workshops on Opto-Mechatronicsxxi Program at Glancexxix Technical Session Schedulexki Floor Map of Conference Roomsxki Technical Sessions
Keynote Speech and Plenary Talksxxiii World Youth Development Workshops on Opto-Mechatronicsxxix Program at Glancexxix Technical Session Schedulexl Floor Map of Conference Roomsxlii Technical Sessions Monday, 6 August 2018
Keynote Speech and Plenary Talksxxiii World Youth Development Workshops on Opto-Mechatronicsxxiii Program at Glancexxiii Technical Session Schedulexl Floor Map of Conference Roomsxl Technical Sessions Monday, 6 August 2018
Keynote Speech and Plenary Talksxxiii World Youth Development Workshops on Opto-Mechatronicsxxii Program at Glancexxxiix Technical Session Schedulexl Floor Map of Conference Roomsxkl Technical Sessions Monday, 6 August 2018
Keynote Speech and Plenary Talks
Keynote Speech and Plenary Talks. xxiii World Youth Development Workshops on Opto-Mechatronics. xxxi Program at Glance. xxxix Technical Session Schedule. xl Floor Map of Conference Rooms. xlii Technical Sessions xlii Monday, 6 August 2018. 1 Tuesday, 7 August 2018. 37 Wednesday, 8 August 2018. 65 Index of Session Chairs. 77 Index of Authors. 80
Keynote Speech and Plenary Talks

IEEE ICMA 2018 Conference

International Scientific Advisory Board

Council Honorary Chair

Ping Jia CIOMP, CAS, China

Advisory Council Honorary Chairs

T. J. Tarn	Washington University, USA
Toshio Fukuda	BIT and Nagoya University

Advisory Council Chairs

Jiaqi Wang	CIOMP, CAS, China
Tianyou Chai	Northeastern University, China
Raja Chatila	Univ. Pierre and Marie Curie, France
Kazuhiro Kosuge	Tohoku University, Japan
Paolo Dario	Scuola Superiore Sant'Anna, Italy
Masayoshi Tomizuka	UC Berkeley, USA
Mario A. Rotea	University of Massachusetts, USA
Ju-Jang Lee	KAIST, Korea
Yu Yao	Harbin Engineering University, China
Yanrong Li	UESTC, China
Huadong Yu	Changchun University of Science and Technology, China
Jianbiao Ma	Tianjin University of Technology, China

Founding Council Chair

Shuxiang Guo	Kagawa University, Japan
Founding Council Co-Chairs	
Max Q.H. Meng	Chinese University of Hong Kong, China
Aiguo Ming	University of Electro-Communications, Japan
Hong Zhang	University of Alberta, Canada
Dagui Huang	UESTC, China

Organizing Committees

General Chair

James K Mills	University of Toronto, Canada
Jianli Wang	CIOMP, CAS, China

General Co-Chairs

The University of Tennessee, USA
University of Tokyo, Japan
Osaka University, Japan
Italian Institute of Technology, Italy
Columbia University, USA
Technical Univ. of Denmark, Denmark
Harbin Engineering University, China
Tianjin University of Technology, China

Organizing Committee Chairs

Shuxiang Guo	Kagawa University, Japan
Honghai Shen	CIOMP, CAS, China

Organizing Committee Co-Chairs

Yongsen Xu	CIOMP, CAS, China
Hui Li	UESTC, China
Guohua Cao	CUST, China
Hideyuki Hirata	Kagawa University, Japan

Tutorial/Workshop Chairs

Dejiang Wang	CIOMP, CAS, China
Nak Youn Chong	JAIST, Japan
Guangjun Liu	Ryerson University, Canada

Invited/Organized Session Chairs

Kazuhito Yokoi	AIST, Japan
Hidekuni Takao	Kagawa University, Japan
Hui Wang	CIOMP, CAS, China
Jinjun Shan	York University, Canada

Awards Committee Co-Chairs

Hong Zhang	University of Alberta, Canada	
Nan Xiao	Beijing Institute of Technology, China	
Xinkai Chen	Shibaura Institute of Technology, Japan	
	Publications Chairs	
Liwei Shi	Beijing Institute of Technology, China	
Yuhong Bai	CIOMP, CAS, China	
Publicity Chairs		
Tamio Tanikawa	AIST, Japan	
Ying Feng	South China Univ. of Technology, China	
Xiufen Ye	Harbin Engineering University, China	
Finance Chair		
Jian Guo	Tianjin University of Technology, China	
Hidenori Ishihara	Kagawa University, Japan	
Zhimin Han	CIOMP, CAS, China	
Local Arrangement Chairs		
Shuai Ding	CIOMP, CAS, China	
Fuchao Wang	CIOMP, CAS, China	
Zhongshi Wang	CIOMP, CAS, China	
Conference Secretariats		
Yu Song	Kagawa University, Japan	
Yi Liu	Kagawa University, Japan	
Linshuai Zhang	Kagawa University, Japan	
Shuoxin Gu	Kagawa University, Japan	
Zixu Wang	Kagawa University, Japan	
Liang Zheng	Kagawa University, Japan	
Yutang Wang	CIOMP, CAS, China	

Conference Web System Administrator

Yi Liu Kagawa University, Japan

Program Committees

Program Chair

Aiguo Ming	University of Electro-Communications, Ja	ıpan
------------	--	------

Program Co-Chairs

Kevin Lynch	Northwestern University, USA
Qiang Huang	Beijing Institute of Technology, China
Qing Zhao	University of Alberta, Canada
Wan Kyun Chung	POSTEC, Korea
Hiroshi Toshiyoshi	University of Tokyo, Japan
Arianna Menciassi	Scuola Superiore Sant's Anna, Italy
Koichi Hashimoto	Tohoku University, Japan
Jianwei Zhang	University of Hamburg, Germany
Anqi Qiu	National University of Singapore, Singapore
Junzhi Yu	Institute of Automation, CAS, China
Yili Fu	Harbin Institute of Technology, China
Dapeng Tian	CIOMP, CAS, China
Liwei Shi	Beijing Institute of Technology, China

International Program Committee

Adachi, Fumiyuki	Addie, Ron	Aiyama, Yasumichi	Althoefer, Kaspar	
Ando, Kazuaki	Ang, Wei Tech	Aoyama, Hisayuki	Arai, Fumihito	
Arai, Tamio	Arai, Tatsuo	Araki, Kiyomichi	Arzanpour, Siamak	
Asada, Minoru	Asama, Hajime	Asano, Toshio	Baeg, Sang Hyeon	
Bai, Ou	Ben, Ridha	Ben-Tzvi, Pinhas	Bi, Shusheng	
Bi, Zhuming	Bian, Hongyu	Bidaud, Philippe	Bolon, Philippe	
Boustany, Nada	Brown, Martin	Byung, Min	Cai, Lilong	
Caldwell, Darwin G.	Cao, Maoyong	Ceccarelli, Marco	Chen, Chun-Ta	
Chen, Deyun	Chen, Feng	Chen, Guanlong	Chen, I-Ming	
Chen, Ken	Chen, Liguo	Chen, Ting	Chen, Weidong	
Chen, Weihai	Chen, Wenhua	Chen, Xin	Chen, Xinkai	

Chen, Yangquan	Chen, Zhangwei	Cheng, Allen	Cheng, Jianhua
Cheng, Ji-Xin	Cheol, Min	Cheong, Joono	Cho, Young-Jo
Choi, Hyouk Ryeol	Choi, Hyun-Taek	Choi, Junho	Choi, Youngjin
Chou, Wusheng	Chu, Jinkui	Chugo, Daisuke	Chui, Dehua
Chung, Woojin	Cui, Jianwen	Dai, Jiansheng	Dai, Xuefeng
Dailey, Matthew	Damaren, Chris	Dario, Paolo	Davis, Steve
Dechev, Nick	Deco, Gustavo	Deguang, Shang	Demiris, Yiannis
Deng, Yulin	Dillmann, Ruediger	Ding, Jiexiong	Ding, Xilun
Do, Hyun Min	Dodd, Tony	Doh, Nakju	Dohta, Shujiro
Doi, Shunichi	Dong, Hongbin	Dong, Zaili	Du, Pingan
Du, Xiliang	Du, Zhijiang	Duan, Haibin	Dubay, Rickey
Dufosse, Michel	Fan, Jinwei	Fang, Yongchun	Fei, Qin
Feng, Gary	Feng, Weixing	Fiorini, Paolo	Foulloy, Laurent
Fu, Bin	Fu, Jiacai	Fu, Mingyu	Fu, Sheng
Fu, Shuigen	Fu, Yili	FUH, Ying-His	Fujino, Tadashi
Fujisaki, Kiyotaka	Fujisawa, Shoichiro	Fujiwara, Takayuki	Fujiwara, Yoshitaka
Fukuyama, Hidenao	Fung, Wai-Keung	Furusho, Junji	Furuta, Katsuhisa
Furutani, Eiko	Furutani, Katsushi	Furuya, Nobuyuki	Gang, Tong
Gao, baofeng	Gao, Guohua	Gao, Hongtao	Gao, Lin
Gao, Shesheng	Gao, Wei	Gao, Xueshan	Ge, Sam
Ge, Sam Shuzhi	Ge, Yunjian	Gofuku, Akio	Gong, Haixia
Gong, Yadong	Gong, Zhiguo	Graefe, Volker	Gu, Dongbing
Gu, Jason	Gu, Xingzhong	Guan, Yisheng	Guang, Zu Guang
Guglielmelli, Eugenio	Guo, Jian	Guo, Jin	Guo, Maozu
Guo, Mingliang	Guo, Peng	Guo, Shuxiang	Guo, Yi
Habibi, Saeid	Haga, Yoichi	Hamaguchi, Tetsuya	Hamel, William R.
Han, Hongbin	Han, Jiqing	Han, Min	Han, Yujie
Hane, Kazuhiro	Hao, Gang	Harada, Kensuke	Hariri, Alireza
Hasegawa, Osamu	Hasegawa, Tadahiro	Hasegawa, Yasuhisa	Hashimoto, Hiroshi
Hashimoto, Koichi	Hashimoto, Minoru	Hashimoto, Shuji	Hata, Seiji
Hattori, Tetsuo	Hayashi, Jun-ichiro	He, Cunfu	He, Jia
He, Jiping	Hino, Junichi	Hirai, Shigeoki	Hirata, Hideyuki
		v	

Hirata, Koichi	Hirata, Yasuhisa	Hirose, Akira	Hong, Keum-Shik	
Hong, Seung Ho	Hori, Toshio Hosoda, Kou		Hou, Mingshan	
Hou, Shuping	Hou, Zhenguang	Hu, Chao	Hu, Huosheng	
Hu, Jiquan	Hu, Jun	Hu, Jwu-Sheng	Hua, Jun	
Huang, Dagui	Huang, Hongzhong	Huang, Ping	Huang, Qiang	
Huang, Qingjiu	Huang, Tian Huang, Yalou		Huasong, Min	
Hwan, Chang	Hwan, Dong	IBA, Hitoshi	Ichikawa, Akihiko	
Ichiki, Masatoshi	Iguchi, Tetsuhiro	Ikehara, Masaaki	Ikeuchi, Masashi	
Ikuta, Koji	Inomo, Hitoshi	Ise, Toshifumi	ishiguro, Hiroshi	
Ishihara, Hidenori	Ishihara, Sunao	Ishii, Akira	Ishii, Chiharu	
Ishii, Kazuo	Ishii, Koji	Ishikawa, Junzo	Ito, Tomotaka	
Iwamura, Yoshiaki	Iwatsuki, Nobuyuki	Izuishi, Kunihiko	Janabi-Shari, Farrokh	
Ji, Ping	Ji, Yuehui	Jia, Kebin	Jia, Songmin	
Jia, Zhengyuan	Jiang, Pingyu	Jiang, Zhen	Jiao, Shuhong	
Jin, Hongzhang	Jin, Rencheng	Jing, Wuxing	Jo, Yongho	
Jr., Marcelo H.Ang,	Jung, Kwangmok	Jung, Seul	K.H.Pang, Grantham	
Kagami, Shingo	Kagawa, Koji	Kamata, Minoru	Kamiya, Yoshitsugu	
Kanamori, Chisato	Kaneko, Shunichi	Kang, Sung Chul	Kang, Taehun	
Karaki, Masayuki	Kato, Takahisa	Khajepour, Amir	Kiguchi, Kazuo	
Kim, Byeongho	Kim, Doik	Kim, Jinhyun	Kim, Jung	
Kim, Keehoon	Kim, Sungshin	Kim, Wheekuk	Kitajima, Hiroyuki	
Kitajima, Katsuhiro	Kobayashi, Tetsuo	Kobayashi, Toshihiro	Koh, Kyungchul	
Kojima, Masaru	Kok, Tan	Komeda, Takashi	Kometani, Reo	
Kong, Xiawen	Konyo, Masashi	Koo, Ja Choon	Koshimizu, Hiroyasu	
Kosuge, Kazuhiro	Kotiw, Mike	Kotosaka, Shinya	Kouzani, Abbas	
Koyanagi, Kenichi	Koyanagi, Mitsumasa	Kubota, Naoyuki	Kubota, Takashi	
Kulkarni, M.S.	Kuno, Yoshinori	Kurazuma, Ryo	Kurisu, Masamitsu	
Kuroki, Nobutaka	Kuwakado, Hidenori	Kuwano, Hiroki	Kyriakopou, Kostas J.	
Lai, Yongjun	Lan, Hai	Laschi, Cecilia	Laugier, Christian	
Lee, Jang Myung	Lee, Jihong	Lee, Songjun	Lee, Yikuen	
Li, Bin	Li, Bing	Li, Chunwen	Li, Desheng	
Li, Gang	Li, Haisen	Li, Hongsheng	Li, Howard	

Li, Jianfeng	Li, Jiangang	Li, Jin	Li, Li	
Li, Mantian	Li, Maoxun	Li, Qin	Li, Wenfeng	
Li, Xiaoshan	Li, Xiaoyang	Li, Xiukun	Li, Yangmin	
Li, Youfu	Li, Yuhua	Li, Yun	Li, Yunhua	
Li, Zhang	Li, Zhiyi	Li, Zhiyong	Li, Zhongjian	
Lian, Feng-Li	Liang, Guolong	Liang, Yan	Liao, Hongen	
Liao, Wei-Hsin	Lin, Chyi-Yeu	Lin, Ming-Tzong	Liu, Bo	
Lin, Hsiung-Cheng	Huang, Guo-Shing	Kimura, Kotaro	Tsumaki, Yuichi	
Liu, Da	Liu, Dikai	Liu, Fang	Liu, Fanming	
Liu, Guangyu	Liu, Haibo	Liu, Honghai	Liu, Hugh	
Liu, Jiming	Liu, Jindong	Liu, Jinguo	Liu, Liqiang	
Liu, Ming	Liu, Peter X.	Liu, Qing	Liu, Rong	
Liu, Xiangdong	Liu, Xiaoping	Liu, Xin-Jun	Liu, Yongguang	
Liu, Yugang	Liu, Yunhui	Liu, Zhen	Long, Guilu	
Lottin, Jacques	Lou, Yunjiang	Loureiro, Rui	Low, Kin-Huat	
Lu, BaoLiang	Lu, Shengfu	Lu, Tien-Fu	M.Chen, Ben	
M.Gupta, Madan	Ma, Chunguang	Ma, Shugen	Ma, Xu	
Ma, Xudong	Mae, Yasushi	Magnenat-Thalm, Nadia	Mao, Jianqin	
Maruyama, Hisataka	Masaki, Yamakita	Masek, Vlastimil	Mashatan, Vahid	
Mashec, Vlasitimi	Masuda, Tadashi	Matsuhisa, Hiroshi	Matsunaga, Saburo	
Mashec, Vlasitimi Matsuno, Fumitoshi	Masuda, Tadashi Matsuno, Takayuki	Matsuhisa, Hiroshi Matsushige, Kazumi	Matsunaga, Saburo Maxwell, Andrew	
Mashec, Vlasitimi Matsuno, Fumitoshi Melchiorri, Claudio	Masuda, Tadashi Matsuno, Takayuki Meng, Max QH.	Matsuhisa, Hiroshi Matsushige, Kazumi Meng, Yan	Matsunaga, Saburo Maxwell, Andrew Mills, James K.	
Mashec, Vlasitimi Matsuno, Fumitoshi Melchiorri, Claudio Minami, Hirotsugu	Masuda, Tadashi Matsuno, Takayuki Meng, Max QH. Minato, Kotaro	Matsuhisa, Hiroshi Matsushige, Kazumi Meng, Yan Minemura, Kiyoshi	Matsunaga, Saburo Maxwell, Andrew Mills, James K. Ming, Aiguo	
Mashec, Vlasitimi Matsuno, Fumitoshi Melchiorri, Claudio Minami, Hirotsugu Mitsuishi, Mamoru	Masuda, Tadashi Matsuno, Takayuki Meng, Max QH. Minato, Kotaro Miyanaga, Yoshikazu	Matsuhisa, Hiroshi Matsushige, Kazumi Meng, Yan Minemura, Kiyoshi Miyauchi, Satoru	Matsunaga, Saburo Maxwell, Andrew Mills, James K. Ming, Aiguo Mo, Hongwei	
Mashec, Vlasitimi Matsuno, Fumitoshi Melchiorri, Claudio Minami, Hirotsugu Mitsuishi, Mamoru Mo, Shuhua	Masuda, Tadashi Matsuno, Takayuki Meng, Max QH. Minato, Kotaro Miyanaga, Yoshikazu Mochiyama, Hiromi	Matsuhisa, Hiroshi Matsushige, Kazumi Meng, Yan Minemura, Kiyoshi Miyauchi, Satoru Morii, Masakatsu	Matsunaga, Saburo Maxwell, Andrew Mills, James K. Ming, Aiguo Mo, Hongwei Morikawa, Hiroyuki	
Mashec, Vlasitimi Matsuno, Fumitoshi Melchiorri, Claudio Minami, Hirotsugu Mitsuishi, Mamoru Mo, Shuhua Morishige, Koichi	Masuda, Tadashi Matsuno, Takayuki Meng, Max QH. Minato, Kotaro Miyanaga, Yoshikazu Mochiyama, Hiromi Morishima, Keisuke	Matsuhisa, Hiroshi Matsushige, Kazumi Meng, Yan Minemura, Kiyoshi Miyauchi, Satoru Morii, Masakatsu Morita, Noboru	Matsunaga, Saburo Maxwell, Andrew Mills, James K. Ming, Aiguo Mo, Hongwei Morikawa, Hiroyuki Morita, Yoshifumi	
Mashec, Vlasitimi Matsuno, Fumitoshi Melchiorri, Claudio Minami, Hirotsugu Mitsuishi, Mamoru Mo, Shuhua Morishige, Koichi Murakami, Toshiyuki	Masuda, Tadashi Matsuno, Takayuki Meng, Max QH. Minato, Kotaro Miyanaga, Yoshikazu Mochiyama, Hiromi Morishima, Keisuke Muscato, Giovanni	Matsuhisa, Hiroshi Matsushige, Kazumi Meng, Yan Minemura, Kiyoshi Miyauchi, Satoru Morii, Masakatsu Morita, Noboru Nagata, Fusaomi	Matsunaga, Saburo Maxwell, Andrew Mills, James K. Ming, Aiguo Mo, Hongwei Morikawa, Hiroyuki Morita, Yoshifumi Nagatani, Keiji	
Mashec, Vlasitimi Matsuno, Fumitoshi Melchiorri, Claudio Minami, Hirotsugu Mitsuishi, Mamoru Mo, Shuhua Morishige, Koichi Murakami, Toshiyuki	Masuda, Tadashi Matsuno, Takayuki Meng, Max QH. Minato, Kotaro Miyanaga, Yoshikazu Mochiyama, Hiromi Morishima, Keisuke Muscato, Giovanni	Matsuhisa, Hiroshi Matsushige, Kazumi Meng, Yan Minemura, Kiyoshi Miyauchi, Satoru Morii, Masakatsu Morita, Noboru Nagata, Fusaomi Nakamura, Akio	Matsunaga, Saburo Maxwell, Andrew Mills, James K. Ming, Aiguo Mo, Hongwei Morikawa, Hiroyuki Morita, Yoshifumi Nagatani, Keiji Nakamura, Hikaru	
Mashec, Vlasitimi Alashec, Vlasitimi Matsuno, Fumitoshi Melchiorri, Claudio Minami, Hirotsugu Mitsuishi, Mamoru Mo, Shuhua Morishige, Koichi Murakami, Toshiyuki Nagato, Keisuke Nakao, Masayuki	Masuda, Tadashi Matsuno, Takayuki Meng, Max QH. Minato, Kotaro Miyanaga, Yoshikazu Mochiyama, Hiromi Morishima, Keisuke Muscato, Giovanni Nakajima, Masahiro	Matsuhisa, Hiroshi Matsushige, Kazumi Meng, Yan Minemura, Kiyoshi Miyauchi, Satoru Morii, Masakatsu Morita, Noboru Nagata, Fusaomi Nakamura, Akio Nakauchi, Yasushi	Matsunaga, Saburo Maxwell, Andrew Mills, James K. Ming, Aiguo Mo, Hongwei Morikawa, Hiroyuki Morita, Yoshifumi Nagatani, Keiji Nakamura, Hikaru Nanayakkara, Thrish	
Mashec, Vlasitimi Matsuno, Fumitoshi Melchiorri, Claudio Minami, Hirotsugu Mitsuishi, Mamoru Mo, Shuhua Morishige, Koichi Murakami, Toshiyuki Nagato, Keisuke Nakao, Masayuki Nefti-Meziani, Samia	Masuda, Tadashi Matsuno, Takayuki Meng, Max QH. Minato, Kotaro Miyanaga, Yoshikazu Mochiyama, Hiromi Morishima, Keisuke Muscato, Giovanni Nakajima, Masahiro Nakatani, Akihiro	Matsuhisa, Hiroshi Matsushige, Kazumi Meng, Yan Minemura, Kiyoshi Miyauchi, Satoru Morii, Masakatsu Morita, Noboru Nagata, Fusaomi Nakamura, Akio Nakauchi, Yasushi Ni, Jinping	Matsunaga, Saburo Maxwell, Andrew Mills, James K. Ming, Aiguo Mo, Hongwei Morikawa, Hiroyuki Morita, Yoshifumi Nagatani, Keiji Nakamura, Hikaru Nanayakkara, Thrish	
Mashec, Vlasitimi Aatsuno, Fumitoshi Matsuno, Fumitoshi Melchiorri, Claudio Minami, Hirotsugu Mitsuishi, Mamoru Mo, Shuhua Morishige, Koichi Murakami, Toshiyuki Nagato, Keisuke Nakao, Masayuki Nefti-Meziani, Samia Ning, Hui	Masuda, TadashiMatsuno, TakayukiMeng, Max QH.Minato, KotaroMiyanaga, YoshikazuMochiyama, HiromiMorishima, KeisukeMuscato, GiovanniNakajima, MasahiroNakatani, AkihiroNelson, Bradley J.Nohmi, Masahiro	Matsuhisa, Hiroshi Matsushige, Kazumi Meng, Yan Minemura, Kiyoshi Miyauchi, Satoru Morii, Masakatsu Morita, Noboru Nagata, Fusaomi Nakamura, Akio Nakauchi, Yasushi Ni, Jinping Nojima, Toshio	Matsunaga, Saburo Maxwell, Andrew Mills, James K. Ming, Aiguo Mo, Hongwei Morikawa, Hiroyuki Morita, Yoshifumi Nagatani, Keiji Nakamura, Hikaru Nanayakkara, Thrish Ni, Zhonghua Oana, Hidehiro	

Ohtake, Hiroshi	Oka, Koichi	Okada, Eiji	Oki, Eiji	
Okuma, Masaaki	Omichi, Takeo	Oohira, Fumikazu	Osumi, Hisashi	
Otake, Mihoko	Otsuka, Akimasa	Ouezdou, Fathi Ben	Ouyang, Puren	
P.Miller, David	Pan, Yajun	Pang, Muye	Park, Jong Hyeon	
Park, Jooyoung	Park, Sangdok	Payande, Sharam	Perez, Ruben	
Pobil, Angel P. del	Prassler, Erwin	Qi, Guangyun	Qi, Hairong	
Qi, Naiming	Qiao, Gang	Qiao, Hong	Qiu, Anqi	
Qiu, Hua	Radermacher, Klaus	Rao, Wenbi	Ren, Carolyn	
Ren, Wei	Ren, Xiangshi	Rhim, Sungsoo	Roh, Segon	
Rong, Weibin	Ru, Changhai	Ryeol, Dong	Ryu, Jee-Hwan	
Sabatier, Jocelyn	Sabti, Ali	Saito, Takashi	Sakaguchi, Masamichi	
Sakai, Shuichi	Sakka, Sophie	Sakurai, Yoshio	Salman, Shaaban Ali	
Sampei, Seiichi	Sandini, Giulio	Sawada, Hideyuki	Sekiyama, Kousuke	
Semini, Claudio	Shan, Jinjun	Shao, Keyong	Shao, Xinjian	
Shen, Yantao	Shen, Yueshi	Sheng, Jie	Sheng, Weihua	
Shi, Guangfan	Shi, Haizhang	Shi, Jichuan	Shi, Liwei	
Shi, Zhen	Shibata, Takanori	Shimojo, Makoto	Shimotsu, Masateru	
Shoham, Moshe	Shriaki, Wataru	Singh, Akash	Soar, Jeffrey	
Son, Jaebum	Song, Jae-Bok	Song, Kai-Tai	Song, Quanjun	
Song, Zhibin	Stasse, Olivier	Stein, Cathryne	Su, Chanmin Q.	
Su, Chun-yi	Su, Liying	Sugar, Tom	Sugita, Naohiko	
Suh, Il Hong	Sun, Baoyuan	Sun, Daqian	Sun, Dong	
Sun, jinwei	Sun, Kangning	Sun, Xiaojun	Sun, Yong	
Sun, Yu	Sun, Zhaowei	Suzuki, Keisuke	Suzuki, Minoru	
Suzuki, Takahiro	Suzuki, Yuji	Tadakuma, Kenjiro	Takahashi, Ryoichi	
Takahashi, Satoru	Takahashi, Satoshi	Takahashi, Tatsuro	Takaiwa, Masahiro	
Takamasu, Kiyoshi	Takasaki, Masaya	Takeda, Takashi	Takeda, Yukio	
Takesue, Naoyuki	Takubo, Tomohito	Tan, Jeffrey	Tan, Jindong	
Tan, Lihai	Tan, Min	Tan, Zhenfan	Tanaka, Mami	
Tanaka, Takayuki	Tang, Mo	Tang, Yike	Tanikawa, Tamio	
Tanji, Yuichi	Tao, Nongjian	Tarumi, Hiroyuki	Terada, Hidetsugu	
Tian, Yantao	Tomita, Naohide	Tonet, Oliver	Torii, Akihio	

Touge, Tetsuo	Tsagarakis, Nikos	Tsai, Ching-Chih	Tsuji, Toshio	
Tsukada, Toshihiko	Tsukamoto, Hiroshi	Tsunoda, Okitoshi	Tung, Steve	
Ueno, Satoshi	Vachkov, Gancho	Vachkov, Gancho	Vai, Ming-I	
Vanderborght, Bram	Vernon, Brent	Vlacic, Ljubo	Voos, Holger	
Wada, Masayoshi	Wada, Osami	Wada, Takahiro	Wan, Feng	
Wan, Xinhua	Wang, Baikun	Wang, Cheng	Wang, DongMei	
Wang, Gang	Wang, Guoli	Wang, Hua	Wang, Joseph	
Wang, Keqi	Wang, Lizhen	Wang, Ludan	Wang, Michael Yu	
Wang, Peishan	Wang, Pu	Wang, Shuchen	Wang, Shuxing	
Wang, Tongyu	Wang, Wen	Wang, Xianghong	Wang, Xiaoyun	
Wang, Xin	Wang, Xinsong	Wang, Yafeng	Wang, Yuechao	
Wang, Yuezong	Wang, Zhidong	Wang, Zhuo	Wang, Zongyi	
Wang, Zuobin	Warisawa, Shin-ichi	Watanabe, Keigo	Watanabe, Mutsumi	
Wei, Wei	Wen, Bangchun	Wen, Paul	Wong, Pak-Kin	
Wu, Changhua	Wu, Gang	Wu, Jinglong	Wu, Lei	
Wu, Shijing	Wu, Xiaofeng	Wu, Xiaojun	X.Yang, Simon	
Xi, Jeff	Xi, Zhihong	Xiang, Zhengrong	Xiao, Jizhong	
Xiao, Lan	Xiao, Nan	Xie, Lihua	Xie, Ming	
Xie, Shane	Xie, Shaorong	Xin, Ming	Xiong, Caihua	
Xu, Bo	Xu, Chunquan	Xu, De	Xu, Dingjie	
Xu, Fen	Xu, Honghai	Xu, Jianan	Xu, Lixin	
Xu, Mengguo	Xu, Qingsong	Xu, Shijie	Xu, Yaoqun	
Xue, AnKe	Xue, Dingyu	Yakou, Takao	Yamada, Takayoshi	
Yamaguchi, Tomomi	Yamamoto, Manabu	Yamamoto, Motoji	Yamamoto, Yoshio	
Yamashita, Atsushi	Yamaura, Hiroshi	Yan, Shaoze	Yan, Shengyuan	
Yanagihara, Mamoru	Yang, Enxia	Yang, Erfu	Yang, Fang	
Yang, Guiliin	Yang, Hyun Suck	Yang, Jianwu	Yang, Jing	
Yang, Kwangjin	Yang, Qingsheng	Yang, Wu	Yang, Xiukun	
Yang, Yong	Yang, Yousheng	Yang, Zhaojun	Yano, Masafumi	
Yao, Yiyu	Ye, Cang	Ye, Changlong	Ye, Shujiang	
Ye, Xiufen	Yi, Byung-Ju	Yi, Chuanyun	Yi, Jianqiang	
Yin, Guofu	Yin, Zhengsheng	Yin, Zhouping	Ying, Lixia	

Ying, Xianghua	Yokokohji, Yasuyoshi	Yokota, Sho	Yoshida, Shunichi	
You, Bo	Young, Nak	Yu, Dejie	Yu, Huadong	
Yu, Jie	Yu, Junzhi	Yu, Qiang	Yu, Shui	
Yu, Xiaoyang	Yu, Yong	Yu, Yueqing	Yuan, Jianjun	
Yuan, Juntang	Yuan, Libo	Yuan, Xiaobu	Yue, Chunfeng	
Yue, Dong	Yue, Yong	Yun, Chao	Yuta, Shinichu	
Zeng, Chunnian	Zha, Hongbin	Zhang, Baida	Zhang, Chengjin	
Zhang, Dan	Zhang, Dianlun	Zhang, Hong	Zhang, Jianpei	
Zhang, Jianwei	Zhang, Jinxiu	Zhang, Lei	Zhang, Lijun	
Zhang, Lixun	Zhang, Mingjun	Zhang, Rubo	Zhang, Songyuan	
Zhang, Xianmin	Zhang, Xiaolong	Zhang, Xiaoyu	Zhang, Xinming	
Zhang, Xuping	Zhang, Yanhua	Zhang, Yi	Zhang, Yimin	
Zhang, Yong	Zhang, Yongde	Zhang, Yonggang	Zhang, Youmin	
Zhang, Yunong	Zhang, Zhaohui	Zhang, Zhe	Zhao, Cangwen	
Zhao, Chunhui	Zhao, Lin	Zhao, Qing	Zhao, Xin	
Zhao, Xinhua	Zhao, Yuxin	Zhao, Zhijun	Zheng, Fei	
Zheng, Guibin	Zheng, Jinyang	Zheng, Yuanfang	Zhong, Ning	
Zhou, Xunyu	Zhu, Chi	Zhu, Chunbo	Zhu, George	
Zhu, Jianguo	Zhu, Qidan	Zhu, Xiangyang	Zhu, Xiaorui	
Zhu, Xilin	Zhu, Yu	Zu, Jean	Zyada, Zakarya	

IEEE ICMA 2018 Conference

Cosponsors

Cosponsored by

IEEE Robotics and Automation Society Changchun Institute of Optics, Fine Mechanics and Physics, China Beijing Institute of Technology Kagawa University, Japan

Technically cosponsored by

National Natural Science Foundation of China Chinese Association of Automation Chinese Mechanical Engineering Society The Robotics Society of Japan Japan Society for Precision Engineering The Society of Instrument and Control Engineers The Japan Society of Mechanical Engineers **Beijing Institute of Technology** Harbin Engineering University University of Electronic Science and Technology of China University of Electro-Communications Tianjin Key Laboratory for Control Theory & Applications in Complicated Systems, Tianjin University of Technology, China Changchun University of Science and Technology Key Laboratory of Convergence Medical Engineering System and Healthcare Technology, the Ministry of Industry and Information Technology, School of Life Science and Technology(BIT) **Optics and Precision Engineering** State Key Laboratory of Robotics and System (HIT)

General Information

Changchun

Changchun is the capital of Jilin province and although Changchun has been more than 200 years old, it is still a young city comparing other historical cities in China, like Xian. It is located the central part of Songliao Plain, covering a total area of 20,571 square kilometers (about 8,012 square miles). Being the capital city of Jilin Province with a population of more than 6 million, it is one of the major cities in Northeast China and is the largest center for China's automotive industry. If territory of China is in a shape of rooster, therefore Changchun is one eye of this huge rooster. You can imagine its important position. Changchun has long, cold winters with the temperature dropping as low as -30°C; there is little snow, but the city is very windy and the air is dry. The present Changchun is charming city with several fine names which can give you a general impression of this big city.

Spring City of Northland: Changchun is of monsoon climate, locating in the transitional belt from wet area to sub-dry area. The four seasons varies a lot and the climate is rather pleasant, therefore Changchun is honored Spring City of Northland

Forest City: Woods, forest, people, city interweave together to show you a distinctive characteristic of Changchun. 39% of Changchun ground has been clothed with greenage, which makes Changchun one of top cities in this aspect. Green plants in and around Changchun make the city become a big oxygen bar, providing people to enjoy real fresh air.

Barn: Spring is dry and windy; summer is wet and rainy; autumn is sunny and cool; winter is cold. Generally speaking rain and heat come in the same season. Besides, favorable climate and enough sunshine provide very good condition for the growth of crops. Changchun teems with corn and soybean; therefore, it is praised as barn.

City of Automobiles: Changchun is the cradle of Chinese automobile industry, a famous auto city in China. On July 13, 1956, a truck branded with Jiefang was produced, which opened a new age for Chinese auto industry. This truck was the first automobile entirely made by Chinese. Famous and Changchun International Automobile Fair makes Changchun a real City of Automobiles.

City of Films: Changchun Film Studio was the first one after the found of People's Republic of China. It is praised as the cradle of Chinese film industry. For dozens of years, a great many excellent domestic films and dubbed films were produced here which gained a good fame for Changchun Film Studio both at home and abroad. As a calling card of Changchun, ceremonious Changchun Film Festival has enhanced its honor.

Hotel Information

• Sheraton Changchun Jingyuetan Hotel as the IEEE ICMA 2018 official hotel

The Sheraton Changchun Jingyuetan Hotel is located at the intersection of Wu Tong Street and Ding Er Shi Er Road in the Jingyuetan Tourism Economic Development Zone. Easily accessible via metro, Sheraton Changchun Jingyuetan Hotel is just 18 kilometers from the city center and 19 kilometers from the Changchun Railway Station. Additionally, Changchun Longjia International Airport (CGQ) is 37 kilometers away.

• The way to IEEE ICMA 2018 Conference site

It takes about one hour by taxi from Changchun Railway Station and Changchun Longjia International Airport to IEEE ICMA 2018 Conference site.

Attractions • Changbai Mountains

The Changbai Mountains Nature Reserve in east Jilin Province should be the first natural scenery of Jilin Province. Because there are a lot of white pumices and snow on the chief mountain-"Bai Tou Shan", it got its name "Changbai Shan". To the people of north China, Changbai Mountains is a "Mother Mountain", because it is not only the origin of Manchu, but also the cradle of Songhua, Tumen and Yalu

rivers. It is the supporting living environment of diverse northeast generations. Now, this "Holy Mountain" has been a protection screen for the eco- environment of some northeast areas. The Tianchi Lake is the most famous spot of Changbai Mountains which was formed by the volcano. Because of its high elevation (more than 2,194 meters), people called it "Lake of Heaven".

Xiang Hai

Another nature preserve in Jilin is Xianghai on the edge of the Songliao Plain and in Tongyu County in eastern Horqin Grassland. This preserve contains more than 100 swamps of varying sizes, a wide variety of fish, more than 250 different herbal plants, and a wide variety trees. Xianghai Nature Reserve is the natural habitat for 293 kinds of precious birds, including six breeds of cranes. The idyllic prairie and the local Mongol folklore combine to make this bird watching place a very fascinating place.

• Imperial Palace of Puppet Manchurian State

Pu Yi, the last Emperor of the Qing Dynasty, lived in Chang Chun, the capital city of Jilin, in an Imperial Palace for 14 years (1931 - 1945). This luxurious palace, which also was the of 'Puppet administrative departments the Manchurian Government', has hills, gardens, ponds, swimming pools, and various other forms of recreational facilities. The architecture and design of this 12-hectare (30-acre) palace is a

worthy site to visit for its beauty and unique historical importance. Photographs of the emperor, his weddings, wives, parents, and English teacher are on display in the museum.

Weather

The climate of Changchun is in the transition belt between the eastern humid hilly region and the western semiarid flat region, a continental sub humid monsoon climate of medium latitudes.

The east and the south are not far away from the sea, yet Changbai Mountain obstructs and slacks down summer monsoon; the west and the north are the flat Songliao Plain, continental polar airs from Siberia proceed without hindrance and various monsoons have serious effect here.

So the climate characteristics here are: it is very long and extremely cold in winter; it is dry and windy in spring; it is very short and warm in summer; and it is sunny and cloudless but the difference in temperature is very large in autumn. Usually, the maximum temperature 33°C in August and the minimum temperature -29°C in February. Annual temperature changes significantly, with distinctive four seasons.

Month	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
Daily	-13	-8	1	12	21	25	29	27	20	12	0	-10
Nightly	-25	-22	-11	0	7	14	18	18	9	0	-11	-21

The best time for traveling is in summer and autumn.

Transportation

Changchun Longjia International Airport

Changchun Longjia International Airport, is around 35 km east of Changchun's city center. The airport is large and clean, and passengers can find standard amenities such as restaurants, cafes, shops, lounges, credit card acceptance, etc. The major routes throughout the day are to domestic destinations Shanghai (2:20h) and Beijing (1:40h). There are also some international flights to various destinations in Korea (Seoul; ICN - with Asiana) and Japan (Nagoya with CZ).

From the airport there are some regular coach services (RMB 20 each way) available to the center (e.g. People's Square). The travel time takes around 45 minutes. A Taxi to/from the city costs RMB 80-100 including the toll.

• Public Bus Service

Changchun has an extensive bus network and most of the buses cost only RMB 1. However, if those who can't read Chinese will find it nearly impossible to use the network as the signage is all in Chinese characters. Most buses go to the bus station outside the train station, and other central areas such as Guilin Lu Chongqing Lu and Hongqi Jie. Be aware that the buses are often extremely crowded and especially uncomfortable during the hot summers as there is no air conditioning.

Taxis are cheaper than most in other Chinese cities and the fare starts at RMB 5 up to 2.5km, then RMB 2 per kilometer respectively. Changchun has lots of one-way streets, so don't panic if it seems your driver is lapping the block.

Useful Information

- Language: Official language is Mandarin and most people also use their local dialect. The standard spoken Chinese is Putonghua. English can be understood by many young people and is used in hotels and big restaurants. In all tourist hotels, staff can speak in English, Japanese and other languages. They can also write down addresses or instructions in Chinese for taxi drivers or others. In addition, roads in major cities are signposted in Pinyin, the official Romanization system of the Chinese characters, which makes it quite easy to get around with the help of a map.
- **Currency:** Renminbi (RMB) is the only currency to be used in China. RMB is also called Chinese Yuan. The unit of Renminbi is yuan and with smaller denominations called jiao and fen. The conversion among the three is: 1 yuan = 10 jiao = 100 fen. Paper notes are issued in denominations of 1, 5, 10, 20, 50 and 100 yuan. Coins are issued in denominations of 1 yuan, 5 jiao and 1 jiao.

Money exchanges by cash or traveler's cheques can be made at the branches of Bank of China at Changchun Longjia International Airport, hotels and tourist stores. Please remember to keep the receipt to exchange back to foreign currency when leaving China.

- Credit Cards: Visa, Master Card and American Express are the most commonly used in China. Cards can be used in most middle to top-range hotels, Friendship and department stores, but they cannot be used to finance your transportation costs.
- **Time:** GMT + 8 hours (the whole of China is set to Beijing time)
- Electricity: Electricity is 220 Volts, 50 AC; plugs can be three-pronged angled, three-pronged round, two flat pins or two narrow round pins.
- Water: Bottled mineral water can easily be bought in all stores and street kiosks for RMB3. And sometimes hotels provide it free of charge. Furthermore, potable water is only available in a few 4 to 5 star hotels, while water in thermos flasks in rooms is usually non-potable tap water.
- Measurement: In Metric system
- **Tipping:** Tipping is not customary outside of the foreign joint-venture hotels and is officially discouraged. But hotel bellboys usually expect RMB 2 5 per bag.
- Attention: Smoking is prohibited in public places in Changchun, such as hospitals, office buildings, theatres, cinemas, museums, planes, and trains
- **Emergency telephone number:** 110 Police;119 Fire;120 Ambulance

Conference Information

Conference Venue

IEEE ICMA 2018 will be held in the city of Changchun, at Sheraton Changchun Jingyuetan Hotel, Changchun, which serves as both the official conference hotel and the venue for the technical program.

Location of Sheraton Changchun Jingyuetan Hotel

Chinese Address Cards

Sheraton Changchun Jingyuetan Hotel

长春净月潭益田喜来登酒店

住所:吉林长春永顺路 1777 号,

净月经济开发区 Tel: (86) (431) 8181 1111 Fax: (86) (431) 8181 1616

Conference Registration

A conference registration desk will be set up and opened near the Room 2 on 1 F of Sheraton Hotel from August 5 (13:30) to August 8 (11:00) as followings.

August 5, 2018: $13:30 \sim 18:30$ (near the Room 2 on 1 F)August 6, 2018: $07:30 \sim 18:00$ (near the Room 2 on 1 F)August 7, 2018: $08:00 \sim 18:00$ (near the Room 2 on 1 F)August 8, 2018: $08:00 \sim 11:00$ (near the Room 2 on 1 F)

Internet Access

Free internet access will be provided during the conference period, to the IEEE ICMA 2018 participants at the Conference Room on 1 F and -1 F of Sheraton Hotel, Changchun. Broadband internet access services are also provided at the conference hotel for a fee. For the fee information, please contact the hotel you are staying directly.

Social Events

The social events organized by the IEEE ICMA 2018 include the conference reception, the awards banquet, the conference registration, the farewell party, etc.

Conference Reception

The Conference Reception will be held from 17:30 to 18:30 on August 5, 2018 in Conference Room 2, 1F of Sheraton Hotel (长春净月潭益田喜来登酒店 1 楼 2 会议室). All the Conference participants are welcomed to join this event.

Awards Banquet

The Awards Banquet will be held from 18:30 to 21:00 on August 7, 2018 in Yitian Convention Center, 1F, Sheraton Changchun Jingyuetan Hotel (长春净月潭益田喜来登酒店、1楼益田会议中心). All the conference participants are welcomed to join this event.

Farewell Party

The Farewell Party will be held from 12:30 to 13:30 on August 8, 2018 in Conference Room 2, 1F of Sheraton Hotel (长春净月潭益田喜来登酒店 1 楼 2 会议室). All the conference participants are welcomed to join this event.

IEEE ICMA 2018 Conference Keynote Speech

Human Interactive Service Robots

Toshio Fukuda, Ph.D

Professor

Department of Micro-Nano Systems Engineering

Nagoya University

Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan

E-mail fukuda@mein.nagoya-u.ac.jp

http://www.mein.nagoya-u.ac.jp/

<u>Abstract:</u>

Recent robot technology (RT) has made remarkable progress in both manufacturing and service sectors. Because of this RT advanced technology, there are growing demands to make robots work more friendly and flexible coordinated with human for service. There are many research and developing works undergoing for robot and human interaction, such as assistance and supports of human by robots in manufacturing, inspection and maintenance, entertainment, education, bio-medical applications, rehabilitation and techno-care of aged people. Robot is required to have the more flexibility and adaptation control to human behavior, more friendly robot and human interface, and estimation capability of human intention some way to make more proactive motion. There are a lot of problems to solve them with robotic sensor, actuator, control, communication and interface with human. Thus human will be able to work interactively with robots together in future and will receive assistance and support from robot, in terms of physical, skill and intelligence levels. Some examples of the on-going projects will be shown in this presentation.

Toshio Fukuda (M'83-SM'93-F'95) received the B.A. degree from Waseda University, Japan, in 1971, and the M.S and Dr. Eng. from the University of Tokyo, Japan, in 1973 and 1977, respectively. In 1977, he joined the National Mechanical Engineering Laboratory. In 1982, hejoined the Science University of Tokyo, Japan, and then joined Nagoya University, Nagoya, Japan, in 1989. Currently, he is Professor of Department of Micro-Nano System Engineering at Nagoya University, and Director of Center for Micro and Nano Mechatronics, where he is mainly involved in the research fields of intelligent robotic and mechatronic system, cellular robotic system, and micro- and nano-robotic system.

Dr. Fukuda was President of IEEE Robotics and Automation Society (1998-1999), Director of the IEEE Division X, Systems and Control (2001-2002), and Editor-in-Chief of IEEE / ASME Transactions on Mechatronics (2000-2002). He was Founding President of IEEE Nanotechnology Council (2002-2005) and President of SOFT (Japan Society for Fuzzy Theory and Intelligent Informatics) (2003-2005). He is a member of Japan Council of Science (2008-).

He received the IEEE Eugene Mittelmann Award (1997), IEEE Millennium Medal (2000), Humboldt Research Prize (2003), the IEEE Robotics and Automation Pioneer Award (2004), IEEE Robotics and Automation Society Distinguished Service Award (2005), Award from Ministry of Education and Science in Japan (2005). IEEE Nanotechnology Council Distinguished service award (2007). George Saridis Leadership Award (2009), IEEE Robotics and Automation Technical Field Award (2010), Best Googol Application paper awards from IEEE Trans. Automation Science and Engineering (2007). Best papers awards from RSJ(2004) and SICE(2007), Special Funai Award from JSME(2008), IEEE Fellow (1995), SICE Fellow (1995), JSME Fellow (2001), RSJ Fellow (2004).

IEEE ICMA 2018 Conference

Plenary Talk 1

Self-Optimization for Industry 4.0: An Effective

Distributed and Asynchronous Method

Peter B. Luh, Ph.D.

Professor

Department of Electrical and Computer Engineering

University of Connecticut

Storrs, CT, 06269-4157, USA

peter.luh@uconn.edu

Abstract:

Pushed by advancements in Internet of Things and Industry 4.0, recent trends of technological development in manufacturing include interoperability, virtualization, decentralization, and performance. A noble goal is effective "self-optimization" of autonomous systems consisting of multiple machining to process various parts. Such optimization, however, is difficult since discrete decision variables are generally involved, and problem complexity increases drastically as problem sizes increase. Coordination of asynchronous optimization processes then poses further theoretical as well as implementation challenges. In this talk, a distributed and asynchronous coordination approach is presented. In the approach, individual subproblems are solved by subsystems locally in an asynchronous manner, and prices are dynamically adjusted to balance supply and demand through a novel and accelerated updating process. The convergence of the method is proved by using a novel version of the Lyapunov stability theory. The method is then used to solve manufacturing planning and scheduling problems. Numerical testing on selected problems with or without sequence-depend setup times demonstrate that the method converges, is efficient and scalable, and that the dream of self-optimization for practical factories with near-optimal performance is achievable.

Prof. Peter B. Luh received his B.S. from National Taiwan University, M.S. from M.I.T., and Ph.D. from Harvard University. He has been with the University of Connecticut since 1980, and currently is the SNET Professor of Communications & Information Technologies. He is also a member of the Chair Professors Group, Center for Intelligent and Networked Systems (CFINS) in the Department of Automation, Tsinghua University, Beijing; and a member of the Thousand-Talent Program, the State Key Laboratory of Synthetical Automation for Process Industry, Northeastern University, Shenyang, China. Professor Luh is a Life Fellow of IEEE, and a member and the Chair (2018-2019) of IEEE TAB Periodicals Committee. He was the VP of Publications of the IEEE Robotics and Automation Society (RAS, 2008-2011), the founding Editor-in-Chief of the IEEE Transactions on Automation Science and Engineering (2003-2007), and the Editor-in-Chief of IEEE Transactions on Robotics and Automation (1999-2003). His research interests include intelligent manufacturing systems, smart power systems, and smart and green buildings. He received RAS 2013 Pioneer Award for his pioneering contributions to the development of near-optimal and efficient planning, scheduling, and coordination methodologies for manufacturing and power systems. He also received RAS 2017 George Saridis Leadership Award for his exceptional vision and leadership in strengthening and advancing Automation.

IEEE ICMA 2018 Conference

Plenary Talk 2

The world is not a safe place!

Safe Robots for Dangerous Jobs

Prof. Darwin G Caldwell, FREng

Deputy Director

Italian Institute of Technology (IIT)

Director, Department of Advanced Robotic IIT

Via Morego 30, 16163 Genoa, Italy

Email: darwin.caldwell@iit.it

Abstract:

The world is not a safe place! It is a multifaceted, unstructured, dynamic and dangerous environment. Sometimes events occur, both through natural disaster e.g. earthquake, weather, volcanoes, climate, fire, etc. and following human intervention e.g. nuclear, chemical, biological, oil and gas refining/exploration, mining, excavation, etc. that place people at extreme direct and indirect risk. Under such circumstances there is a massive safety driven need for robots to enter the domain and assist, augment or replace humans.

But operation in these potentially devastated outdoor or human engineered environments, using tools designed for humans deployment, requires robots that have human or human/animal-like levels of agility, compliance, dexterity, robustness, reliability and movement/locomotion. The challenges for both the software and the mechatronics are therefore immense.

This presentation will explore the core mechatronic technologies needed to create and operate humanoid (COMAN, COMAN+ and WalkMan), quadruped (HyQ and HyQ-real) and "centaur" quadruped (HalfMan) robots in complex, unstructured and destructed environments, and will demonstrate how many key loco-manipulation tasks may be addressed.

Prof. Darwin G Caldwell is Deputy Director of the Italian Institute of Technology (IIT), and Director of the Dept. of Advanced Robotics at IIT. He is or has been an Honorary Professor at the Universities of Manchester, Sheffield, Bangor, Kings College London and Tianjin University, China. His research interests include; innovative actuators, force augmentation exoskeletons, medical, rehabilitation and assistive robotic technologies, dexterous manipulators, haptics, humanoid and quadrupedal robotics (iCub, cCub, COMAN, WalkMan, HyQ, HyQ2Max, HalfMan, COMAN+). He is the author or co-author of over 500 academic papers, and 19 patents and has received awards and nominations from many international journals and conferences. Caldwell is a past chair of the IEEE Robotics and Automation Chapter (UKRI), a past co-chair of the IEE (IET) Robotics and Mechatronics PN. He is on the editorial advisory board of Science Robotics, Senior Editor for the Journal of Medical Robotics Research, Editor for Frontiers in Robotics and AI, and on the editorial boards of the International Journal of Social Robotics and Industrial Robot. Prof. Caldwell is a Fellow of the Royal Academy of Engineering.

IEEE ICMA 2018 Conference Plenary Talk 3

Cell surgery Robotics

Dong Sun, Professor

Chair Professor and Head

Department of Mechanical and Biomedical Engineering

Director of Center for Robotics and Automation

City University of Hong Kong

E-mail: medsun@cityu.edu.hk

http://www.cityu.edu.hk/mbe/medsun/

Abstract:

There exists an increasing demand for developing new technologies that can have earlier diagnosis and treatment of diseases at cell level, thereby achieving long term patient survival. Cell surgery robotics is an entirely new emerging theme that is enabled with specially designed automated micromanipulation tools to perform surgical diagnosis and treatment with image feedback, and can be processed on large-scale single cells. This talk will introduce our recent development of using robotics combined with micro-engineering tools including optical tweezers, micro-needles and electromagnetic devices, as special end-effectors to accomplish various tasks of cell manipulation, diagnosis and micro-surgery at the single cell level. With this emerging technology, we have achieved numerous cell surgery operations such as single cell transportation and rotation, single cell biopsy and microinjection, and target delivery of cells using magnetic actuation. The new technologies for automated cell surgery will permit many new unforeseen applications previously thought impossible, and profoundly affect surgical treatment and precision medicine.

Prof. Dong Sun is currently a chair professor and head of the Department of Mechanical and Biomedical Engineering, City University of Hong Kong, where his current research focuses on bio/medical robotics for biological cell manipulation and cell surgery. He studied in Tsinghua University of Beijing and the Chinese University of Hong Kong, and then joined the University of Toronto, Canada for post-doc research. After short-time working experience in Canadian industry, he returned to Hong Kong in 2000 and became an Assistant Professor in the City University of Hong Kong.

Dr. Sun is among the leading contributors worldwide in pioneering work in robotic manipulation of biological cells, which has recently become an emerging area of robotics for biomedical applications and offered fundamental advances in precision medicine. His research has breakthrough in the use of combined robotics and various micro-engineering tools including optical tweezers, micro-needles and electromagnetic devices to achieve cell manipulation, diagnosis and micro-surgery at the single cell level. With his emerging technology, a new robotics theme "cell surgery robotics" has been recently formed, which will permit many new unforeseen applications previously thought impossible.

Dr. Sun received numerous awards, including best paper awards from the international journal and conferences as well as industrial awards such as Hong Kong Awards for Industry. His patented research of intelligent sensor has been used in the E-Channel auto-pass systems of customs in Hong Kong. He serves on the editorial boards of several academic journals, and organizes several international flagship conferences including the world largest intelligent robot conference (IROS). He is a member of the Biomedical Division, Science and Technology Committee of Education Ministry of China, and a member of Research Grant Council of Hong Kong. He is a fellow of the IEEE and a fellow of the Hong Kong Institute of Engineers.

IEEE ICMA 2018 Conference Workshop

World Youth Development Workshops on Opto-Mechatronics

Sunday, August 5, 2018

13:30 - 15:40

Conference Room 1, 1F

Sheraton Changchun Jingyuetan Hotel, Changchun, China

Optical, Mechanical and Electronic Integration: Theory and Practice

Venue: Conference Room 1, 1F

Sheraton Changchun Jingyuetan Hotel, Changchun

Date and Time: 13:30 - 15:40, August 5, 2018

Organizers:

Dr. Dapeng Tian, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China Dr. Jianli Wang, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China

About the workshop:

Optical, Mechanical and Electronic integration technology is one of the core technologies of advanced manufacturing. It is the basis of robots, machine tool and several industrial devices. Youth is the backbone of future research. The Youth Innovation Promotion Association is a new force in the scientific and technological innovation of the Chinese Academy of Sciences. We assemble a group of Youth Innovation Promotion Association members who engage in the front-line research in the field of optics and mechatronics. Their latest research results will be introduced and presented.

Time	Topics	Speaker List			
13:25-13:30	Welcome speech				
13:30-13:50	Diode-Pumped Alkali- Vapor Lasers	Fei Chen, State Key Laboratory of Laser Interaction with Matter			
13:50-14:10	Researches on space structural dynamics and space robot in CIOMP	Zhenbang Xu, Innovation Lab of Space Robot System, Space Robotics Engineering Center, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences			
14:10-14:30	Advanced Motion Control and Its Applications	Dapeng Tian, Key Laboratory of Airborne Optical Imaging and Measurement Chinese Academy of Sciences			
14:30-14:50	Motion Compensation of TDI CCD Camera in Remote Sensing System	Dejiang Wang Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences			
14:50-15:10	Computer Vision and Robots Design	Ye Zhang, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences.			
15:10-15:30	Experiment analysis of adaptive optics based free space optic communication system with a 349-element deformable mirror	e Kainan Yao Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences			
15:30-15:40	Panel Discussion	Moderators: All speakers			

List of Speakers and Schedule

World Youth Development Workshops on Opto-Mechatronics

Talk 1

Diode-Pumped Alkali-Vapor Lasers

Fei Chen

Associate Professor, State Key Laboratory of Laser Interaction with Matter,

Innovation Laboratory of Electro-Optical Countermeasures Technology,

Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Science

E-mail: feichenny@126.com

<u>Abstract</u>

The diode-pumped alkali-vapor lasers (DPALs) have the preferred properties of solid-state lasers and gas lasers, such as higher quantum efficiency, larger stimulation emission cross-section, small refractive index perturbation, easy heat elimination and good optical characteristics. The DPALs are expected to obtain near-infrared laser output with high power, high efficiency and high beam quality, which has potential applications in military and civilian. In addition, it is a new way to achieve blue-violet laser with high efficiency and high power by frequency doubling of DPALs, which has important applications in scientific research, medical treatment, environmental monitoring, laser displays and underwater communication. In addition, cascade output of mid-infrared and visible laser could be obtained employing two-photon excitation.

The experimental investigations on a diode-pump cesium-vapor laser (Cs-DPAL) and its frequency doubling to obtain blue-violet laser are carried out. A Cs-DPAL is constructed. By optimizing the parameters, the CW Cs laser with fundamental transverse mode is obtained. Then the researchers on blue-violet laser by extra-cavity and intra-cavity frequency doubling are presented by using the phase matching method with LBO crystal. In order to obtain the dual-wavelength emission of mid-infrared and blue-violet laser, a model on the absorption cross-section of the simultaneous two-photon excitation in Rb-vapor four-wave mixing process is established. Additionally, two approaches to improve absorption efficiency are proposed.

Dr. Chen is an associate professor and a doctoral supervisor. He received his Doctoral degree in physical electronics from Harbin Institute of Technology in 2011. At the same year, he joined the State Key Laboratory of Laser Interaction with Matter in Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences. His research interests include novel lasers and laser frequency conversion. He has been publishing 108 papers (38 papers as the first author or corresponding author) in top journals and international conferences such as "Light: Science & Applications", "Optics Letters", "Optics Express" and ASSP, CLEO, ICOP, etc. Among them, 69 papers are recorded in SCI, and 30 papers are recorded in EI. The cited time of his papers recorded in SCI has reached more than 1200 times. He holds 3 academic books and 4 patents. He organized or participated in over 10 projects, including the Natural Science Foundation of China, the Major State Project, the Major Science and Technology Project, and the Major Science and Technology Biding Project of Jilin Province, etc. He was elected in the Youth Innovation Promotion Association of Chinese Academy of Sciences in 2017, and received the financing of the Youth Science and Technology Innovation Leaders and Team Project of Jilin Province at the same year.

World Youth Development Workshops on Opto-Mechatronics

Talk 2

Researches on Space Structural Dynamics and Space Robot in CIOMP

Zhenbang Xu

Innovation Lab of Space Robot System, Space Robotics Engineering Center, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun Email: xuzhenbang@gmail.com

Abstract

The presenters' group has been studying on space structural dynamics and space robot in CIOMP. In space structural dynamics, the main research work concentrates on the analysis and control of the jitter of the space device, including the integrated opto-mechanical analysis of the space optical device, passive and active micro-vibration control and the ground experiments technique of the jitter and so on. Some achievements have been applied to the multifunctional optical facilities on chinese space station, which is a flagship project of the china aerospace. In space robot, we have researched the space parallel robot and the space series robot. The space parallel robot is mainly used to be the adjustable mechanism of the large space telescope. The space series robot is used to construct ultra-large space telescope in orbit. This report introduces some recent works and main achievements in the abovementioned areas.

Dr. Xu received doctor degree from the university of science and technology of china (USTC) in 2010. After his career, he is currently a professor at Changchun Institute of Optics Fine Mechanics and Physics (CIOMP). His research interests include space structural dynamics, passive and active micro-vibration control and space robot. He has been publishing more than 30 journal papers in these areas.

World Youth Development Workshops on Opto-Mechatronics

Talk 3

Advanced Motion Control and Its Applications

Dapeng Tian

Associate Professor

Key Laboratory of Airborne Optical Imaging and Measurement, Chinese Academy of Sciences,

Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences,

E-mail: d.tian@ciomp.ac.cn

<u>Abstract</u>

Motion control theory and technology is one of the cores of industrial practice. Controlling the motion of an object means that the acceleration, velocity and position follow the orders accurately. Advanced motion control contains three aspects. Firstly, signal processing algorithm should be improved. The quality of feedback signal and also command signal directly influence the performance of the whole system. Secondly, an internal loop robust control should be added. Such a control loop improves disturbance rejection of a motion control system and even the overall performance. Thirdly, control algorithm in application lays should be focused on. The presenter has been investigating motion control for several years. An idea of designing the differentiator is proposed based on feedforward. Disturbance observer based internal loop control is also investigated combining sliding mode control. A haptic bilateral teleoperation is focused on in the application lay. Transparency haptic transmission is achieved with and without communication delay between a master robot and a slave robot.

Dr. Tian received B.E and Dr. E. from Beijing Institute of Technology in 2007 and Beihang University in 2012, respectively. From 2009 to 2012, he was with Keio Advanced Research Center, Keio University as a co-research fellow supported by Chinese Scholarship Council. From 2012 to 2014, he was with Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences (CAS) as an assistant professor. He is currently an associate professor and member of the Youth Innovation Promotion Association, CAS. His research interests include high speed and high accuracy control, bilateral teleoperation and haptics. He has published over 40 papers and achieved 5 patents for invention. He is an editorial board member of the journal of optics and precision engineering. The First prize for the academic achievements of Natural Science in Jilin, 2017's Outstanding Science and Technology Achievement Prize of the Chinese Academy of Sciences (Major Contributor) are presented to him.

World Youth Development Workshops on Opto-Mechatronics

Talk 4

Motion Compensation of TDI CCD Camera in Remote Sensing System

Dejiang Wang

Associate Professor

Key Laboratory of Airborne Optical Imaging and Measurement, Chinese Academy of Sciences,

Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences,

E-mail: wangdj04@ciomp.ac.cn

Abstract:

Clock smear caused by charge transfer of time delay and integration charge coupled device is the natural component in remote sensing system, and it could not be eliminated by traditional motion compensation schemes. After researching on the operation of a typical TDI CCD, we give a thorough understanding on causes of clocking smear. Then an elaborate mathematical model describing the charge transfer procedure is developed, and the modulation transfer function losses due to charge transfer is also presented, which shows that nearly one pixel smear will be introduced by traditional phased timing. Therefore we proposed a novel charge transfer method, a series of image simulations are made for two, three and four phase TDI CCD in which clocking smear is caused by our and conventional charge transfer methods respectively. The experimental results confirm that image quality improvement can be achieved by our method.

Dr. Wang received B.E and Dr. E. from Nankai university in 2004 and Qsinghua University in 2007, respectively. From 2007 to 2014, he was with Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences (CAS) as an assistant professor. He is currently an associate professor and member of the Youth Innovation Promotion Association, CAS. His research interests include dim point detection using infrared camera and motion compensation in remote sensing cameras. Published more than 20 articles, such as Optics Express, Applied Optics, Optics Communication, etc. Authorized more than 5 patents, as a tutor or assistant tutor of optical engineering discipline doctoral, master of 4 graduate students. He has hosted or participated in a number of national, provincial or ministerial funds or projects.

IEEE ICMA 2018 Conference World Youth Development Workshops on Opto-Mechatronics Talk 5

Computer Vision and Robots Design

Zhang Ye

Associate Professor

Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences.

E-mail: zhangye@ciomp.ac.cn

Abstract:

In this work, we propose a nurturance robot system. The robot system follows a modularize design style which is consists of several interrelated functions modules, including vision, auditory, and speech. This system design enables us easily to be able to integrate other functions. Combining some existing state-of-art approaches, the Nurturance robot system integrates face recognition, human computer interaction and facial expression display. We elaborate the design and implementation of the system from two aspects, software and hardware, respectively. Includes two aspects. Firstly, we propose a method for combining several software modules of speech recognition and vision. Secondly, we construct a simple and effective experimental system to realize our design and design a pretty and smart nurturance robot.

Zhang Ye received PhD. degree from Changchun Institute of Optics, fine Mechanics and Physics, Chinese Academy of Sciences in 2008. Previously engaged in ground, aviation, aerospace and military related computer vision and artificial intelligence work, with the team transferred to the State Key Laboratory of Applied Optics, engaged in the design and research and development of artificial intelligence-related civil products. Published more than 20 articles, including a study about deep learning with an SCI impact factor 6.387, authorized more than 10 patents, as a tutor or assistant tutor of artificial intelligence discipline doctoral, master of 8 graduate students. She has hosted or participated in a number of national, provincial or ministerial funds or projects. In 2018, she will complete a transformation of scientific and technological achievements, and planned to set up a business, taking artificial intelligence as the core, to serve industrial and civilian.

Talk 6

World Youth Development Workshops on Opto-Mechatronics

Experiment analysis of adaptive optics based free space optic communication system with a 349-element deformable mirror

Kainan Yao

Associate Professor

Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, China

E-mail: yaokainan001@126.com

Abstract:

Due to the influence of atmospheric turbulence, the decrease of fiber coupling efficiency leads to the decline of free space optical communication (FSOC) system performance. Adaptive optics (AO) can reduce atmospheric turbulence effect and improve fiber coupling efficiency effectively. To improve the performance in FSOC system, AO system must be designed to compensate both high spatial and temporal frequency wavefront aberrations. In this paper, we describe an AO system with a 349-element deformable mirror used for FSOC system and evaluate its performance under different Greenwood frequency. The simulative and experimental results show that the coupling efficiency can be significantly improved after AO correction. And more element number of deformable mirror and higher close-loop control bandwidth can offer more enhancements for FSOC performance. This experiment analysis provides a reference for the design of FSOC system.

Kainan Yao was born in December 1987, received the Doctor's degree from University of China Academy of Sciences in 2015.He is currently a associate professor at Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Member of the Youth Innovation Promotion Association of the Chinese Academy of Sciences. His major research directions including the adaptive optics technology and the novel wave front sensing method. He has more than 10 journal papers, including the first author or corresponding author in Optics Express, Applied Optics, IEEE Photonics Journal. Based on the related work, he got fundings, such as National Natural Science Foundation of China, National Defense Science and Technology Innovation Fund Project of Chinese Academy of Sciences and Military Commission Science and Technology Committee Innovation Project. He won the Chinese Academy of Sciences President award in 2015.

IEEE ICMA 2018 Program at a Glance

August 5-8, 2018

Sheraton Changchun Jingyuetan Hotel, Changchun, Jilin, China

Sunday, August 5, 2018				
13:30 - 18:30	Registration Desk Open on 1F			
13:30 - 15:40	World Youth Development Workshops on Opto- Mechatronics at Conference Room 1			
16:00 - 17:00	<u>Keynote Speech</u> (Prof. Toshio Fukuda) (Conference Room 1)			
17:30 - 18:30	Reception at Conference Room 2			
	Monday, August 6, 2018			
8:30 - 9:00	Opening Ceremony (Yitian Convention Center)			
9:00 - 9:50	<u>Plenary Talk #1</u> (Dr. Peter B. Luh) (Yitian Convention Center)			
9:50 - 10:40	Plenary Talk #2 (Dr. Darwin G. Caldwell) (Yitian			
10.40 - 11.00	Morning Break			
11:00 - 12:00	Technical Sessions MA1 (Poster Session) (Yitian			
12.00 - 13.30	Lunch Broak			
12.00 - 15.00	Technical Sessions MP1 (Conference Boom on -1E and 1E)			
15.00 - 15.00	Afternoon Break			
15:15 - 16:45	Technical Sessions MP2 (Conference Room on -1F and 1F)			
17:00 - 18:00	Technical Sessions MP3 (Conference Room on -1F and 1F)			
1/100 10100	Tuesday, August 7, 2018			
8:30 - 10:00	Technical Sessions TA1 (Conference Room on -1F and 1F)			
10:00 - 10:30	Morning Break			
10:30 - 12:00	Technical Sessions TA2 (Conference Room on -1F and 1F)			
12:00 - 13:30	Lunch Break			
13:30 - 15:00	Technical Sessions TP1 (Conference Room on -1F and 1F)			
15:00 - 15:30	Afternoon Break			
15:30 - 17:00	Technical Sessions TP2 (Conference Room on -1F and 1F)			
18:30 - 21:00	Award Banquet, <u>Vitian Convention Center, 1F in Sheraton Changchun</u> Jingyuetan Hotel,			
	Wednesday, August 8, 2018			
8:30 - 9:20	Plenary Talk #3 (Dr. Dong Sun) (Yitian Convention Center)			
9:30 - 11:00	Technical Sessions WA1 (Conference Room on -1F and 1F)			
11:00 - 11:15	Morning Break			
11:15 - 12:15	Technical Sessions WA2 (Conference Room on -1F and 1F)			
12:30 - 13:30	Farewell Party at Conference Room 2			
* 15 minutes (Speech	: 12 minutes, Q&A:3 minutes) are scheduled for oral presentation including			

discussions for each paper.

* 30 minutes (core time) are scheduled for poster presentation

IEEE ICMA 2018 Technical Program, Sunday, August 5, 2018							
Room Time	Room 1	Room 2	Room 3	Room 4	Room 5	Room 6	Room 7
13:30-18:30	Registration Desk Open			Location: Registration Area on 1 F			
13:30-15:40	World Youth Development Workshops on Opto-Mechatronics			Location: Conference Room 1 on 1 F			
16:00-17:00	Keynote Speech Human Interactive Service Robots Prof. Toshio Fukuda, Nagoya University, Japan			Loaction : Conference Room 1 on 1 F			
17:30-18:30	Reception			Location: Conference Room 2 on 1 F			
IEEE ICMA 2018 Technical Program, Monday, August 6, 2018							
8:30-9:00	Opening Ceremony			Location: Yitian Convention Center			
9:00-9:50	Plenary Talk #1 Self-Optimization for Industry 4.0: An Effective Distributed and Asynchr Dr. Peter B. Lub. University of Connecticut. USA Locati			ynchronous Method Location: Yitian Convention Center			
9:50-10:40	Plenary Talk #2 The world is not a safe place! Safe Robots for Dangerous Jobs Dr. Darwin G. Caldwell, Italian Institute of Technology, Ita			վչ			
			Location: Yitian Convention Center				
10:40-11:00	Morning Break						
11:00 12:00	Technical Sessions MA1 Poster Session (Intelligent Mechatronics and Automation)						
11.00-12.00					Location: Yitian Convention Center		
12:00-13:30	Lunch Break						
	MP1-1	MP1-2	MP1-3	MP1-4	MP1-5	MP1-6	MP1-7
13:30-15:00	Mechanism Design of Robots	Medical Robots for Minimal invasive surgery I	Manufacturing Process & Automation I	Modeling, Simulation Techniques and Methodology I	Vision System & Image Processing	Mobile Robot System I	Control Theory and Application I
15:00-15:15	Afternoon Break						
15:15-16:45	MP2-1 Micro & Nano Systems I	MP2-2 Medical Robots for Minimal Invasive Surgery II	MP2-3 Manufacturing Process & Automation II	MP2-4 Modeling, Simulation Techniques and Methodology II	MP2-5 Vision System and Robotic Vision	MP2-6 Mobile Robot System II	MP2-7 Control Theory and Application II
17:00-18:00	MP3-1 Micro & Nano Systems II	MP3-2 Medical Robots for Minimal Invasive Surgery III	MP3-3 Humanoid Robots	MP3-4 Intelligent Control I	MP3-5 Vision System & Application	MP3-6 Actuator Design	MP3-7 Medical & Rehabilitation Systems

IEEE ICMA 2018 Technical Program, Tuesday, August 7, 2018							
Room	Room 1	Room 2	Room 3	Room 4	Room 5	Room 6	Room 7
8:30-10:00	TA1-1 Signal and Image Processing I	TA1-2 Intelligent Mechatronics	TA1-3 Mechatronic Systems I	TA1-4 Intelligent Control II	TA1-5 Modeling, Simulation Techniques and Methodology IV	TA1-6 Mobile Robots	TA1-7 Control Theory and Application III
10:00-10:30	Morning Break						
10:30-12:00	TA2-1 Signal and Image Processing II	TA2-2 Intelligent Mechatronics and Application I	TA2-3 Mechatronic Systems II	TA2-4 Multiple Robot Control	TA2-5 Opto-electronic Element and Materials	TA2-6 Biomimetic Measurement and Control in Robotics	TA2-7 Control Theory and Application IV
12:00-13:30	Lunch Break						
13:30-15:00	TP1-1 Signal and Image Processing III	TP1-2 Intelligent Mechatronics and Application II	TP1-3 Mechanism & Design	TP1-4 Biomimetic Systems	TP1-5 Element, Structures and Mechanisms I	TP1-6 Space and Telerobotics	TP1-7 Control Theory and Application V
15:00-15:30	Affernoon Break						
15:30-17:00	TP2-1 Signal and Image Processing IV	TP2-2 Intelligent Mechatronics and Application III	TP2-3 Manufacturing Systems & Automation	TP2-4 Intelligent Biomedical Technology	TP2-5 Element, Structures and Mechanisms II	TP2-6 AUV & Space Robots	TP2-7 Control Theory and Application VI
18:30-21:00	Award Banquet			Location: Yitian Convention Center			
IEEE ICMA 2018 Technical Program, Wednesday, August 8, 2018							
Room Time	Room 1	Room 2	Room 3	Room 4	Room 5	Room 6	Room 7
8:30-9:20	Plenary Talk #3 Cell surgery Robotics Dr. Dong Sun, City University of Hong Kong, Hong Kong		Location: Yitian Convention Center				
9:30-11:00	WA1-1 Signal and Image Processing V	WA1-2 Manipulator Control I	WA1-3 Sensor Design and Sensing System	\succ	WA1-5 Modeling, Simulation Techniques and Methodology III	WA1-6 Control Theory and Application VII	WA1-7 Human-System Interaction
11:00-11:15			·	Morning Break		•	
11:15-12:15	WA2-1 Signal and Image Processing VI	WA2-2 Manipulator Control II	WA2-3 Signal Measurement and Process in Automatic Control	\ge	WA2-5 Rotor Dynamics, Vibration Analysis and Vibration Control	WA2-6 Manipulation Sensing & System	WA2-7 Robot Navigation and Control Algorithm
12:30-13:30		Farewell Party a	nd Lunch Break		Location: Conference Room 2 of	on 1 F	

IEEE ICMA 2018 Floor Map of Conference Rooms

-1F and 1F, Sheraton Hotel, Changchun

Conference Room 1-7 and Yitian Convention Center

Monday August 6, 2018

Morning Sessions

MA1-P Poster Session (Intelligent Mechatronics and Automation)

Monday August 6, 2018

Afternoon Sessions

- MP1-1 Mechanism Design of Robots
- MP1-2 Medical Robots for Minimal invasive surgery I
- MP1-3 Manufacturing Process & Automation I
- MP1-4 Modeling, Simulation Techniques and Methodology I
- MP1-5 Vision System & Image Processing
- MP1-6 Mobile Robot System I
- MP1-7 Control Theory and Application I
- MP2-1 Micro & Nano Systems I
- MP2-2 Medical Robots for Minimal invasive surgery II
- MP2-3 Manufacturing Process & Automation II
- MP2-4 Modeling, Simulation Techniques and Methodology II
- MP2-5 Vision System and Robotic vision
- MP2-6 Mobile Robot System II
- MP2-7 Control Theory and Application II
- MP3-1 Micro & Nano Systems II
- MP3-2 Medical Robots for Minimal Invasive Surgery III
- MP3-3 Humanoid Robots
- MP3-4 Intelligent Control I
- MP3-5 Vision System & Application
- MP3-6 Actuator Design
- MP3-7 Medical & Rehabilitation Systems

Session Chairs: Jian Guo, Tianjin University of Technology

Liwei Shi, Beijing Institute of Technology

Yitian Convention Center, 11:00-12:00, Monday, 6 August 2018

MA1-P(1) 11:00-12:00

A Central-Scotoma Simulator Based on Low-Cost Eye Tracker

Yiyang Yu, Qiong Wu, Yang Feng, Ting Guo, Jiajia Yang, Satoshi Takahashi, Yoshimichi Ejima and Jinglong Wu The Graduate School of Natural Science and Technology, Okayama University Okayama, Japan

- Firstly, we explained the role of the centralscotoma simulator in scientific research about central vision loss.
- secondly, we chose the suitable hardware and software to implement a low-cost simulator.
- Lastly, we used this simulator to simulate the symptom of patients with macular diseases, which resulted in the normal vision subjects achieved similar results same as macular degeneration in natural oral reading test.

MA1-P(3) 11:00-12:00

Research on Cooperative Work Path Planning Method Based on Double 6 - DOF Manipulators

Chengtao Cai and Boyu Wang Yi Li College of Automation, Harbin Engineering University Harbin No.703 Research Institute Harbin, China Harbin, China

- For the six-freedom dual-arm, this paper proposes a new path planning method combining linear interpolation method and artificial potential field method.
- This new method not only considers the continuity and displacement of the manipulator, but also ensures that the path is the shortest on the premise that the arms do not collide.

MA1-P(5) 11:00-12:00

MA1-P(4) 11:00-12:00

Session Chairs: Jian Guo, Tianjin University of Technology

Liwei Shi, Beijing Institute of Technology

Yitian Convention Center, 11:00-12:00, Monday, 6 August 2018

MA1-P(7) 11:00-12:00

MA1-P(9) 11:00-12:00

Wave Compensator Design Based on Adaptive FFT Prediction Algorithm and H∞ Filtering

MingXi Zhang, Qi Li, XiangDong Meng, YuQing He, HaiTao Luo State Key Laboratory of Robotics., Shenyang Institute of Automation, Chinese Academy of Sciences. China

• A wave compensation system was investigated based on adaptive the fast Fourier transform (FFT) prediction algorithm and H∞ filtering.

 The H∞ filter was used to eliminate the high-frequency wave interference and make the compensation platform move more smoothly.

· The FFT was adopted to construct an

chronously as possible

adaptive wave prediction algorithm in

order to compensate the waves as syn-

MA1-P(11) 11:00-12:00

Algorithm of Ship Collision Risk Based on Improved BP Neural Network

XiaoGong Lin1 , YuQi Yuan2 (1.Department of Automation,Harbin Engineering University, Harbin 150001,China)

- · Improved BP neural network
- Calculate ship collision risk
 On the basis of the traditional adaptive learning rate algorithm, an optimized adaptive learning rate method is proposed, and the momentum term is added.

USV

MA1-P(8) 11:00-12:00

MA1-P(10) 11:00-12:00

MA1-P(12) 11:00-12:00

Optimal Design Method of Low Noise Amplifier Circuit

WU Jie^{1, 2},Chenxiaojuan¹,ZHANG Xinchao¹,JIANG Shan³,DU Yao⁴ 1.College of Electronical and Information Engineering,Changchun University of Science and Technology,Changchun 130022,China;

2.College of electrical and information engineering,Beihua University,Jilin 132013,China 3.Jilin Power supply Company of State Grid,Jilin 132000,China

4.School of Information engineering, Northeast Electric Power University, Jilin 132012, China)

The accuracy of low frequency noise measurement has been concerned because it is an important technique for evaluating the reliability of components. An improved method for measuring low frequency noise is presented in this paper. The influence of the background noise of the amplifier on the measurement results is eliminated by using the characteristics of the two channel amplifier and the amplifier circuit designed by discrete components.

Session Chairs: Jian Guo, Tianjin University of Technology

Liwei Shi, Beijing Institute of Technology

Yitian Convention Center, 11:00-12:00, Monday, 6 August 2018

MA1-P(13) 11:00-12:00

MA1-P(15) 11:00-12:00

The Temperature Control of Blackbody Radiation Source Based on ADRC Zhigang Wang, Zerong Yun, Lingling Wang, and Jinghui Wang

The Step Response Curve

with Three Controlled Methods

control performance of the ADRC method is better than traditional PID and Smith predictor.

MA1-P(17) 11:00-12:00

MA1-P(14) 11:00-12:00

MA1-P(16) 11:00-12:00

MA1-P(18) 11:00-12:00

Session Chairs: Jian Guo, Tianjin University of Technology Liwei Shi, Beijing Institute of Technology Yitian Convention Center, 11:00-12:00, Monday, 6 August 2018

MA1-P(19) 11:00-12:00

MA1-P(21) 11:00-12:00

MA1-P(23) 11:00-12:00

A water-cooling eletrome on reducing tissue thermal damage

Minggao Li , Xinggang Jiang* , Wenshuai Wu and Deyuan Zhang School of Mechanical Engineering and Automation, Beihang University Beijing, China

- The water-cooling electrome is aimed to minimize tissue thermal damage.
- The coolant pours to the surgical tissue interface from the water-cooling electrome tip and takes away extra tissue heat.
- The experimental results show that the water-cooling electrome reduces the tissue damage at least 100 um compared with the ordinary electrome at the same output power.

Water-cooling system

MA1-P(20) 11:00-12:00

MA1-P(22) 11:00-12:00

MA1-P(24) 11:00-12:00

Session Chairs: Jian Guo, Tianjin University of Technology

Liwei Shi, Beijing Institute of Technology

Yitian Convention Center, 11:00-12:00, Monday, 6 August 2018

MA1-P(25) 11:00-12:00

Research on Low Energy Consumption Attitude of Foot Bionic Robot

Juncheng Guo, Lei Zhang, Shuangshuang Gao Department of Automation and Control, Ocean University of China, Qingdao, China

- Obtain the output torque of each joint of leg through the statics analysis, and establish the energy consumption model of the robot.
- Introduce the performance index of maximum step-length, and establish the multi-objective function based on the energy consumption and the maximum step-length.
- Carry out simulation and prototype experiment to verify the validity of the method.

MA1-P(27) 11:00-12:00

Ship Model Recognition Based on Convolutional Neural Networks Shihong Xing and Shaokang Zhang Navy Submarine Academy

- The deep convolutional neural network provides new approaches and methods for ship target recognition.
- This paper proposes an efficient training scheme for convolutional neural networks training on the small capacity of ship data sets.
- The effectiveness of the scheme is verified through experiments, and the accuracy is improved. It can reach 99%.

MA1-P(29) 11:00-12:00

Research Review on Energy Storage Technology in Power Grid

Xuesong Zhou¹, Zhihao Fan¹,Youjie Ma¹,Zhiqiang Gao^{1,} Xudong Zhang²,Jingping Zhang² Key Research Laboratory for Control Theory & Applications in Complicated Systems, Tianjin University of Technology, Tianjin, China

- The significance and value of energy storage technology research in Power Grid.
- Various types of storage technology.
- Demands on energy storage technology in Power Grid.
- The research status of energy storage technology in power grid.
- Some existing problems and the future development trend of energy storage technology in power grid.

Configuration Diagram of

Hybrid Energy Storage

System for Wind Power Balancing

Six-legged Bionic Robot

MA1-P(26) 11:00-12:00

MA1-P(28) 11:00-12:00

Infrared Dual-band Point Target Detection Based on Gradient Convolution Template and CFAR Criterion Deijang Wang, and Rang Liu Changchun Institute of Optics, Fine Mechanics and Physics Changchun, China Single-band target detection model under NP criterion is established. The probability of detection and probability of false alarm are deduced under dual-band model. The TNR is constantly adjusted to obtain the optimal fused probability of detection. Gradient convolution template and CFAR Criterion are adopted to suppress background and noise. Detection results of complex

MA1-P(30) 11:00-12:00

background

Session Chairs: Jian Guo, Tianjin University of Technology Liwei Shi, Beijing Institute of Technology Yitian Convention Center, 11:00-12:00, Monday, 6 August 2018

MA1-P(31) 11:00-12:00

MA1-P(33) 11:00-12:00

A Behavioral Study on Angle Discrimination and Sorting by Fingertip Touch

Graph of error score in two groups

Qiong Wu¹, Yang Liu¹, Jinglong Wu^{1,2} and Ritsu Go²

- 1 Graduate School of Interdisciplinary Science and Engineering in Health Systems Okayama University 2 Intelligent Robotics Institute, Beijing Institute of Technology
- Research on tactile cognitive ability is a very important research field for early detection of dementia.
- In this research, we have studied aging effects in young people and the elderly with a simpler and inexpensive device called angle chip rearrangement device.
- Experiments showed that the elderly had greater errors than younger people.
- In addition, it was possible to shorten the experimental time as compared with the conventional apparatus.

MA1-P(35) 11:00-12:00

MA1-P(32) 11:00-12:00

MA1-P(34) 11:00-12:00

MA1-P(36) 11:00-12:00

Session Chairs: Jian Guo, Tianjin University of Technology Liwei Shi, Beijing Institute of Technology Yitian Convention Center, 11:00-12:00, Monday, 6 August 2018

MA1-P(37) 11:00-12:00

MA1-P(39) 11:00-12:00

The time course of symmetry effect on shape perception: an event-related potential study

Meng Wang, Olong Wu, Fengxia Wu, Jiajia Yang, Satoshi Takahashi, Yoshimichi Ejima, Jinglong Wu The Graduate School of Natural Science and Technology, Okayama University

 Although symmetry is known to be an important determinant of visual processing and an appreciation of visual symmetry has been studied in several electroencephalography experiments, it remains not well clear the mechanism of visual symmetry processing.

To investigate this, we measured the processing of symmetrical stimulus (diagonal) and asymmetrical stimulus

(control) with two levels of intensity by

measured visual evoked potential (VEP).

MA1-P(41) 11:00-12:00

Parameter Study on Dynamic Characteristics of Wave Journal Bearings

Baisong Yang, Jigang Zhang, Sheng Feng, Jinxin Zhao, Haipeng Geng, Jian Zhou and Lie Yu State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Shaanxi, China

- The wave amplitude ratio plays an essential role on the wave bearing's stability performance.
- The wave position angle of the wave bearing with a periods of 360/n_w relies to the applied load effects the bearing's stability.
- The wave bearing's dynamic stability is significantly influenced by the wave number.

MA1-P(38) 11:00-12:00

MA1-P(40) 11:00-12:00

MA1-P(42) 11:00-12:00

Omnidirectional mobile robot

Session Chairs: Jian Guo, Tianjin University of Technology

Liwei Shi, Beijing Institute of Technology

Yitian Convention Center, 11:00-12:00, Monday, 6 August 2018

MA1-P(43) 11:00-12:00

2GHz PLL Frequency Synthesizer

Guohong Li, Yaozhong Wang

Tianjin Key Laboratory for Control Theory & Applications in Complicated Systems, Tianjin University of Technology Tianjin, China

- This paper mainly introduces the design and testing for 2GHz PLL frequency synthesizer.
 - The core component is LMX2430. The Loop Filter contains operational amplifier, it is an active filter.
- · The design contains power module.

PLL Frequency Synthesizer

MA1-P(45) 11:00-12:00

Interval Analysis of Timoshenko Beam with Parameter Uncertainties Based on the Maximum **Entropy Principle**

Mingming Wang, Linfang Qian, Guangsong Chen and Wenyu Zhai School of Mechanical Engineering, Nanjing University of Science and Technology Nanjing, China

- The dynamic model of the beam is established by spectral element method and Timoshenko beam theory
- The parameters uncertainties are considered
- The intervals of outputs can be estimated through maximum entropy principle and first-order Taylor expansion
- The proposed method appears to be effective and can greatly decrease the computational expense

MA1-P(47) 11:00-12:00

Summary of Cloud Computing Technology in **Smart Grid**

Youjie Ma, Faqing Zhao, Xuesong Zhou and Zhiqiang Gao Key Research Laboratory for Control Theory & Applications in Complicated Systems, Tianjin University of Technology Tianjin, China

- The cloud can be considered as a virtual device that can store energy as well as data in association with the required peripheral devices.
- · Proposed cloud computing platform of the smart grid status data monitoring.
- Only authorized smart grid components can access different services for cloud providing adequate security to the end-users.

Cloud Computing Technology

val including

the real interval

- · To resolve issues of particle filtering, this paper introduces an adaptive Unscented particle filter (UPF) based interacting multiple model algorithm
- The main seven steps of AIMMUPF algorithm.
- AIMMUPF method for GPS/DR integrated navigation system simulation experiment and analysis.
- · Conclusion.

MA1-P(48) 11:00-12:00

MA1-P(44) 11:00-12:00

Research on Location Method of Pipe Climbing Robot based on Gyroscope

Lei Shao, Shuai Yang, Hongli Liu and Ji Li Tianjin University of Technology Tianjin Key Laboratory of Complex System Control Theory and Applications Tianjin University of Technology, Tianjin, China

- This paper introduce a new method to location the robot working on sea water desalination pipe.
- Most of reading errors of gyroscope has eliminated by kalman filter.
- Only use gyroscope and motor encoder to get the position and posture of the robot

Robot Location System

www.white

MA1-P(46) 11:00-12:00

Adaptive UPF Based Interacting Multiple Model Algorithm for Integrated Navigation Yi Gao, Jinzhu Gao, Yanhui Mao, and Ya Gao

School of Electronic Engineering, Xi'an Shiyou University Xi'an Shaanxi, China where

- Position error of AIMMUPF
- - Velocity error of AIMMUPF

8

Session Chairs: Jian Guo, Tianjin University of Technology

Liwei Shi, Beijing Institute of Technology

Yitian Convention Center, 11:00-12:00, Monday, 6 August 2018

MA1-P(49) 11:00-12:00

MA1-P(51) 11:00-12:00

Double Axes Equal-Distance Projection

Cai Chengtao, Zhou Yueyuan, Li Yi Harbin Engineering University

Harbin, China

- 1.66 times faster than Gauss-Kruger projection.
- 9.5% higher accuracy than classic Gauss-Kruger projection.
- No distortion on two vertical axes in theory.
- Advantages of mobile robots and unmanned vehicals, especially when they word on a crossroad area.

Applied to Crossroad

MA1-P(53) 11:00-12:00

MA1-P(50) 11:00-12:00

MA1-P(52) 11:00-12:00

Static Simulation and Structure Optimization of Key Parts of Joint Welding Robots

Xinle Li¹, Haiyan Shao¹⁺, Guoping Li¹, Weiping Liu² and Chuan Liu² 1.School of Mechanical Engineering, University of Jinan, Jinan, Shandong Province, China 2. Shandong Times New Era Robot Co., Ltd. Jinan, Shandong Province, China

- Introduce the overall structure of the welding robot.
- According to the structure of the robot, the main component load of the welding robot is calculated.

- CAE was used for static analysis to verify the strength and stiffness of the robot structure.
- Optimize the structure of the arm to further verify the reliability of the structure.

MA1-P(54) 11:00-12:00

Session Chairs: Jian Guo, Tianjin University of Technology

Liwei Shi, Beijing Institute of Technology

Yitian Convention Center, 11:00-12:00, Monday, 6 August 2018

MA1-P(55) 11:00-12:00

Prediction of User Behavior in Smart Home Based on Improved ARIMA Model Hongjun Wang, Kaiying Wang, Hui Zhao and Youjun Yue Tianjin Key laboratory for Control Theory and Applications in Complicated System, Tianjin University of Technology Tianjin, China A predictive model for the turn-on time is created especially to predict when the water heater will be turned on. The prediction equation is established with the sample data and the time when the user turns on the water heater in the next week is predicted. The improved ARIMA model has the better performance in prediction, because the changes of the prediction process the measured process are Comparison of forecast results basically consistent.

MA1-P(57) 11:00-12:00

The Design of a Positioning Manipulator for Minimally Invasive Vascular Interventional Surgery Robot System

Hongbo Wang, Xusheng Wang, Bo Guan, Jingyuan Chang, Haoyang Yu and Hesuo Tian Parallel Robot and Mechatronic System Laboratory of Hebei Province, Yanshan University Qinhuangdao, China

of

Based on the requirements of the system and the self-balancing conditions of the passive positioning manipulator, a configuration of the manipulator is proposed, and the degree of freedom and working space are verified to meet the requirements of the working conditions

simultaneously locking and release of the joints when the manipulator works, a locking scheme

of multi-joint is proposed, and the design of the mechanical structure is carried out in detail.

characteristics

According to the

MA1-P(59) 11:00-12:00

A Four-channel Time Domain Passivity Approach for Bilateral Teleoperator

Shan Liu, Xiaoqian, Wei, Wenfeng Zheng, and Bo Yang School of Automation Engineering, University of Electronic Science and Technology of China Chenadu. Sichuan. China

- A four-channel time domain passivity approach (TDPA) is proposed for stable bilateral control of time-delay teleoperation systems.
- The passivity of the time delay power networks, the passivity observer and the passivity controller are proved, and the master controller and the slave controller are designed.

MA1-P(56) 11:00-12:00

MA1-P(58) 11:00-12:00

performance.

Application of the Hybrid Algorithm in Path **Planning of Spherical Mobile Robot** Jian Guo, Chunying Li, Shuxiang Guo, Xujie Yang Tianjin Key Laboratory for Control Theory & Applications in Complicated Systems and Biomedical Robot Laboratory, Tianjin University of Technology Tianjin, China Intelligent Mechanical Systems Engineering Department Faculty of Engineering, Kagawa University Kagawa, Japan · The proposed hybrid algorithm is compared with ACO and GA, and results of comparison and the dynamic simulation are analyzed. Ultrasonic sensors are used to collect environmental information. The hybrid algorithm is applied to the spherical mobile robot and the Simulation results of three experimental results are analyzed. algorithms

Session Chairs: Jian Guo, Tianjin University of Technology

Liwei Shi, Beijing Institute of Technology

Yitian Convention Center, 11:00-12:00, Monday, 6 August 2018

MA1-P(61) 11:00-12:00

MA1-P(63) 11:00-12:00

Network-based analysis approach to prioritize GWAS of CSF in the ADNI cohort

Xianglian Meng, Wang Cong, Jin Li, Hong Liang College of Automation, Harbin Engineering University Harbin China

The cerebrospinal fluid (CSF) levels of total tau (t-tau) were potential early diagnostic markers for probable Alzheimer's disease (AD)We analyzed CSF t-tau from the AD

The flow of network analyses

- Neuroimaging Initiative (ADNI) 843 (199 CN, 85 SMC, 239 EMCI, 207 LMCI, 113 AD).
- We constructed AD-network (containing PRKCB, ADCY8, RASGRP3, MYLK, PA2G4, CALM1 6 genes) by HotNet2

MA1-P(65) 11:00-12:00

An optical system angle measurement accuracy detection method in lattice scanning form Wenbo Jing, Xun Cui , Xuefeng Gao, Siyu Qian. School of Opto-electronics Engineering, Changchun University of Science and Technology Lattice scanning form is used to detect the angle accuracy of the optical system. Optical system theory measurement model is used to obtain angle measurement **Zaf**i Ele accuracy detection method.

- Variational Retinex enhances the image contrast ,and OTSU threshold segments the image, and projection algorithm and sub-pixel algorithm locates the crosswire center.
- the measured angular accuracy of the op -tical system is improved by 0.015mrad.

MA1-P(62) 11:00-12:00

MA1-P(64) 11:00-12:00

MA1-P(66) 11:00-12:00

Session Chairs: Jian Guo, Tianjin University of Technology

Liwei Shi, Beijing Institute of Technology

Yitian Convention Center, 11:00-12:00, Monday, 6 August 2018

MA1-P(67) 11:00-12:00

MA1-P(69) 11:00-12:00

Research on Aerial Image Splicing Technology of UAV Livang Kong, Hong Yu North China Electric Power University, Baoding, 10079, China Letedrical Research Institute of Yunnan Electric Power Research Institute Co,Ltd Kunming, 650051, China Using UAV to obtain transmission line visible light image; Perform the necessary image processing; Image evenness processing based on gray histogram Experiments and analysis

MA1-P(71) 11:00-12:00

- ORB detect the feature points;
- Match feature points;
- Uniform coordinate;
- Image fusion;
- Video fames are synthesized into video streams

The Result Image

MA1-P(68) 11:00-12:00

MA1-P(70) 11:00-12:00

MA1-P(72) 11:00-12:00

without compass.Give some relevant experimental data of the robot

position of the mobile robot with

single high precision GPS and

The Robot Structure

Session Chairs: Jian Guo, Tianjin University of Technology Liwei Shi, Beijing Institute of Technology

Yitian Convention Center, 11:00-12:00, Monday, 6 August 2018

MA1-P(73) 11:00-12:00

MA1-P(75) 11:00-12:00

MA1-P(77) 11:00-12:00

An Ergonomic Master Haptic Interface for the Robot-assisted

Endovascular Catheterization System

Yu Song1 1Kagawa University

s15d641@stu.kagawa-u.ac.jp

 The uniqueness of the proposed master haptic interface is that the operators can apply the natural motions (push, pull or twist) on the input catheter and perceive the haptic feedback through the input catheter during the manipulation.
 The VCSEL (vertical-cavity surfaceemitting laser) was used to measure the linear and rotational displacement of input catheter.

• The radial motion of the input catheter is detected by the hollow encoder.

Shuxiang Guo12, , Linshuai Zhang1 2Beijing Institute of Technology guo@eng.kagawa-u.ac.jp s16d502@stu.kagawa-u.ac.jp

MA1-P(74) 11:00-12:00

MA1-P(76) 11:00-12:00

MA1-P(78) 11:00-12:00

Session Chairs: Jian Guo, Tianjin University of Technology

Liwei Shi, Beijing Institute of Technology

Yitian Convention Center, 11:00-12:00, Monday, 6 August 2018

MA1-P(79) 11:00-12:00

A Method for Locating Reading Area of Digital Instrument Based on Color Characteristics

Tao Wang, Lei Shao, Xiaoqi Chen, Hongli Liu and Zhenhai Tan Tianjin University of Technology Tianjin Key Laboratory of Complex System Control Theory and Applications., Tianjin University of Technology Tianjin, China

- · The goal of this work is to solve the positioning problems of the digital meter reading area under complicated background.
- · Using a special grayscale empirical algorithm to locate the LCD screen by analyzing the color characteristics of the LCD screen.

MA1-P(81) 11:00-12:00

Summary of Medical Robot Technology **Development**

Xu Zhang1, Xu Ma2, Jinpeng Zhou3, and Qi Zhou4 Tianjin Key Laboratory of High Speed Cutting & Precision Maching,the School of Mechanical Engineering, Tian jin University of Technology and Education Tianjin, China

· Medical robots have developed rapidly in the past years. Medical robot types : neurosurgery

surgery robots, instrutive robots,

rehabilitation -assisted robots and

capsule robots

Da Vinci System

Key technologies : Medical 3D Image Modeling, Virtual Surgery Simulation, Unified open-ource surgical systems and Remote surgery in complex environments

Sensei Xi system

MA1-P(80) 11:00-12:00

MA1-P(82) 11:00-12:00

IEEE ICMA 2018 Conference Digest MP1-1: Mechanism Design of Robots

Session Chairs: Toshio Fukuda, Beijing Institute of Technology

Tohid Alizadeh, Nazarbayeyv University

Conference Room 1, 13:30-15:00, Monday, 6 August 2018

MP1-1(1) 13:30-13:45

MP1-1(3) 14:00-14:15

New 3D Translational Interconnected Manipulator for Industrial Applications

Ahmed Sameh, Mohamed Fanni and Abdelfatah M. Mohamed Mechatronics and Robotics Eng. Dept., Egypt-Japan University of Science and Technology, Alexandria, Egypt

- An interconnected manipulator which can carry out 3 translational motions in the 3D space with constant orientation.
- It Uses solely rotary joints and actuators.
- It possess the combined advantages of serial and parallel manipulators such as light weight, high speed, rigidity and accuracy as well as large workspace to size ratio.

MP1-1(5) 14:30-14:45

Research on the operation of the capture task in microgravity environment

Chunguang Fan, Yuanfei Zhang Zongwu Xie, Zhiqi Li, Yiwei Liu, Chongyang Li and Hong Liu State Key Laboratory of Robotics and System, Harbin Institute of Technology, China

- Introduction.
- System overview.
- Design of sliding mode controller.
- Experiment and conclusion.

MP1-1(2) 13:45-14:00

A Net-Launching Mechanism for UAV to Capture Aerial Moving Target Xin Meng, Xilun Ding and Pin Guo Robotics Institute, School of Mechanical Engineering and Automation, Beihang University Beijing, China A four-bullets-traction net can be launched using four coil springs, which can be compressed and released by two cam-follower mechanism. Kinematic models are presented, and the mechanism design are optimized according to simulation results. Repeated ground experiments demonstrate the capability of the 850 The Net-Launching Mechanism g prototype to capture a target 3 m

MP1-1(4) 14:15-14:30

away accurately and reliably.

MP1-1(6) 14:45-15:00

6-PSS Precision Positioning Stewart Platform for the Space Telescope Adjustment Mechanism

Xiaotao Cao, Weiguo Zhao, Haibo Zhao, Han Wang , Weifan Yang and Bin Zhang Changchun Institute of Optics, Fine Mechanics and Physics Chinese Academy of Sciences, Chanachun. China

- Mechanical design and kinematics model of 6-PSS Stewart Platform .
- Design and performance of control system of 6-PSS Stewart Platform .
- Calibration of kinematic parameters.
- System performance test.

6-PSS Stewart Platform

IEEE ICMA 2018 Conference Digest MP1-2: Medical Robots for Minimal Invasive Surgery I

Session Chairs: Kosuge Kazuhiro, Tohoku University Yong Yu, Kagoshima University

Conference Room 2, 13:30-15:00, Monday, 6 August 2018

MP1-2(1) 13:30-13:45

Pattern Recognition of Continuous Elbow Joint Movements Using Bispectrum-based sEMG

Dongdong Bu1, Shuxiang Guo1,2*, Baofeng Gao1, Hongdao Ma1, Hao Xu1, and Chao Wei1 1 Key Laboratory of Convergence Biomedical Engineering System and Healthcare Technology. The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, No.5, Zhongguananan South Street: Haidian Distribute, Beijing 1008/BL, China 2 Faculty of Engineering, Kagawa University, 2217-20 Hayashi-cho, Takamatsu, Kagawa 760-8521, Japan

- In this paper, we concentrated on the recognition of continuous elbow flexion and extension motion on sagittal plane with one channel surface EMG from the bieceps muscle.
- The feature space (Bis&T) combined bispectrum integration and time-domain feature of surface electromyographic feature of surface e (sEMG) was constructed.
- A three-layer Artificial Neural Network to map the processed sEMG to human motion and the performance of feature space was verified by the output of Artificial Neural Network

MP1-2(3) 14:00-14:15

Heading Attitude Drifts Controlled by the Angular Accelerations Instead of Using Magnetometers Tianqi Wang

Department of Electrical and Computer Engineering, Miami University, USA

- · Without using magnetometers.
- · The correlations of the accelerations of the gyroscope to the Euler angles to control the gyroscope bias.
- Useful to control the heading drift by the feedback of the angular accelerations.
- Expectable that MEMS IMU could find more applications in the future

MP1-2(5) 14:30-14:45

Improved level set model for color image segmentation Xiufen Ye, Tian Wang College of Automation, Harbin Engine

Lei Wang, Sheng Wang, Yi Liao Hubei Agricultural Machinery Engineering Research and Design Institute, Wuhan, ina Hubei China

Accelerated velocities of the Euler

angles in zero-drift

- The k-means algorithm is used to process the grayed RGB images, and the initial segmentation is produced.
- RGB color space is transferred into HSV color space in the images.
- Three channels component of the images are processed according to the proposed algorithm.

eerina

MP1-2(2) 13:45-14:00

MP1-2(4) 14:15-14:30

A Transient FEA-based Methodology for **Designing Soft Surgical Manipulators** Mohamed Elkeran and Mohamed Fanni Department of Mechatronics and Robotics Engineering, Egypt-Japan University of Science and Technology, Egypt Soft robots offer safety, compliance,

- and maneuverability, which make them promising candidates for surgical tasks. Traditionally, new developments in soft
- robotics have to come first through many real-world experiments.
- This work presents a general approach for designing soft robots based on transient FEA without the need to build them in advance

Soft Robot Actuation vs FEA Simulation

MP1-2(6) 14:45-15:00

IEEE ICMA 2018 Conference Digest **MP1-3: Manufacturing Process & Automation I**

Session Chairs: Jianli Wang, Changchun Institute of Optics, Fine Mechanics and Physics Guojun Zheng, Dalian University of Technology

Conference Room 3, 13:30-15:00, Monday, 6 August 2018

MP1-3(1) 13:30-13:45

MP1-3(3) 14:00-14:15

Prediction of cutting forces in circular corner milling process Xin Tong and Qiang Liu

School of Mechanical Engineering & Automation, Beihang University Beijing, China

- · A new accurate approach for modeling the cutting force in corner milling is proposed.
- An analytical model of undeformed chip thickness in circular milling is presented.
- · The engagement angle of the corner milling process is analyzed and the formulation of real instantaneous radial width of cut is given.

The simulation and experimental results are provided to prove the accuracy of this model.

MP1-3(5) 14:30-14:45

MP1-3(2) 13:45-14:00

MP1-3(4) 14:15-14:30

Formability study of the third generation automotive medium-Mn steel Guojun Zheng, Ying Chang, and Xiaodong Li Cunyu Wang and Han Dong Central Iron & Steel Research Institute School of Automotive Engineering, Dalian University of Technology, Dalian, China Beijing,China Studies on the formability and simulation method of medium-Mn steel have just been initiated. For the hot forming process of medium-Mn steel, the effect of IFT on the formability of parts is nonlinear.

- In the appropriate IFT range, the smaller the IFT, the more uniform of the thickness distribution of the hotformed parts.

The engineering stress-strain curves of B-pillar under different IFTs.

MP1-3(6) 14:45-15:00

Atlas GcodeSender: a Graphical User Interface for Control of a Robotics Additive Manufacturing Platform

Juan Pablo Rodriguez, Cesar Peña and Efrain Rodriguez Departament of Engineering and Architecture, University of Pamplona Pamplona, Colombia

· This work deals with the designing and developing a Graphical User (GUI), Interface called Atlas GcodeSender, for control of a 3D printer based on a 5R parallel robot.

- Atlas GcodeSender allows three control modes: manual. semiautomatic/MDI (Manual Data Input) and automatic.
- Atlas_GcodeSender

IEEE ICMA 2018 Conference Digest MP1-4: Modeling, Simulation Techniques and Methodology I

Session Chairs: Fankai Kong , Harbin Engineering University Hao Li, Xi'an Jiaotong University

Conference Room 4, 13:30-15:00, Monday, 6 August 2018

MP1-4(1) 13:30-13:45

MP1-4(3) 14:00-14:15

MP1-4(5) 14:30-14:45

Design and Analysis of Lock System of Hydraulic Turbine Lifting Device Fankai Kong, Huaqiu Ding, Zhenyang Wang, Hongli Pan and Binghan Wang

Department of Mechanical Engineering, Harbin Engineering University Harbin, China

- According to the lifting and locking requirements of the floating turbine, a symmetrical rack locking system was designed.
- When the turbine is lowered to the working position, it can be fixed on the carrier without any gaps.
- The sub-modeling analysis method based on ANSYS simulates the locking system, The results show that the system meets the operating conditions.

The Locking System

MP1-4(2) 13:45-14:00

MP1-4(4) 14:15-14:30

MP1-4(6) 14:45-15:00

The Experimental Facility

IEEE ICMA 2018 Conference Digest MP1-5: Vision System & Image Processing

Session Chairs: Shuoyu Wang, Kochi University of Technology Hongbo Wang, Parallel Robot and Mechatronic System Laboratory of Hebei Province Conference Room 5, 13:30-15:00, Monday, 6 August 2018

MP1-5(1) 13:30-13:45

The voting space in this pape

MP1-5(3) 14:00-14:15

Research and Application of Online Quality Detection System Based on 3D Vision in Rectangular Steel Production Line

Dahua Li, Shaoyang Wang, Xiao Yu Tianjin Key Laboratory for Control Theory & Applications In Complicated Systems, Tianjin University of Technology, Tianjin, China

- •The software and hardware design of the system
- •The design of camera calibration
- method

system

- •The design of 3D reconstruction
- for point cloud images •Actual operation experiment of the

MP1-5(5) 14:30-14:45

Research on Automatic Locating Method for Large Hydraulically-Driven Loading Arm Based on Visual Servo

Yuqi Zheng, Jianghai Zhao*, Shihui Fang, Meiling Wang and Qiang Zhang Department of Precision Machinery and Precision Instrument., University of Science and Technology of China Hefei, China

- · Kinematics modeling of the loading arm
- Design of the loading arm control system.
- The visual servo system.

· Experiments.

The Hydraulically-Driven Loading Arm Based on Visual Servo

MP1-5(2) 13:45-14:00

MP1-5(4) 14:15-14:30

Sidescan sonar image target extraction method based on variable initial signed distance functionbased active contour CV model Xue Du1, Qiuting Gong1, Renfeng Jia2 and Hongzhou Liao1

1. Department of Automation Harbin Engineering University Harbin, Heilongjiang Province, China 2. Harbin Marine Boiler & Turbine Research Institute. Harbin, Heilongjiang Province, China

- Using active contour C-V model to extractive sidescan image target
- Chosing circle as initial signed distance function(denote SDF circle)
- Selecting the right SDF circle position selecting the target center as the initial
- center of the circle
- selecting the length that cover the target body as much as possible as the initial circle radius

Slected initial SDF circle

MP1-5(6) 14:45-15:00

Research on Imaging Model and Unwrapping Algorithm of Catadioptrio-mnidirectional Vision System

Junxian Dong¹,Hong Yu² 1.Chuxiong Power Supply Bureau, of Yunnan Power Grid Co, Lt.

- 2. Electrical Research Institute of Yunnan Electric Power Research Institute (Group) Co.Ltd.
- Discuss some key techniques of the single view point (SVP) catadioptric-omnidirectional Vision System;

Cylindrically expanded

image

The unified imaging model based on spherical projection is analyzed and deduced:
IEEE ICMA 2018 Conference Digest MP1-6: Mobile Robot System I

Session Chairs: T. J. Tarn, Washington University James K Mills, University of Toronto

Conference Room 6, 13:30-15:00, Monday, 6 August 2018

MP1-6(1) 13:30-13:45

The satisfying performance of the proposed strategy is verified via Matlab/Simulink-CarSim co-simulation on the dry asphalt pavement ($\mu = 1.0$).

MP1-6(3) 14:00-14:15

Research on the Key Technology of Crawler **Robot Orbiting on Space Solar Power Station**

Yuetian Shi, Xuyan Hou* and Xiaoshan Rao Harbin Institute of Technology Aerospace Manufacturing Engineering Department Harbin, Heilongjiang Province , China

- · A foot robot that can crawl on the surface of thin-film and truss surfaces of space solar power plants is proposed.
- · Based on bionic theory, the analysis and simulation of the foot-end microstructure with high climbing ability in nature
- Simulated research on robot crawling process on truss structure and thin film structure.

Assembly and positioning work diagram

MP1-6(5) 14:30-14:45

MP1-6(2) 13:45-14:00

Plantbot: A New ROS-based Robot Platform for Fast Building and Developing Liulong Ma, Yibo Gao, ChuanMing Zhu and Yanjie Liu * State Key Lab of Robotics and System, Harbin Institute of Technology Harbin, China

- A Robot Platform Used for
- Education or Scientific Research. · Remote Control, Routing Inspection,
- SLAM and Navigation
- Low-cost, easy to extend and develop.

MP1-6(4) 14:15-14:30

Multi-link Articulated Wheeled In-pipe Robot with **Underactuated Twisting Joints**

Atsushi Kakogawa, Yoshimichi Oka, and Shugen Ma Department of Robotics, Ritsumeikan University, Japan

- · This study proposes an in-pipe robot that can drive the wheels and roll-joints by only a single actuator mounted in each link. The robot can not only move
- forward/backward but also move helically in pipes to change its orientation while twisting the body shape.
- Experiments in horizontal and vertical straight pipes, as well as a bent pipe, were conducted.

The Proposed In-pipe Robot with Underactuated Twisting Joints

MP1-6(6) 14:45-15:00

IEEE ICMA 2018 Conference Digest MP1-7: Control Theory and Application I

Session Chairs: Liang Zheng, Kagawa University Xiaoshuang Zhang, Jiangsu Automation Research Institute Conference Room 7, 13:30-15:00, Monday, 6 August 2018

MP1-7(1) 13:30-13:45

MP1-7(3) 14:00-14:15

LQR-based Ship Roll Reduction Control Using Fin Stabilizer Songtao ZHANG, Peng ZHAO, and Lihua LIANG College of Automation, Harbin Engineering University Harbin, China Large roll motion causes crew sickness, working interruption and even ship capsizing. · Fin stabilizers are equipped to ships to reduce the roll motion. • PID controllers are mainly designed 3 to minimize ship roll motion around its resonance frequency. A LQR controller is developed, and Ship roll motion at encounter the effectiveness of the designed angle of 90° LQR controller is obtained through

MP1-7(5) 14:30-14:45

simulations and comparisons.

MP1-7(2) 13:45-14:00

MP1-7(4) 14:15-14:30

MP1-7(6) 14:45-15:00

IEEE ICMA 2018 Conference Digest MP2-1: Micro & Nano Systems I

Session Chairs: Jian Guo, Tianjin University of Technology Aiguo Ming, University of Electro-Communications Conference Room 1, 15:15-16:45, Monday, 6 August 2018

MP2-1(1) 15:15-15:30

<text><text><list-item><list-item><list-item>

MP2-1(3) 15:45-16:00

Automated Tracking System for Time Lapse Observation of C. elegans

Shengnan Dong, Xiaoming Liu, Yuqing Liu, Masaru Kojima and Tatsuo Department of Mechatronical Engineering, Beijing Institute of Technology Beijing, China

 To overcome the limitation of the microscopic field and limited workspace

• The system can track the particular region of C. elegans for a time-lapse observation.

MP2-1(5) 16:15-16:30

A Flexure-Based 3-PRPS Parallel Micro-/Nanopositioning System

Defu Zhang, Huanan Chen, Pengzhi Li, Kang Guo, Mingyang Ni, Xianling Li, Yongxin Sui and Jianguo Zhang SKLAO, CIOMP, Chinese Academy of Sciences, Changchun, China

- A flexure-based 3-PRPS positioning mechanism was proposed in the paper.
- The compliance model of was established using the compliance matrix method.
- The x-axis load capacity is 600N.
- The stroke is more than ±40µm × ±40µm × ±30µm × ±200µrad × ±200µrad × ±300µrad.
- The development micro-/nanopositioning platform is effective and can be applied to the six-DOF spatial positioning.

Tracking system configuration

The six-DOF Stage

MP2-1(2) 15:30-15:45

MP2-1(4) 16:00-16:15

MP2-1(6) 16:30-16:45

Experimental Testing and Performance Comparisons between V- and Z-shaped Electrothermal Microactuators

Zhuo Zhang, Yueqing Yu, and Xuping Zhang Beijing University of Technology; Aarhus University

- This work presents comprehensive experimental studies on performance comparisons between V- and Z-shaped electrothermal microactuators.
- The steady-state output displacement and dynamic responses of V- and Zshaped actuators are compared.
- A unique actuator with mixed V- and Z-shaped beams is designed and tested to further compare the force of the Vand Z-shaped beams.

A unique actuator with mixed V- and Z-shaped beams

IEEE ICMA 2018 Conference Digest MP2-2: Medical Robots for Minimal Invasive Surgery II

Session Chairs: Fei Chen, Changchun Institute of Optics, Mechanics and Physics Xianqiang Bao, Beijing Institute of Technology

Conference Room 2, 15:15-16:45, Monday, 6 August 2018

MP2-2(1) 15:15-15:30

MP2-2(3) 15:45-16:00

Study on Physiological Tremor Recognition Algorithm in the Vascular Interventional Surgical Robot

Shuxiang Guo, Rui Shen, Nan Xiao, Xianqiang Bao, Cheng Yang, and Jinxin Cui 'Key Laboratory of Convergence Medical Engineering System and Healthcare Technology, School of Life and Science, Beijing Institute of Technology, Beijing 100081, China 'Faculty of Engineering, Kagawa University, Takamatsu, Kagawa 760-8521, Japan

n(k)

Z⁰Z⁻¹···Z^{-d} LS-SVM

filter

The Mathematical Model of the

Proposed MWLSSVM

<u>S(k)</u> + Σ

 $\hat{n}(k)$

y(k)

 $d(k) + \Sigma$

LS-SVMAF

- This paper proposes a moving-window-leastsquare-support-vector-machine (MWLSSVM) recognition algorithm to predict the physiological tremor.
- Comparison among different algorithms was conducted and identified by the accuracy of the prediction.
- The accuracy rate of our proposed algorithm reach up to 83% classification.

MP2-2(5) 16:15-16:30

MP2-2(2) 15:30-15:45

A Novel Master-slave Robotic System with Close Loop Control for Vascular Interventional Surgery

Shuxiang Guo, Yuxin Wang, Nan Xiao, Yan Zhao, Yuwen Zeng, Jiaqing Wu Key Laboratory of Convergence Biomedical Engineering System and Healthcare Technology, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology.

- Proposes a device and control system based on guidewire motion information
- The average error of the linear control is relative to the system without guidewire motion feedback was reduced by 63.96%, and the rotation accuracy was reduced by 43.47% compared to the system without guidewire motion feedback.

Master-slave system

MP2-2(4) 16:00-16:15

Study on Inhibition of Inaccurate Operation for **Remote-controlled Vascular Interventional** Robot Xianqiang Bao1, Shuxiang Guo1, 2*, Nan Xiao1*, Yangming Guo1 1. Key Laboratory of Convergence Medical Engineming System and Healthcare Technology, Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, No.5, Zhongguancun South Street, Haidian District, Beijing, China, 2. Faculty of Engineering, Kagawa Uhiversity, 2217-20 Hayashi-cho, Takamatsu, Kagawa, Japan. Remote-controlled vascular interventional surgery robots (RVIR) are being developed to Libeter analysister analysister analysister analysister reduce the occupational risk of the intervening physician, such as radiation, chronic neck and back pain, and increase accuracy and stability of surgery operation Inaccurate replicated motion on slave side will 18 result in incorrect operation, or even medical accident

 A novel RVIR integrated with a bimodal gripping mechanism was designed and its performance was evaluated by experiment.

MP2-2(6) 16:30-16:45

IEEE ICMA 2018 Conference Digest MP2-3: Manufacturing Process & Automation II

Session Chairs: Lie Yu, Xi'an Jiaotong University Xihuan Hou, Beijing Institute of Technology

Conference Room 3, 15:15-16:45, Monday, 6 August 2018

MP2-3(1) 15:15-15:30

MP2-3(3) 15:45-16:00

Analysis of Electromagnetic Force Waves of Solid Cylindrical Permanent Magnet Synchronous Motors

Yanyan Zhang, Haipeng Geng, Jian Zhou and Lie Yu State Key Laboratory for Strength and Vibration of Mechanical Structures Xi'an Jiaotong University Xi'an, Shaanxi Province, China

• Solid cylindrical permanent magnet synchronous motors (SCPMSMs) are taken as the study objects.

Solid Cylindrical Permanent

Magnet Synchronous Motor

 The analytical expressions of radial electromagnetic force waves are deduced.

MP2-3(5) 16:15-16:30

MP2-3(2) 15:30-15:45

MP2-3(4) 16:00-16:15

MP2-3(6) 16:30-16:45

IEEE ICMA 2018 Conference Digest MP2-4: Modeling, Simulation Techniques and Methodology II

Session Chairs: Liwen Cao, Heilongjiang University Ye Zhang, Changchun Institute of Optics, Fine Mechanics and Physics Conference Room 4, 15:15-16:45, Monday, 6 August 2018

MP2-4(1) 15:15-15:30

Analysis of influence factors of underwater motor temperature field based on magnetothermal-flux coupling

Zengliang Li, Qi Zhang, Ran Yu, Le Zhang and Chaozheng Xu College of Mechanical Electronic Engineering, China University of Petroleum(East China) Oinodao. China

- The change law of the loss is obtained by loss calculation.
- Based on the inlet temperature variation which is obtained according to the temperature drop between inlet and outlet, the influence of inlet temperature and inlet velocity variation on the motor temperature is analyzed.

MP2-4(3) 15:45-16:00

Dynamic Modeling and Simulation of Flexible Load System Operated by Reconfigurable Manipulators under Different Constraints

Huidong Ma, Jinjin Guo, Weimin Ge, and Xiaofeng Wang School of Mechanical Engineering, Tianjin University of Technology Tianiin. China

Built the equation of motion of the entire system according to the interaction of the end effector.
Set up the dynamic model of the

manipulators operation flexible

load and its simplified mode

Temperature Distribution

• Performedthe dynamic modeling of a manipulator under the certain known environmental constraints.

manipulator system.

MP2-4(5) 16:15-16:30

MP2-4(2) 15:30-15:45

MP2-4(4) 16:00-16:15

MP2-4(6) 16:30-16:45

IEEE ICMA 2018 Conference Digest MP2-5: Vision System and Robotic Vision

Session Chairs: Liwei Shi, Beijing Institute of Technology Huiming Xing, Beijing Institute of Technology Conference Room 5, 15:15-16:45, Monday, 6 August 2018

MP2-5(1) 15:15-15:30

MP2-5(3) 15:45-16:00

Maritime Target Detection Method Based on Deep Learning

Huixuan Fu, Yuan Li, Yuchao Wang, Liangliang Han College of Automation., Harbin Engineering University Harbin, China

- The detection framework of maritime target based on Faster RCNN is given.
- Using Resnet to extract the feature of target.
- Using the batch normalization layer to optimize the Faster RCNN network.
- Using online hard-examples-mining algorithm to improve the training process.

Improved Faster RCNN Detection

MP2-5(5) 16:15-16:30

MP2-5(2) 15:30-15:45

Research on a technology of automatic assembly based on uncalibrated visual servo system

Jinlin Gu, Wenrui Wang, Mingchao Zhu, Yaoyu Lv, Qi Huo and Zhenbang Xu Changchun Institute of Optics,Fine Mehcanics and Physics,Chinese Academy of Sciences, Changchun, China University of Chinese Academy of Sciences, Beijing, China

- Overall design of control system.
- Design of target and its recognition
- and processing algorithm.Online estimation of image jacobian
- matrix.
- Simulation and experiment.

Uncalibrated Visual Servo System

MP2-5(4) 16:00-16:15

Research on Visual Comfort Based on Fuzzy Neural Network

Qiang Gao, Kun Zhang and Dahua Li Tianjin Key Laboratory for Control Theory & Applications in Complicated Systems., Tianjin University of Technology Tianjin, China

- Research on Visual Comfort Based on Fuzzy Neural Network.
- The paper build a comparative light source test system.
- The article carried out a subjective evaluation experiment based on visual comfort.
- Using the visual comfort evaluation model to explore the application strategy of the optimal LED light source.

The experiment scene of Visual comfort

MP2-5(6) 16:30-16:45

IEEE ICMA 2018 Conference Digest MP2-6: Mobile Robot System II

Session Chairs: Ming Wang, Shandong Jianzhu University Yong Ling, Tsinghua University

Conference Room 6, 15:15-16:45, Monday, 6 August 2018

MP2-6(1) 15:15-15:30

MP2-6(3) 15:45-16:00

RGB-D Inertial Odometry for Indoor Robot via Keyframe-based Nonlinear Optimization

Yong Ling, Houde Liu, Xiaojun Zhu, Jiang Jun and Bin Liang Graduate School of Shenzhen, Tsinghua University Shenzhen, China

> Coler impr Bonk lange

> > s kryFrame PNP Extract Onaving

- Use a nonlinear optimization method fusion rgb-d sensor and inertial sensor to estimate robot trajectory.
- Propose a cost fuction for other type sensors fuse in this system.
- Complete a offline dense reconstruction part and convert the pointcloud to octree map.
 A flowchart of proposed algorithm

MP2-6(2) 15:30-15:45

MP2-6(4) 16:00-16:15

MP2-6(6) 16:30-16:45

The vision-based wheeled robot for playing Tetris

IEEE ICMA 2018 Conference Digest **MP2-7: Control Theory and Application II**

Session Chairs: Li Yang, school of electrical & electronic eng. Tianjin Univ of Tech.

Xiuping Yu, Harbin Engineering University

Conference Room 7, 15:15-16:45, Monday, 6 August 2018

MP2-7(1) 15:15-15:30

Modeling and Control of an Electric Load Simulator Lingling Zhang, Liang Liu, Zhaoping Xu, Haicheng Zhou, Dong Liu School of Mechanical Engineering, Nanjing University of Science and Technology Nanjing, China The structure of the electric load simulator is designed to exert load force to the exhaust valve. The simulation model of the electric load simulator is established based on PID algorithm to reproduce gas force. Simulation results verify the proposed load system can meet Structure of electric load simulator performance requirements and

MP2-7(3) 15:45-16:00

satisfy robust stability.

Fourier Series Analysis Applied in Linear **Compressor Vibration Analysis**

Mingsheng Tang, Huiming Zou, Min Wang and Changqing Tian Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, CAS Beijing China

- · The linear compressor is designed in resonance condition to reduce the input current and energy required
- · Fourier Series Analysis is applied in linear compressor vibration analysis, including for the gas force linearization and the signal processing, to deal with higher harmonics

- Then a model for the natural frequency estimation is propose in frequency domain
- The linear motor efficiency achieves a value The linear compressor of 95% in the refrigerator by tracking the estimated nature frequency

MP2-7(5) 16:15-16:30

proposed to give the transitional Pos process for the position loop and the speed feed forward information for the speed control loop.

1×	+				
K-+			D with S	peed lim	-
1 1	1 1 1			1	-
					-
	-	1	1		
1 1	1 1 1		- i -	-i-	4

and TD with speed limit

MP2-7(2) 15:30-15:45

Application of Self-Adaptive Artificial Physics Optimized Particle Filter in INS/Gravity Gradient Aided Navigation Fanming Liu, Fangming Li College of Automation., Harbin Engineering University Harbin, Heilongjiang, China The APO-PF has some defectives, such as APO-PF SAPO-PF PSO-PF slowly converging and acquiring positioning inaccurately. The SAPO-PF through improving position update expression, adding new mechanical rules and remain elite particle to overcome SAPO-PI theses shortcomings. Compared with APO-PF and PSO-PF, the SAPO-PF has better performance in the INS/gravity gradient aided navigation system. Positioning error curve of APO-PF, PSO PF and SAPO-PF

MP2-7(6) 16:30-16:45

IEEE ICMA 2018 Conference Digest MP3-1: Micro & Nano Systems II

Session Chairs: Qiang Fu, Tianjin University of Technology Defu Zhang, Changchun Institute of Optical, Fine Mechanics and Physics **Conference Room 1, 17:00-18:00, Monday, 6 August 2018**

MP3-1(1) 17:00-17:15

MP3-1(3) 17:30-17:45

MP3-1(2) 17:15-17:30

MP3-1(4) 17:45-18:00

horizontal attitude angles are less

than 3 degrees

UAV attitude measurement based on enhanced Mahony complementary filter Meng Wang¹, Lianwu Guan^{1*}, Daojun Xiong², Yanbin Gao¹, Xu Xu¹, Xingbang Chen¹ 1.College of Automation, Harbin Engineering University, Harbin, China Changping Machinery Co., Ltd, China Shipbuilding Industry Corporation, Chongqing, China We proposed an enhanced Mahony complementary filter applied to UAV attitude measurement. The algorithm based on gravity field adaptation to adjust the parameters of filter algorithm automatically. designed the UAV attitude measurement system VG445. The helicopter flight experiments results shown that the errors of

The experimental equipment and their installation positions

IEEE ICMA 2018 Conference Digest MP3-2: Medical Robots for Minimal Invasive Surgery III

Session Chairs: Yuxia Li, Changchun Institute of Optics, Fine Mechanics and Physics Yan Zhao, Beijing Institute of Technology

Conference Room 2, 17:00-18:00, Monday, 6 August 2018

MP3-2(1) 17:00-17:15

Catheter Tracking Based on Multi-scale Filter and **Direction-oriented Method** Yuwen Zeng, Nan Xiao, Shuxiang Guo, Yan Zhao, Yuxin Wang Key Laboratory of Convergence Biomedical Engineering System and Healthcare Technology,

The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology

- We present a catheter tracking method based on multiscale filter and directionoriented algorithm, which can enhance and detect the catheter in real-time.
- This method does not need a large amount of data, nor a complex process of curve fitting.
- The method detects the guide wire correctly in 89.36% of the frames and takes 0.064s per frame.

MP3-2(3) 17:30-17:45

Embedded System-based a Portable Upper Limb Rehabilitation Robot

Baofeng Gao¹, Chao Wei¹, Shuxiang Guo^{1, 2}, Nan Xiao¹, Dongdong Bu¹, Hao Xu¹, Hongdao Ma¹ ¹ Key Laboratory of Convergence Biomedical Engineering System and Healthcare Technology, Beijing Institute of Technology, Beijing, China

² Faculty of Engineering, Kagawa University, 2217-20 Hayashi-cho, Takamatsu, Japan

- The upper limb rehabilitation robot adopts exoskeleton structure. Motors and machinery are connected by line pipe and wire rope.
- Gyroscopes are used for sensor system, microcontroller as a control system realizes bilateral rehabilitation.
- PID controller realizes angle closed loop control.

Upper Limb Rehabilitation Robot

MP3-2(2) 17:15-17:30

Different movements such as docking and release are verified.

MP3-2(4) 17:45-18:00

Workspace Analysis for a 9-DOF Hyperredundant Manipulator Based on An Improved Monte Carlo Method and Voxel Algorithm

Zhiyuan Zhao, Shuai He, Yaping Zhao, Ce Xu, Qingwen Wu and Zhenbang Xu Innvation Lab of Space Robot System, Space Robotics Engineering Center, Changchun Institute of Optics, Fine Mechanics and Phsics, Chinese Academy of Science, Changchun, Jilin Province, China

University of Chinese Academy of Sciences, Beijing, China

- This paper presents an improved Monte Carlo method and Voxel Algorithm
- To analyse the workspace of a 9-DOF hyper-redundant manipulator.

manipulator

IEEE ICMA 2018 Conference Digest MP3-3: Humanoid Robots

Session Chairs: Tohid Alizadeh, Nazarbayeyv University Hongmei Zhu , Shenzhen Institutes of Advanced Technology, Chinese Academy of Science **Conference Room 3, 17:00-18:00, Monday, 6 August 2018**

MP3-3(1) 17:00-17:15

MP3-3(3) 17:30-17:45

Design of a Super Underactuated Dexterous Robotic Hand

Xiaoshuai Ma¹, Weimin Zhang¹, Xuechao Chen¹, Zhangguo Yu¹, Wenpeng Ding¹, Mingyue Qin¹, Aiguo Ming^{1,2}, Qiang Huang¹ ¹Beijing Advanced Innovation Center for Intelligent Robotics and Systems, Beijing Institute of

Technology, Beijing, China ²International Joint Research Laboratory of Biomimetic Robots and Systems Ministry of Education, Beijing, China

- This article presents a novel super underactuated robotic hand.
- This hand uses only one motor and has three cooperative fingers with two phalanxes per finger.
- Force analysis shows that the super underactuated robot hand is valid.
- The experiment results verify the stability of the novel mechanism.

The Super Underactuated Dexterous Robotic Hand

MP3-3(2) 17:15-17:30

MP3-3(4) 17:45-18:00

IEEE ICMA 2018 Conference Digest MP3-4: Intelligent Control I

Session Chairs: Jinjun Shan, Dept of Earth and Space Science and Eng. York University Nobuto Matsuhira, Shibaura Institute of Technology

Conference Room 4, 17:00-18:00, Monday, 6 August 2018

MP3-4(1) 17:00-17:15

MP3-4(3) 17:30-17:45

Experimental Evaluation of a Tele-operated Robot System in Traversing a Narrow Path

Zhefu Du, Zheng Zhang, Hubei University of Technology, Hubei, China Yuta Naito, Satoru Miki, Nobuto Matsuhira, Shibaura Institute of Technology, Tokyo, Japan

- We developed a tele-operated mobile robot system using Robot Service Network Protocol (RSNP).
- A control algorithm for traversing a narrow path was implemented and verified its validity experimentally.
- 40 mm clearance on both sides of the robot with 370 mm in diameter was confirmed without collisions.
- The narrow path function will be helpful to support an operator remotely controlling the robot.

Mobile Robot in Experiment

MP3-4(2) 17:15-17:30

MP3-4(4) 17:45-18:00

method in the instantaneous reactive power theory to verify that the algorithm is effective and superior in harmonic detection.

Detection results

IEEE ICMA 2018 Conference Digest MP3-5: Vision System & Application

Session Chairs: Baogi Wu, Jiangsu Automation Dep.

Yifei Zhang, Dalian Navel Academy

Conference Room 5, 17:00-18:00, Monday, 6 August 2018

MP3-5(1) 17:00-17:15

SVO-PL: Stereo Visual Odometry with Fusion of **Points and Line Segments** Yijun Zhou¹, Kang Han¹, Chen Luo¹ and Jian Wang² ¹School of Mechanical Engineering, Southeast University, Nanjing, China ²Dept. of Research and Development, NanTong Memtech Technology CO., LTD, Nantong, China

- · Merge adjacent lines with similar direction and perform stereo matching based on geometric constraints and descriptor.
- · Combine optical flow algorithm together with descriptor to perform feature tracking.
- Camera motion is recovered through a nonlinear optimization method.

North North States	No North N North	
Þis	8745	
SVO-PL	ORB-SLAM2 (without loop closure)	
3.6126	3.0389	
2.8033 6.0635	3.2633	
	5.3991	

MP3-5(3) 17:30-17:45

Finally images' edge features are extracted to eliminate matching errors. Two-stage scene matching algorithm

MP3-5(2) 17:15-17:30

MP3-5(4) 17:45-18:00

Intelligent Inspection System Based on Infrared Vision for Automated Fiber Placement

Mengjuan Chen1,2,3, Min Jiang1,2,3 , Xilong Liu1and Baolin Wu*1,3 Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China 2University of Chinese Academy of Sciences, Beijing 100049, China 3TianJin Intelligent Tech. Institute of Casia, Tianjin 300300, China

- An intelligent inspection system based on infrared vision for Automated Fiber Placement is proposed in this paper.
- Experiments are conducted to verify the feasibility and effectiveness of the presented system in this paper.

Intellig nce in-process inspection system diagram

IEEE ICMA 2018 Conference Digest **MP3-6:** Actuator Design

Session Chairs: Heba Amin, Egypt-Japan Univ. of Sci. and Tech. Xin Deng, University of Science and Technology Liaoning Conference Room 6, 17:00-18:00, Monday, 6 August 2018

MP3-6(1) 17:00-17:15

MP3-6(3) 17:30-17:45

The switch valve block was analyzed in detail.

MP3-6(2) 17:15-17:30

MP3-6(4) 17:45-18:00

A Kind of Electric Actuator Controller Solving The Problem of Motor Concussion

Yufeng Wang, Xin Deng, Peng Sun, and Dawei Qiao School of Electronics and Information, University of Science and Technology Liaoning Anshan, China

- · A kind of adaptive learning control algorithm was proposed to solve the problem of motor concussion.
- A kind of electric actuator controller was designed with 32-bit ARM.
- Anti-interference of extreme value mean filtering and median filtering were programmed.
- The designed electric actuator controllers have been used in mass production now.

The Designed Controller

IEEE ICMA 2018 Conference Digest MP3-7: Medical & Rehabilitation Systems

Session Chairs: Ritsu Go, Beijing Institute of Technology Yili Fu, Harbin Institute of Technology Conference Room 7, 17:00-18:00, Monday, 6 August 2018

MP3-7(1) 17:00-17:15

MP3-7(3) 17:30-17:45

Elimination method of Master-Slave Jitter for laparoscope arm Lan Wang, Jing Yang, Lingtao Yu, Yanhui Li, Jiawei Wang College of Mechanical and Electrical Engineering, Harbin Engineering University

Harbin, Heilongjiang Province, China

- This paper presents the jitter elimination method of master-slave control of laparoscope arm, and the driving torque of active joints before and after jitter elimination was compared.
- Two different jitters were defined, namely normal jitter and abnormal jitter. Two sets of separate jitter trajectories were captured by using the master manipulator.
- Simulation analysis of jitter elimination method was performed with two trajectories.
- virtual surgical system for the master-slave control of laparoscope arm was established. Simulation verification of jitter elimination method through virtual system was performed.

Quanti di suo tranggino inter anggino turba anggino				
The flow of master-slave motion method				
of laparoscopic arm				

MP3-7(2) 17:15-17:30

Prediction of lung tumor motion based on recurrent neural network
Jiang Kai, Fumitake Fujii, Takehiro Shiinoki Department of Mechanical Engineering and Department of Radiation Oncology., Yamaguchi University Ube, Japan • Construct a recurrent neural network model to predict a 1s future position
• Predicting tumor position in three- dimensional space.
• The RMSE of the prediction result is generally less than 1mm shows it is satisfied prediction accuracy necessary for use in real-time dynamic tumor tracking radiotherapy

MP3-7(4) 17:45-18:00

IEEE ICMA 2018 Conference Digest

Tuesday August 7, 2018

Morning Sessions

- TA1-1 Signal and Image Processing I
- TA1-2 Intelligent Mechatronics
- TA1-3 Mechatronic Systems I
- TA1-4 Intelligent Control II
- TA1-5 Modeling, Simulation Techniques and Methodology IV
- TA1-6 Mobile Robots
- TA1-7 Control Theory and Application III
- TA2-1 Signal and Image Processing II
- TA2-2 Intelligent Mechatronics and Application I
- TA2-3 Mechatronic Systems II
- TA2-4 Multiple Robot Control
- TA2-5 Opto-electronic Element and Materials
- TA2-6 Biomimetic Measurement and Control in Robotics
- TA2-7 Control Theory and Application IV

Tuesday August 7, 2018

Afternoon Sessions

- TP1-1 Signal and Image Processing III
- TP1-2 Intelligent Mechatronics and Application II
- TP1-3 Mechanism & Design
- TP1-4 Biomimetic Systems
- TP1-5 Element, Structures and Mechanisms I
- TP1-6 Space and Telerobotics
- TP1-7 Control Theory and Application V
- TP2-1 Signal and Image Processing IV
- TP2-2 Intelligent Mechatronics and Application III
- TP2-3 Manufacturing Systems & Automation
- TP2-4 Intelligent Biomedical Technology
- TP2-5 Element, Structures and Mechanisms II
- TP2-6 AUV & Space Robots
- TP2-7 Control Theory and Application VI

IEEE ICMA 2018 Conference Digest **TA1-1: Signal and Image Processing I**

Session Chairs: Hongbin Ma, Beijing Institute of Technology Yan Zhao, Beijing Institute of Technology

Conference Room 1, 8:30-10:00, Tuesday, 7 August 2018

TA1-1(1) 8:30-8:45

Automatic Detection of Moving Baw Baw Frogs in Camera Trap Videos

Gelayol Golkarnarenji, Abbas Z. Kouzani, Nathan I. Semianiw, Damian Goodall, Deon Gilbert, Don Driscoll Deakin University, Melbourne Zoo, Zoos Victoria, Australia

Design and implementation of a motion detection algorithm for processing of video sequences captured by a purposebuilt camera trap is presented.

A motion detection method based on the optical flow Farneback algorithm is developed to reduce the size of the video sequences by detecting and keeping the frames that contain moving frogs, and discarding the frames that do not contain moving frogs.

Detection of a moving frog

The Proposed CFN Architecture

TA1-1(3) 9:00-9:15

Consecutive Feature Network for Object Detection Jiaming Huang, Xiaosong Lan, Shuxiao Li, Chengfei Zhu and Hongxing Chang

Institute of Automation, Chinese Academy of Sciences Beijing, China

- · Backbone CNN: in order to make full use of the benefit of deep expression and avoid gradient vanishing/ exploding, our model is built on the ResNet50
- · Feature fusion module: features from consecutive layers are merged instead of compartmental lavers.
- Multi-Level supervised learning: we combine the deep and shallow lavers for object detection.

TA1-1(5) 9:30-9:45

simulation and experimental results

have verified the efficacy.

TA1-1(2) 8:45-9:00

For Prostate MRI Segmentation: A Prior-shapebased Level Set Model Combined with Gradient and Regional Information

Bo Pan, Weirong Wang, Jiawen Yan, Yili Fu State Key Laboratory of Robotics and System, Harbin Institute of Technology Harbin, Heilongjiang Province, China

- Propose a level set model, which incorporates shape priors and the gradient information of the image into C-V model.
- The experimental results show that the method we proposed can adapt to different forms of the prostate better, also process the images with intensity inhomogeneity better.

Contrast of prostate MR segmentation results

TA1-1(4) 9:15-9:30

Normalized Correlation-Based Levinson Method for spectrum estimation in alpha Noise

Xiao-di Tian, Xiao-dong Sun, Xin-yu Chen ,Yi-ran Shi College of Communication Engineering , Jilin University

- Changchun, China Research on spectrum estimation problem
- in alpha noise for Cognitive radio . Proposed normalized correlation based
- Levinson spectrum estimation method. The algorithm overcome the weakness of
- fractional lower order moment methods in alpha stable noise with $\alpha < 1$.
- Sinusoidal signals submerged in alpha narrowband alpha noise noise and pure narrowband alpha noise Spectrum Estimation are employed to test the Algorithm.

with $\alpha = 0.8$

TA1-1(6) 9:45-10:00

Detail Maintained Low-light Video Image Enhancement Algorithm Ming Fang, Yichen Wang, Hongna Li and Jing X

Changchun University of Science and Technology Changchun, Jilin Province, China

- Combine temporal neighboring information and spatial neighboring information.
- Takes two adjacent frames before and after the current frame to form a new reference pixel set.
- Cluster the pixel in the reference set and determain weight according to proportion of pixel gray values.
- The weight is integrated into the bilateral filter algorithm to denoise the image.

IEEE ICMA 2018 Conference Digest TA1-2: Intelligent Mechatronics

Session Chairs: Fangli Mou, Tsinghua University Qiang Fu, Tianjin University of Technology Conference Room 2, 8:30-10:00, Tuesday, 7 August 2018

TA1-2(1) 8:30-8:45

TA1-2(3) 9:00-9:15

Path tracking control for a robot-trailer system with parameter tuning using particle swarm optimization Tong Wu Dalian Neusoft University of Information Dalian, China

for a robot-trailer system to track a given path. •A fourth-order kinematic model is

derived for the system.

•Linear quadratic controller is designed to remove the trailer position error using PSO for parameter tuning.

TA1-2(5) 9:30-9:45

TA1-2(2) 8:45-9:00

TA1-2(4) 9:15-9:30

TA1-2(6) 9:45-10:00

IEEE ICMA 2018 Conference Digest **TA1-3: Mechatronic Systems I**

Session Chairs: Toshio Fukuda, Beijing Institute of Technology Yonggeng Wei, Heilongjiang University

Conference Room 3, 8:30-10:00, Tuesday, 7 August 2018

TA1-3(1) 8:30-8:45

Investigation of the friction behavior of harmonic drive gears at low speed operation

Donghui Ma¹, Shaoze Yan¹, Zhixiang Yin², and Yunqiang Yang² Department of Mechanical Engineering, Tsinghua University, Beijing, China
 School of Engineering and Technology, China University of Geosciences, Beijing, China

- An experimental method is proposed to investigate the friction behavior of HDs.
- The friction torque of the HD has the Stribeck effect at low speed.
- The Coulomb-viscous-Stribeck friction model can be used to replicate the friction characteristics of the HD
- Dependences of the friction behavior of the HD on different model parameters are discussed.

TA1-3(3) 9:00-9:15

Design and Research of Point Absorber Wave Power Converter

Chunjie Wang, Lin Qi, Peng Chen Tianjin University of Technology Tianiin. China

· A problem of poor quality of wave power converter is presented.

- A wave power controller based on a point absorber Wave Power Converter is designed to solve the problem.
- · The core function of the controller is to change the unstable three-phase AC into a stable DC.
- A large number of experimental data show that the control method can solve the power quality problem.

Lin Cui, Yunqi Duan

National Ocean Technology Center

TA1-3(5) 9:30-9:45

A similar feature triangle method is proposed to determine the rotation center of the pointer by matching feature points.

The Recognition and Reading of Pointer Instrument

TA1-3(2) 8:45-9:00

TA1-3(4) 9:15-9:30

TA1-3(6) 9:45-10:00

IEEE ICMA 2018 Conference Digest **TA1-4: Intelligent Control II**

Session Chairs: Zixu Wang, Kagawa University Min Li, Shanghai University

Conference Room 4, 8:30-10:00, Tuesday, 7 August 2018

TA1-4(1) 8:30-8:45

TA1-4(3) 9:00-9:15

Power System Fault Diagnosis Based on Extended Bavesian Network

Yanjuan Wu , Yannan Guo Tianjin Key Laboratory for Control Theory and Applications in Complicated System Tianjin University Of Technology

Progress of proposed method

- · Introduce the concepts of abnormal information.
- Establish a set of fuzzy rules about abnormal information.
- · Establish fault diagnosis Extended Bayesian Network.
- Compare with original Bayesian Network and other methods.

TA1-4(5) 9:30-9:45

good fault accuracy.

TA1-4(2) 8:45-9:00

TA1-4(4) 9:15-9:30

TA1-4(6) 9:45-10:00

Pedestrian Detection Based on YOLO Network Model

Wenbo Lan, Jianwu Dang, Yangping Wang and Song Wang Gansu Provincial Engineering Research Center for Artificial Intelligence and Graphics & Image Processing., LANZHOU JIAOTONG UNIVERSITY Lanzhou, China

- This paper improves the network structure of YOLO algorithm and proposes a new network structure YOLO-R.
- Three Passthrough layers were added to the original YOLO network, and the number of Passthrough layer connections in the original YOLO algorithm was changed from Layer 16 to Layer 12.

Pedestrian detection

IEEE ICMA 2018 Conference Digest TA1-5: Modeling, Simulation Techniques and Methodology IV

Session Chairs: Chao Jia, Tianjin University of Technology Xiufen Ye, Harbin Engineering University

Conference Room 5, 8:30-10:00, Tuesday, 7 August 2018

TA1-5(1) 8:30-8:45

TA1-5(3) 9:00-9:15

A Research Method of Uncertain Propagation Problems **Based on Maximum Entropy Principle**

Wenyu Zhai, Linfang Qian, Guangsong Chen and Mingming Wang School of Mechanical Engineering , Nanjing University of Science and Technology Nanjing, China

- · Use an approximate numerical method combined with the Bootstrap method to calculate the statistical moments of each order of the response variable.
- Use a method based on the maximum entropy principle to solve the probability density function.

A numerical example and an example of the calculation of the probability density The probability density function function of natural frequency of a barrel of the numerical example. are given and compared with the Monte Carlo simulation method.

TA1-5(5) 9:30-9:45

TA1-5(2) 8:45-9:00

TA1-5(4) 9:15-9:30

Research on Simulation of Improved Sliding Mode Variable Structure Control Chao Jia, Junqiang Zhou

TA1-5(6) 9:45-10:00

performance.

IEEE ICMA 2018 Conference Digest **TA1-6: Mobile Robots**

Session Chairs: Wei Zhang, Harbin Engineering University Hongbin Chang, Kochi University of Technology Conference Room 6, 8:30-10:00, Tuesday, 7 August 2018

TA1-6(1) 8:30-8:45

TA1-6(3) 9:00-9:15

Design and Control of Multiple Wing-sail Land Yacht Robot

Jiqing Chen Zhou Ye Rong Yang Ganwei Cai Jing Li and Hengyu Li College of Mechatronic Engineering, Guangxi University Guangxi Manufacturing System and Advanced Manufacturing Technology Key Laboratory School of Mechatronics Engineering and Automation, Shanghai University

- A multiple wing-sail land-yacht robot is designed and manufactured.
- · Design of land-yacht robot include frame body, wing-sails, distribution of wing-sail, turning system, control system.
- Start wind speed and running speed confirm the robot Multiple wing-sail Land yacht robot

TA1-6(5) 9:30-9:45

An Approach to Graph-Based Grid Map Segmentation for Robot Global Localization

Bingrui Liu, Lin Zuo, Chang-Hua Zhang, Yu Liu* Intelligent Learning Institute for Science and Application University of Electronic Science and Technology of China Chengdu, Sichuan, China

- · Use ISODATA combined with the ray casting algorithm clustering the free space of the grid map.
- Merge the clusters of the map into different regions according to the connectivity of the graph.
- Present the results of the proposed method for grid map segmentation.
- Explain how the map segmentation method contributes to the global localization.

Grid map segmentation

Human Support Robot considering omniwheel touchdown characteristic.

· Design of model reference adaptive law to account for the omniwheel touchdown characteristic.

Trajectory tracking control for a

TA1-6(2) 8:45-9:00

TA1-6(4) 9:15-9:30

Modeling and Simulation of a Flapping-Wing Robot with Active Tails for Balancing Control during Wheeled Running Shuyan Yang, Yueling Shen, Boyang Li, Yuhui Li, and Jun Zhang

Model Reference Adaptive Control for a Human Support

Robot with Omniwheel Touchdown Characteristic

Hongbin Chang, Shuoyu Wang, and Ping Sun

Department of Intelligent Mechanical Systems Engineering, Kochi University of Technology

Kochi, Japan

The State Key Laboratory of Bioelectronics, Jiangsu Key Lab of Remote Measurement and Control, School of Instrument Science and Engineering, Southeast University, China

- Self-takeoff for flapping-wing robots is still a challenging problem.
- Established the calculation model of the lift force and thrust considering the deformation of the wings
- Active tails are studied to reduce the pitch torque and keep balance during wheeled running.
- Proper values of model parameters are found by simulation to provide guidance for the design of such FWRs.

TA1-6(6) 9:45-10:00

A Variable-scale Modular 3D Printing Robot of **Building Interior Wall**

Changlong Ye, Nan Chen, Lei Chen, and Chunying Jiang Shenyang Aerospace University, Shenyang, China

- The overall structure adopts a mobile + variable scale + modular design method, which allows the robot move and change it stations. print complex curved interior walls facilitate upgrade.
- · The kinematic analysis of robot.
- · The control system of robot.
- Robot prototype is developed ,and the experimental results are also given.

· Prove that the tracking error system is asymptotically stable.

Demonstrate the effectiveness of the proposed method by simulation results .

42

IEEE ICMA 2018 Conference Digest **TA1-7: Control Theory and Application III**

Session Chairs: Dapeng Tian, Changchun Institute of Optics, Fine Mechanics and Physics Jinchun Hu, Tsinghua University

Conference Room 7, 8:30-10:00, Tuesday, 7 August 2018

TA1-7(1) 8:30-8:45

Research on Oscillating Buoy Wave Energy Generation Based on VSG Control Strategy

Shuang Cao, Lijun Fu, Shuangming Yang, and Hongda Liu National Key Lab. Of Science And Technology on Vessel IPS, Wuhan, China College of automation, Harbin Engineering University, Harbin, China

- · Research on oscillating float wave energy generation.
- · Using the mathematical model to simulate the prime mover part of the device.

Modeling of VSG adaptive model and discussion on wave energy generation

side.

Wave energy generation

TA1-7(3) 9:00-9:15

Neural Network-based Adaptive Sliding Mode Control for Gyroelastic Body

Shiyuan Jia and Jinjun Shan Department of Earth and Space Science and Engineering, York University Toronto, Canada

- · This paper addresses the vibration suppression of gyroelastic body in the presence of uncertainties and external disturbances.
- A neural network-based adaptive sliding mode controller (NNASMC), combining neural network (NN) approximation, adaptive technique and sliding mode technique, is designed to ensure the vibration suppression of the gyroelastic body.

TA1-7(5) 9:30-9:45

Research on On-line Testing System of Flow Characteristics for Vehicle Electronic Fuel Injector Yanhao Li¹, Bin Liu¹, Jianwen Li¹, Yan Zhao¹ and Wei Lei² Tianjin Key Laboratory for Control Theory & Applications in Complicated System School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin, China 2. Military Transportation University, Tianjin, China Complied with relevant standards, a

- novel on-line testing system for flow characteristics of electronic fuel injector was proposed in this paper.
- The testing process on the dynamic flow and the static flow of the port fuel injectors driven by voltage was implemented.
- The error of the on-line system is less than 4%, which can meet the requirements on flow characteristics test of fuel injectors.

The On-line Testing System

TA1-7(2) 8:45-9:00

Backstepping Sliding Mode Control Design for Magnus Rotating Roll Stabilizer at Low Speed

Lihua Liang, Yinling Jiang and Peng Zhao College of Automation , Harbin Engineering University Harbin, China

· Magnus rotating roll stabilizers are devices to provide roll damping at low speed through the rotating rotor wing at the bilge of ship hull based on Magnus effect

Combine the backstepping method with sliding mode control method to guarantee fast convergence rapidity of rolling angle

A pair of Magnus stabilizers and reference frames

TA1-7(4) 9:15-9:30

Modeling and Simulation of Wire-wound Friction of Compact Inertially Stabilized Platforms

Yutang Wang1,2, Dapeng Tian1, Ming Dai1, Honghai Shen1 and Ping Jia1 1Key Laboratory of Airborne Optical Imaging and Measurement, Changchun Institute of Optics, Fine Mechanics and Physics Chinese Academy of Sciences, Changchun, Jilin China 2 University of Chinese Academy of Sciences, Beijing China

- for compact inertially stabilized platforms, due to the strict limits of structure space, transmission of signals through wires between shafts is unavoidable
- A quantitative wire-wound friction model is established according to classical mechanics theory and a quantitative analysis of the influence of wire-wound friction on inertially stabilized platforms is established by simulation.

Compact Inertially Stabilized Platforms

Thrust bearing

C C-Radial bering B

The AMB rotor system

TA1-7(6) 9:45-10:00

Dynamic Analysis on Rotor System Supported by Active Magnetic Bearings based on Sliding **Mode Control**

Tingchen Du, Yanhua Sun, Haipeng Geng , Yibin Li, Hao Lv and Lie Yu State Key Laboratory for Strength and Vibration of Mechanical Structures , Xi'an Jiaotong University

- Xi'an, China
- Establish the five-degree of freedom AMBrotor control system which includes the effects of magnetic thrust bearings.
- Configure the sliding mode controller and design the switching function by the quadratic regulator and select the exponential reaching law as the input of the system.
- Simulate and verify the robustness of system.

IEEE ICMA 2018 Conference Digest TA2-1: Signal and Image Processing II

Session Chairs: T. J. Tarn, Washington University

Shuxiang Guo, Kagawa University

Conference Room 1, 10:30-12:00, Tuesday, 7 August 2018

TA2-1(1) 10:30-10:45

Images in red frames are taken by car

The input image

TA2-1(3) 11:00-11:15

Saliency Detection Algorithm Based on Local Linear Constraint

Dongping Xu, Feng Chen School of electrical engineering, Nantong University Nantong, Jiangshu Province, China

- Using a simple linear iterative clustering (SLIC) method to segment the input image into superpixels
- Using the truth map of the image and detect the region segmentation.
 - detect the region segmentation. Locally-constrained liner coding(LLC) was used to calculate the sparse reconstruction error based on the foreground and background dictionary.

TA2-1(5) 11:30-11:45

FPGA Implementation for a DPSK Digital Receiver Using Duffing Oscillators Array

Yanan Li, Yongqing Fu, Lei Yu, Yanwei Wang and Chunxia Liu College of Information and Communication Engineering, Harbin Engineering University Harbin, Heilongjiang, China

- The DPSK digital receiver using cut Duffing oscillators array can transfer realize DPSK signal non-coherent demodulation.
- The fourth-order Runge-Kutta algorithm used to solve Duffing equation is improved using the parameter features of the receiver.
- The simulation results indicate the correction of the FPGA design of the DPSK digital receiver.

RK4 method

TA2-1(2) 10:45-11:00

TA2-1(4) 11:15-11:30

The Design of Single Moving Object Detection and Recognition System Based on OpenCV Lijun Yu, Weijie Sun, Wang Hui, Qiang Wang and Chaoda Liu College of Automation, Harbin Engineering University, Harbin 150001, China Application of metrics improved frequency-tuned algorithm and Gaussian Mixture Model algorithm to detect moving targets. Application of Haar Cascade Classifier for Object Recognition. 45 23 Application of OpenCV and Qt Multi-module Platform for Simulation System Modeling. improved frequency-Multi-algorithm comparison tests tuned algorithm with show that system can meet expected GMM requirements. TA2-1(6) 11:45-12:00

Image Stitching Algorithm Based on Embedded System

Zhengde Shi¹,Hong Yu²

1.Yuxi Power Supply Bureau of Yunnan Power Grid Co., Ltd. 2.Electrical Research Institute of Yunnan Electric Power Research Institute (Group) Co,Ltd.

- Consider the actual needs, Study image stitching algorithm in embedded Linux system and realize fast and accurate stitching;
- Complete image stitching in the embedded system;
- Using the FPGA-based embedded hardware and software system development process, with the DE0-NanoSoC to build embedded Linux system platform.

Image stitching result

IEEE ICMA 2018 Conference Digest TA2-2: Intelligent Mechatronics and Application I

Session Chairs: Guoyu Zuo, Beijing University of Technology Ying Feng, South China University of Technology Conference Room 2, 10:30-12:00, Tuesday, 7 August 2018

TA2-2(1) 10:30-10:45

TA2-2(3) 11:00-11:15

Feature Subset Discernibility Evaluation Method for Upper Limb Rehabilitation Training Based on the Discernibility of Relative Distance

Guoyu Zuo, Zhaokun Xu, Jiahao Lu Beijing Key Laboratory of Computing Intelligence and Intelligent Systems, Faculty of Information Technology, Beijing University of Technology Beijing, China

- With the increasing number of aging population in the world, the demand for rehabilitation training is increasing.
- We propose a feature subset discernibility hybrid evaluation method based on the discernibility of relative distance and support vector machine (DRD-SVM) for the feature selection problem of the rehabilitation training motion.

TA2-2(5) 11:30-11:45

Dynamic Surface Control of Shape Memory Alloy Actuating Systems with Inverse Duhem Hysteresis Compensation

Rui Li, Ying Feng, Zedong Hu School of Automation Science and Engineering Key Laboratory of Autonomous Systems and Networked Control South China University of Technology, Guangzhou, China

- A Duhem model with a Gaussian probability density functions is adopted to describe the hysteresis nonlinearity and an inverse of Duhem hysteresis is constructed as the feedforward compensator for the SMA actuating system
- A dynamic surface controller (DSC) is designed to ensure the output actuating performance.

TA2-2(2) 10:45-11:00

Angle Estimation in Wavelet Neural Network using ReliefF Selected Features of sEMG and Post Filter

Yang Luo, Yongsheng Gao, Qiang Li, Jie Zhao State Key Laboratory of Robotics and System, Harbin Institute of Technology

- A wavelet neural network (WNN) to estimate the continuous wrist joint angle using the reliefF selected features of surface electromyography (sEMG) and post filter (WNN using RSF&PF).
- The comparison results suggest that WNN using RSF&PF achieves the best estimation in accuracy and speed in this work.

TA2-2(4) 11:15-11:30

CPG-BMLC for Tremor Estimation in **Functional Electrical Stimulation System** Yang Luo, Yongsheng Gao, Qiang Li, Jie Zhao State Key Laboratory of Robotics and System, Harbin Institute of Technology A new algorithm named central pattern generator based band limited multiple Fourier linear combiner (CPG-BMLC) for tremor suppression is proposed. CPG-BMLC is programed in functional simulation system (FES) for tremor suppression. Application of CPG-BMFLC in FES can indeed suppress tremor with Experiment of Tremor good performance. suppression by FES

TA2-2(6) 11:45-12:00

IEEE ICMA 2018 Conference Digest **TA2-3: Mechatronic Systems II**

Session Chairs: Wei Wu, Beijing Institute of Technology Guo-Hua Feng, National Chung Cheng University

Conference Room 3, 10:30-12:00, Tuesday, 7 August 2018

TA2-3(1) 10:30-10:45

Development of a Robot System for Applying **Putty on Plastered Walls**

Xiang Li and Xin Jiang Department of Electronic and Mechanical Engineering, Harbin Institute of Technology Shenzhen, China

- An end effector is specially designed for
- the robot to flatten the wall surface The method based on end-to-end artificial neural network to recognize the unevenness of the wall surface with an

The system is integrated and experiments conducted demonstrate the effectiveness.

TA2-3(3) 11:00-11:15

Research on Motion Control of Mechanical Arm Based on Laser guidance

Yajun Shi, Rongchuan Wang, Jianghai Zhao, and Xiaojian Zhang Department of Automation, University of Science and Technology of China Hefei, China

- Use CAN-open communication system, information is processed by upper computer.
- · Laser range sensor and angles of motors are used here to obtain coordinates, as well as complex mathematical theory.
 - Kinematics is used to calculate final angle of each shaft. And effective control methods are used to drive each shaft to target angle.

TA2-3(5) 11:30-11:45

High Efficiency Off-line Programming for Robotic **Blisk Grinding with Constant Contact Force**

Lin Chen, Huan Zhao*, Fan Chen and Han Ding aboratory of Digital Manufacturing Equipment and Technology Huazhong University of Science and Technology

- Wuhan, China A novel path planning method for robotic grinding with a smart forcecontrolled end effector is present.
- A reasonable and sparse optimizing is carried to the grinding path.
- The experimental results show that the surface roughness of the blisk blade is within Ra0.4.
- The grinding efficiency is increased nearly six times compared to traditional path planning method.

The Demolition Robot

The Robot Platform : a)Actuator

b)UR5 c)Camera d)Moving Platform

The Blisk Surface Appearance

TA2-3(2) 10:45-11:00

TA2-3(4) 11:15-11:30

TA2-3(6) 11:45-12:00

IEEE ICMA 2018 Conference Digest TA2-4: Multiple Robot Control

Session Chairs: Dongdong Bu, Beijing Institute of Technology Juan Li, Harbin Engineering University

Conference Room 4, 10:30-12:00, Tuesday, 7 August 2018

TA2-4(1) 10:30-10:45

TA2-4(3) 11:00-11:15

Multi-UAVs Cooperative Path Planning Method based on Improved RRT Algorithm

Wei Zu, Guoliang.fan, Haitao Zeng,Yang Gao, Yao Ma, Haiying Zhang Institute of Automation,Chinese Academy of Sciences Beijing. China

- This paper presents a cooperative path planning algorithm using improved Rapidly-exploring Random Trees (RRTs) for multiple UAVs.
- We propose an improved RRT and a cooperative path planning method by taking the maneuvering constraints and a simple and efficient path pruning method to delete redundant nodes on the path.affiliations, city and country.

\cap	2	
	1	
the second	6	ec
0	K() C	
1	0	
1.1		
0.		
	0	

Multi-UAVs cooperative path

planning with pop-up obstacles

nd country.

TA2-4(5) 11:30-11:45

Multi-UUV Formation Coordination Control Based on Combination of Virtual Structure and Leader LI Juan, XUE Duorui and ZHANH Jianxin College of Automation, Harbin Engineering University Harbin, China

- Address the problem of formation path tracking control of multi-UUV
- It is divided into a single UUV path following control and coordinated control based on a combination of a virtual structure and a leader.
- The formation coordination control algorithm combining the virtual structure and the leader is adopted

UUV Formation

TA2-4(2) 10:45-11:00

TA2-4(4) 11:15-11:30

TA2-4(6) 11:45-12:00

IEEE ICMA 2018 Conference Digest **TA2-5: Opto-electronic Element and Materials**

Session Chairs: Hongda Liu, Harbin Engineering University Donghui Ma, Tsinghua University

Conference Room 5, 10:30-12:00, Tuesday, 7 August 2018

TA2-5(1) 10:30-10:45

Characteristic Evaluation of Shell Outlet Mechanism for a Magnetic Actuated Screw Jet Microrobot Zixu Wang, Shuxiang Guo and Wei Wei Graduate School of Engineering, Kagawa University, Japan Key Laboratory of Convergence Medical Engineering System and Healthcare Technology, The Ministry of Industry and Information Technology, School of Life Science and Technology, Beijing Institute of Technology, Haidian District, Beijing 100081, China Department of Intelligent Mechanical Systems Engineering, Kagawa University, Takamatsu, Kagawa 761-0396, Japa Series of simulations and experiments for the characteristic evaluation of a Magnetic Actuated Screw Jet Microrobot (SJM) The conclusion and contribution of the best characteristic of shell outlet by this paper, and make a great progress of microrobot design by analyzing the results Simulation result of shell

outlet mechanism

TA2-5(3) 11:00-11:15

Profile Detection and Surface Fitting Based on The Key Optical Components of The Seeker

Si Wu, Xianming Li, Jun Zhou, Xue Tian, Zhun Deng, Zhong Shengand Weibin Rong State Key Laboratory of Robotics and System, Harbin Institute of Technology Harbin, China

- · The laser ranging sensor is used to scan the surface to obtain the data types of different specifications.
- The least square method is used to fit the data and analyze algorithm error.
- A new multi-ellipse fitting algorithm is proposed for determining the Optical component assembly diagram position of the fastening hole.

TA2-5(5) 11:30-11:45

TA2-5(4) 11:15-11:30

Structure Design and Simulation Study of Dual **Two-quadrant Coherent Tracking System in Free Space Optical Communication** Rui Wang, Wenrui Zhang, Xiaodong Zeng, Changqing Cao*, Zhejun Feng, Xu Yan, Xian Wang, Ting Wang School of Physics and Optoelectronic Engineering, Xidian University Xi'an, China Optical Heterodyne Detection Method Dual Perpendicular Mounted Two quadrant Coherent Tracking Detector System Experimental structure design and Structure diagram of dual two

quadrant detection

simulation analysis

TA2-5(6) 11:45-12:00

IEEE ICMA 2018 Conference Digest TA2-6: Biomimetic Measurement and Control in Robotics

Session Chairs: Keigo Watanabe, Okayama University Nagata Fusaomi, Sanyo-onoda City University (Tokyo University of Science, Yamaguchi) Conference Room 6, 10:30-12:00, Tuesday, 7 August 2018

TA2-6(1) 10:30-10:45

¹Sanyo-onoda City University, ²Okayama University, ³American Univ. in Cairo, ⁴SOLIC Co. Ltd.

- Outline font handler is proposed for three types of industrial robots.
- Without conventional teaching process, the handler can produce desired trajectories from outline fonts based on a spline interpolation approach.

Engraving scene of an outline font

TA2-6(3) 11:00-11:15

The Detection of Flow Directions of Surface Waters using ArcGIS software

Dembélé Abdramane, Ye Xiufen and Touré Amadou Biomimetic micro robot and system Lab., Harbin Engineering University, China College of Forestry, Northeast Forestry University, China

 The use GIS approaches (Geometrical interval and profile interpolation) to determine the flow directions of surface water.

Areas classification by altitudes

through "geometrical interval".

The Inner Delta of Niger

Create the longitudinal profiles through "profile interpolation".

 Determination of flow directions of surface waters and flood areas.

TA2-6(5) 11:30-11:45

Production of a Wall-climbing-type Quadrotor and Its Experiment for Verifying Basic Operations

Keigo Watanabe, Takanori Nakatsuka, and Isaku Nagai Okayama University, Okayama, Japan

- A wall-climbing-type Quadrotor, which can make a hammering test as well as a visual inspection, is proposed.
- The design and production of a wall-climbing-type Quadrotor is described.
- Some operational experiments are conducted to demonstrate the usefulness of the proposed UAV.

Manufactured Quadrotor

TA2-6(2) 10:45-11:00

TA2-6(4) 11:15-11:30

TA2-6(6) 11:45-12:00

IEEE ICMA 2018 Conference Digest TA2-7: Control Theory and Application IV

Session Chairs: Ruijie Sun, Northwestern Polytechnical University Xiaoping Zhu, UAV Reasearch Institute Northwestern Poly Technical University Conference Room 7, 10:30-12:00, Tuesday, 7 August 2018

TA2-7(1) 10:30-10:45

TA2-7(3) 11:00-11:15

Longitudinal Flight Quality Analysis of Small Diamond Wing Configuration UAV

Ruijie Sun¹, Zhou Zhou¹, Zhu Xiaoping², Wang Rui¹ and Guo An¹ 1.School of Aeronautics, 2.UAV Research Institute, Northwestern Polytechnical University Xi'an City, Shaanxi Province, China

- The calculation of aerodynamic and modal characteristics is the basis of flight quality research.
- The rationality of flight quality evaluation is researched by adding the stabilization control system, and the flight quality characteristics of the small diamond wing configuration UAV at different altitudes are analyzed.

configuration

sensor aircraft

• A gust load alleviation (GLA) control system is designed according to the method of second-order system, and the flight quality of the small diamond wing configuration UAV in the '1-cos' longitudinal discrete wind gust model is analyzed.

TA2-7(5) 11:30-11:45

TA2-7(2) 10:45-11:00

TA2-7(4) 11:15-11:30

TA2-7(6) 11:45-12:00

IEEE ICMA 2018 Conference Digest TP1-1: Signal and Image Processing III

Session Chairs: Chengtao Cai, Harbin Engineering University Enzeng Dong, Tianjin University of Technology Conference Room 1, 13:30-15:00, Tuesday, 7 August 2018

TP1-1(1) 13:30-13:45

Moving targets detection based on improved single Gaussian background model

Enzeng Dong, Bo Han , Xiao Yu, Shengzhi Du Complex System Control Theory and Application Key Laboratory Tianjin University of Technology , Tianjin, China

- Firstly, the improved model adopts adaptive background learning rate.
- Secondly, the improved model uses a new update strategy of Gaussian background model,
- Finally, the moving targets are detected according to theprinciple of Gaussian distribution and the image morphology filtering.

The traffic video image

TP1-1(3) 14:00-14:15

The Optimal Scrambling Algorithm Based on Zigzag and Affine Transformation

Hui Wang, Yukun Hu, Lijun Yu and Qiang Wang College of Automation, Harbin Engineering University, Harbin, 150001, China

- This paper proposed a scrambling algorithm combined Zigzag with Affine transformation.
- Four new algorithms are proposed during the process according to the different order and the different way it circulates.
- Finally get the optimal scrambling algorithm and it has the advantages of low time complexity and easy to realize. It has a good scrambling effect and is hard to crack.

TP1-1(5) 14:30-14:45

Research on Mean Shift Tracking Algorithm Base on Significant Features and Template Updates

Hui Wang, Xue Zhang, Lijun Yu, Xueying Wang College of Automation, Harbin Engineering University, Harbin 150001, China

- The proposed algorithm uses the improved Significant Features to replace the traditional color feature
- In the tracking process, a decision method based on the variance size is used to dynamically determine the target model update strategy.
- Compared original algorithm, the improved Mean Shift algorithm has smaller tracking error and stronger robustness.

The Improved Algorithm

TP1-1(2) 13:45-14:00

An Improved Convolution Neural Network for Object Detection UsingYOLOv2

Enzeng Dong, Yanfang Zhu, Yuehui Ji, Shengzhi Du Complex System Control Theory and Application Key Laboratory, Tianjin University of Technology, Tianjin, China

- A 1 × 1 convolutional layer is added to improve the detection accuracy.
- The output sizes of several layers are changed from 13 × 13 to 26 × 26 to extract more features from multipixels image.

YOLO Detection System

TP1-1(4) 14:15-14:30

Feature Points Extraction and Matching Based on Improved Surf Algorithm

Wei Chen, Qian Cao Qingdao University of Science and Technology Qingdao, China

- In order to reduce the mismatch, SURF algorithm is improved in this paper.
- Based on the original algorithm, the RANSAC algorithm which reduces mismatch is added.
- The experimental results show that the improved SURF algorithm can reduce mismatch significantly, and the matching accuracy of the algorithm is improved effectively.

The Sony Aibo Dog

TP1-1(6) 14:45-15:00

IEEE ICMA 2018 Conference Digest **TP1-2: Intelligent Mechatronics and Application II**

Session Chairs: Dapeng Tian, Changchun Institute of Optics, Fine Mechanics and Physics

Shijun Wang, Shanxi University

Conference Room 2, 13:30-15:00, Tuesday, 7 August 2018

TP1-2(1) 13:30-13:45

TP1-2(3) 14:00-14:15

Design of Integrated Vision and Speech Technology For a Robot Receptionist

Linjian Sun, Ye Zhang, Xuling Chang, and Jiajia Xu Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences

Changchun, China

- · The robot receptionist system consists of several independent functions modules
- · Driven by deep learning, visual recognition tasks have made remarkable progress.
- The robot receptionist integrates face recognition, human-computer interaction and facial expression display.
- The robot receptionist
- We construct a experimental system to realize our design.

TP1-2(5) 14:30-14:45

Full Quaternion based Color Image Fusion Yong Wang,Hongqi Liu College of Communication Engineering, Jilin University, No.5372, Nanhu Road, Changchun City, Jilin Prov, China , 130012				
 Step 1: Quaternion description. Step 2:Set parameters. Step 3: Deal with the high-frequency and low-frequency wavelet coefficients which obtained from each layer in the decomposed layers. Step 4: Select the coefficients. Step 5: Inverse transform, evaluate the fusion results. 	Surright Constrained and the second			
lusion results.	Algorithm flow			

TP1-2(2) 13:45-14:00

A new improved combined model algorithm for the application of photovoltaic power prediction Shijun Wang1, Chang Ping1, Guobin Xue1, Dinggang Wang2 and Tao Jiang2 1.Technology Research Institute of Gansu Electric Power Company, 2. Electric Transmission & Transformer co. TLD of Gansu Electric Power Company Lanzhou, Gansu Province, China According to the simulation results of BP algorithm and ARMA BP neural combination ARMA algorithm, we know that the BP algorithm results are more accurate. Combining BP algorithm and

ARMA algorithm to get combined algorithm model, he has better accuracy

		algonann	HOLWOIK	aigonann			
	MAE	2.0678	1.9979	0.8961			
	MAPE	0.2424	0.0700	0.1279			
	RMSE	2.4943	2.5990	1.2293			
	PCC	0.9454	0.9763	0. 9957			
(Comparison of error indices						

between three models

TP1-2(6) 14:45-15:00

IEEE ICMA 2018 Conference Digest **TP1-3: Mechanism & Design**

Session Chairs: Yi Liu, Kagawa University Qinxue Pan, Beijing Institute of Technology

Conference Room 3, 13:30-15:00, Tuesday, 7 August 2018

TP1-3(1) 13:30-13:45

Development of a Percussive Ultrasonic Drill Driver Qiquan Quan, Aimaiti Bulading, Zhijun Zhao, Deen Bai, Dewei Tang, Zongquan Deng State Key Laboratory of Robotics and System., Harbin Institute of Technology Harbin, China Converts 15 V DC to 200 V_{PJ} sinusoidal signal. Combine maximum current method and phase-locked loop method to realize frequency tracking.

- · Change the locked phase and the speed of frequency adjustment during driving.
- · Driving characteristics were tested and analyzed under different conditions.

Driving PUD test system for drive

TP1-3(3) 14:00-14:15

Design and Implementation of a Multi-Movement Spherical Robot Mengjie Zhang, Bo Chai , Lijuan Cheng, Zhaowu Sun, Guang Yao and Lei Zhou* Harbin Institute of Technology (Shenzhen) Shenzhen, Guangdong, P.R. China By combining the four-legged crawling, the wheel-rolling, and the four-rotor-flying those three kinds of movement methods, a spherical robot is designed that can climb, roll, and fly The deformation mechanism is designed to deform the structure according to the posture requirements In the environment of ROS and Gazebo, the

motion state of spherical robot is analyzed comprehensively

TP1-3(5) 14:30-14:45

A Coupling Simulation of Converter Field **Circuit for Permanent Magnet Synchronous** Motor Based on Simplorer and Maxwell

Yibin Li, Jian Zhou, Haipeng Geng, Tingchen Du, Jigang Zhang and Hao Lv State Key Laboratory for Strength and Vibration of Mechanical Structures Xi'an Jiaotong University Xi'an, China

- Establish the mathematical model of PMSM and then create a PMSM finite element model in Maxwell
- Establish rectifier and inverter main circuit, rectifier and inverter side C module control program in Simplorer
- give the results based on Simplorer and Ansoft Maxwell, PMSM inverter field-circuit coupling for the joint simulation

the converter field

TP1-3(2) 13:45-14:00

Conceptual Design and Kinematic Analysis of a Novel Open Field 3DOF Multi-Gripper Pot Seedlings Transplanting Robot

Isaac Ndawula and Samy F. M. Assal Mechatronics and Robotics Department, Egypt-Japan University of Science and Technology New Borg El Arab, Alexandria, Egypt

- Pot seedlings transplanting is labour intensive, time consuming and needs high precision.
- A novel open field 3DOF multi-gripper po
- seedlings transplanting robot is proposed.
- Conceptual design, kinematics analysis and optimal dimensional synthesis, workspace analysis and trajectory planning of the proposed robot were carried out.

The Proposed Robot

TP1-3(4) 14:15-14:30

Robotic Compliant Grinding for Complex Blisk with an Intelligent End-Effector

Dingwei Li, Fan Chen*, Huan Zhao, and Han Ding State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology

- Wuhan, China A home-designed intelligent endeffector
- The combine of active compliance and passive compliance
- A PID controller is implemented for contact force control
- The surface roughness is less than 0.4 µm, the steady state error of the controlled force is about 0.3 N, and the force fluctuation is within 1 N

Robotic Compliant Grinding for Complex Blisk

TP1-3(6) 14:45-15:00

IEEE ICMA 2018 Conference Digest TP1-4: Biomimetic Systems

Session Chairs: Guohong Li, Tianjin University of Technology Huiming Xing, Beijing Institute of Technology

Conference Room 4, 13:30-15:00, Tuesday, 7 August 2018

TP1-4(1) 13:30-13:45

TP1-4(3) 14:00-14:15

Introduction of Toe Mechanism with Bi-articular Tendon into Legged Robot

Kanako Kurokawa¹, Ryuki Sato¹, Shuma Hiasa¹, Aiguo Ming¹², Fel Meng², Huaxin Liu², Xuxiao Fan², Xuechao Chen², Zhangguo Yu² and Qiang Huang² ¹The University of Electro-Communications, ²Beijing Institute of Technology Tokyo, Japan Beijing, China

The Legged Robot

with a Toe Mechanism

- The bio-inspired toe mechanism with the bi-articular tendon system has been developed.
- The proposed mechanism consists of a tension spring and a cable between the ankle and toe joints.
- Design parameters have been determined through the jumping simulation.
- A prototype of the biped robot has been developed and the effectiveness of the toe mechanism is shown through vertical jumping experiments.

TP1-4(5) 14:30-14:45

TP1-4(2) 13:45-14:00

TP1-4(4) 14:15-14:30

Hydrodynamic Analysis of a Novel Thruster for Amphibious Sphere Robots

Xihuan Hou, Shuxiang Guo, Liwei Shi, Huiming Xing, Shuxiang Su, Zhan Chen Yu Liu, Huikang Liu y Laboratory of Convergence Medical Engineerion System and Healthcare Technology

Key Laboratory of Convergence Medical Engineering System and Healthcare Technology, Beijing Institute of Technology, Beijing, China

- Utilize Computational Fluid Dynamics (CFD) to simulate hydrodynamic behavior of the new thruster.
- Analyze the thrust force of the new thruster with different rotating velocity and inlet velocity.

 Provide foundation for the mathematical model building

TP1-4(6) 14:45-15:00

IEEE ICMA 2018 Conference Digest TP1-5: Element, Structures and Mechanisms I

Session Chairs: Dongdong Bu, Beijing Institute of Technology
Lihua Wang, Inner Mongolia University for the Nationalities
Conference Room 5, 13:30-15:00, Tuesday, 7 August 2018

TP1-5(1) 13:30-13:45

TP1-5(3) 14:00-14:15

Design and Analysis of A Novel Stator Permanent Magnet Linear Motor Drive Mechanical Press

Jintao Liang, Xiaopin Ji, Weijing Gong and Wenbo Wang School of Mechano-electronic Engineering, Xidian University Xi'an, Shaanxi Province, China

- A four-sides stator permanent magnet linear motor (SPMLM) direct drive mechanical press is designed.
- Electromagnetic FEA is conducted to optimize force performance and obtain design specification.
- Thermal characteristics is researched through electromagnetic thermal coupling FEA.
- Field-circuit coupling is conducted to simulate the dynamic performance.

TP1-5(5) 14:30-14:45

Analytical Solution of Armature Magnetic Field in Permanent Magnet Motors

Jigang Zhang, Jian Zhou, Yibin Li , Baisong Yang, Yanyan Zhang and Lie Yu Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University Xi'an, Shaanxi Province, China

- A method for making the armature magnetic field analysis more accurate ----Analytical solution of armature magnetic field.
- It can also be derived further analytical solution of the load magnetic field, and then the entire motor magnetic field analysis.

The SPMLM drive press

TP1-5(2) 13:45-14:00

TP1-5(4) 14:15-14:30

TP1-5(6) 14:45-15:00

IEEE ICMA 2018 Conference Digest **TP1-6: Space and Telerobotics**

Session Chairs: Baosen Du, Beijing Institute of Precise Mechanics and Controls

Liang Zheng, Kagawa University

Conference Room 6, 13:30-15:00, Tuesday, 7 August 2018

TP1-6(1) 13:30-13:45

TP1-6(3) 14:00-14:15

A Teleoperation Framework of Hot Line Work Robot

Xiaoming Mai¹, Jiangcheng Chen², Yang Wang¹, Sheng Bi², Yu Cheng², Ning Xi² 1. Department of Artificial Intelligence and Robotics, The Guangdong Electric Power Research Institute of Guangdong Power Grid Corporation, Guangzhou, China

- 2. Department of Industrial and Manufacturing Systems Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR
- The design concept of the hot line work robot system and the teleoperation framework are presented.
 The methods of robotic arm control,

Screenshots of the manually operation task

 A preliminary teleoperation testbed in lab is setup and the manually operation test is conducted.

manually operation, visual based

automatic operation are detailed

introduced.

TP1-6(5) 14:30-14:45

Adaptive Terminal Sliding Mode Control for Time-delay Teleoperation with Uncertainties

Shan Liu, Wenfeng Zheng, and Bo Yang School of Automation Engineering, University of Electronic Science and Technology of China Chenadu. Sichuan. China

- An adaptive terminal sliding mode bilateral controller is proposed to solve uncertainty and finite convergence problem in a class of teleoperation systems with constant time-delay.
- The control laws are designed based on the terminal sliding mode control.
- The radial basis function neural network is used to model the uncertain items, weights of which are estimated using a designed adaptive law.

TP1-6(2) 13:45-14:00

Design and Analysis of Space Docking Mechanism for On-orbit Assembly with application to Space Telescope

Yang Yu, Zhenbang Xu, Yaoyu Lv, Chunyang Han, Junpei He, Kai Wang, Ce Xu, Huo Qi Innovation Lab. of Space Robot System, Changchun Institute of Optical, Fine Mechanics and Physics, Chinese Academy of Science, Changchun, China

- The small space docking mechanism is presented.
- The structural design is introduced in detail and the main components are analyzed by FEM
- The visual capturing method based on object identification is studied.
- The docking experiment is performed and the docking errors are tested.

The Docking Mechanism

TP1-6(4) 14:15-14:30

A Dimension Reduced Ground Test Method of Dual-arm Space Robot for On-orbit Assembly Baosen Du, Jiayu Liu, Zelin Yang, Yanbo Wang*, Tao Deng Beijing Institute of Precise Mechatronics and Controls(The 18th Institute) Beijing, China

- space robot.
- Dynamic gravity compensation mechanism based on air bearing.
- A novel dimension reduced model is built for dynamics equivalence.

The Dual-arm Robot

TP1-6(6) 14:45-15:00

IEEE ICMA 2018 Conference Digest TP1-7: Control Theory and Application V

Session Chairs: Tianyi Ma, Beijing Institute of Graphic Communication Hui Wang, Beijing Information Science&Technology University **Conference Room 7, 13:30-15:00, Tuesday, 7 August 2018**

TP1-7(1) 13:30-13:45

TP1-7(3) 14:00-14:15

TP1-7(5) 14:30-14:45

TP1-7(2) 13:45-14:00

TP1-7(4) 14:15-14:30

TP1-7(6) 14:45-15:00

IEEE ICMA 2018 Conference Digest TP2-1: Signal and Image Processing IV

Session Chairs: Lianwu Guan, Harbin Engineering University

Abbas Kouzani, Deakin University

Conference Room 1, 15:30-17:00, Tuesday, 7 August 2018

TP2-1(1) 15:30-13:45

An image processing method for green apple lesion detection in natural environment based on GA-BPNN and SVM

Yunong Tian, En Li, Lei Yang, and Zize Liang The Institute of Automation Chinese Academy of Sciences Beijing, China

- An image processing method for the lesion image of green apple is proposed.
- A GA-BPNN algorithm is proposed to realize adaptive multi-threshold image binarization.
- Image ROI extraction, soft margin SVM algorithm and other algorithms are used in this paper to better finish the task of green apple lesion images processing.

TP2-1(3) 16:00-16:15

TP2-1(5) 16:30-16:45

TP2-1(2) 15:45-16:00

TP2-1(4) 16:15-16:30

Pipeline Junction Detection based on Complex Continuous Wavelet Transform and MEMS Accelerometer Measurement

Lianwu Guan¹*, Yanbin Gao¹, Aboelmagd Noureldin², Xiaodan Cong³ 1. College of Automation, Harbin Engineering University, Harbin, China 2. Department of Electrical and Computer Engineering, Royal Military College of Canada 3. Institution of Automation, Heilongjiang Academy of Sciences, Harbin, China

- We proposes a PJ detection method by using Complex Continuous Wavelet Transform (CCWT).
- Both raw and de-noised accelerometer measurement data are extracted and analyzed by CCWT. The experiments results shown that

the PJ detection result can provide azimuth and pitch angles updates for MEMS IMU.

TP2-1(6) 16:45-17:00

IEEE ICMA 2018 Conference Digest TP2-2: Intelligent Mechatronics and Application III

Session Chairs: Xiaotao Cao, Changchun Institute of Optics, Fine Mechanics and Physics Xiaohai Wang, Navy Submarine Acadamy

Conference Room 2, 15:30-17:00, Tuesday, 7 August 2018

TP2-2(1) 15:30-13:45

Smart Material Constructed Flexible and Stretchable Electronics for Knee Joint Health Monitoring and Improved Drug Delivery

Guo-Hua Feng and Wei-Ming Tseng Department of Mechanical Engineering, National Chung Cheng University, Chiayi, Taiwan

The proposed electronics

Fig. 11: Heading sensor shock fault classification chart

- A flexible and stretchable electronic device with multi-functionality.
- Two kinds of smart materials are utilized: PZT film for sensing acoustic emission wave and PNIPAM film for delivering drug.
- We demonstrate the smart patch assembled with a knee band strap for monitoring the knee joint motion.

TP2-2(3) 16:00-16:15

Fault Diagnosis of Measurement System for **Dynamic Positioning Ship based on NN-SVM** Method Wang Yuanhui, BaoChengcheng, Ding Fuguang College of Automation., Harbin Engineering Universit Harbin, China Firstly, three neural network methods, including BP, RBP, and adaptive linear neuron, which are used to predict output time series. Then, the three types of neural networks are compared for the first time through output time series prediction with performance index of MAE and MSPE. Finally, RBF neural network combined with SVM is for the fault diagnosis of gyro in ship dynamic positioning system.

TP2-2(5) 16:30-16:45

TP2-2(2) 15:45-16:00

TP2-2(4) 16:15-16:30

TP2-2(6) 16:45-17:00

Two-point Calibration Accuracy Analysis Model of Inertial Navigation System

Xiao-dong YANG and Wen-ming SHI Naval Submarine Academy Qingdao, Shandong Province, China

- Firstly, the basic principle of two-point calibration of inertial navigation system is described.
- Secondly, the influence model of measurement error and dynamic misalignment angle on the accuracy of two-point correction is deduced, and the explicit analytical solution is given.
- · Finally, the simulation test is performed for the algorithm.

IEEE ICMA 2018 Conference Digest TP2-3: Manufacturing Systems & Automation

Session Chairs: Shuai Wang, Changchun Institute of Optics, Fine Mechanics and Physics

Qingsong Xu, University of Macau

Conference Room 3, 15:30-17:00, Tuesday, 7 August 2018

TP2-3(1) 15:30-13:45

TP2-3(3) 16:00-16:15

Research on key structural parameters for multistage reciprocating compressor

Xiaohui Gao, Yongguang Liu and Hong Guo School of Automation Science and Electrical Engineering, Beihang University, Beijing China

- Mathematical model of multistage variable cross-section
- reciprocating is established.
 The influence rules are studied between compression performance and structural parameters.

intake check valve and seal of

high-pressure cylinder play an

important role in the multi-

stage reciprocating compressor

TP2-3(5) 16:30-16:45

Noise Control and Experimental Study of Engine Oil Pump Wangyong Hua, Fengyu Xu,Zheming Liu, Haiquan Wu, Huadong Yu College of Mechanical and Electric Engineering ,Changchun University of Science and Technology,Changchun130021,China.

- At the design beginning of a certain type of passenger car, the noise spectrum of the air intake system is analyzed.
- First , the structural model and acoustic model are established by GEM3D.
- Then GT-POWER was used to analyzed the noise of the system and simulate the full load condition of engine.
 The acoustic model of the intake system.

TP2-3(4) 16:15-16:30

An equivalent loads method for non-probabilistic reliability-based topology optimization of geometrically nonlinear structures Ming Li, Lin Yang, Yang Cao and Zaibin Yang Nanjing Research Institute of Electronics Technology, Nanjing, 210039, China This paper proposes an approach for reliability optimization of a) Linear. DO geometrically nonlinear structures. Compared with deterministic optimization, reliability optimization b) Geometrically nonlinear, DO suggests a more reliable layout. Compared with the conventional method, the proposed method is more c) Geometrically nonlinear, NRBTO efficient and more suitable for the complicated optimization problem. a-c Comparison of optimal layouts

TP2-3(6) 16:45-17:00

IEEE ICMA 2018 Conference Digest **TP2-4: Intelligent Biomedical Technology**

Session Chairs: Xiangkai Meng, Changchun University of Science and Technology

Jian Guo, Tianjin University of Technology

Conference Room 4, 15:30-17:00, Tuesday, 7 August 2018

TP2-4(1) 15:30-13:45

Binocular Camera-based a Docking System for an Amphibious Spherical Robot

Shuxiang Guo, Yu Liu, Liwei Shi, Ping Guo, Huiming Xing, Xihuan Hou, Zhan Chen, Shuxiang Su, Huikang Liu Key Laboratory of Convergence Medical Engineering System and Healthcare Technology, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology Faculty of Engineering, Kagawa University, 2217-20 Hayashi-cho, Takamatsu, Kagawa, Japan

- Aiming at vision-based amphibious spherical robot, a binocular camerabased docking system was designed and implemented.
- To achieve this system, the principle of binocular vision was applied and the yaw control strategy was designed for the proposed robot .
- The experimental results proved the feasibility and robustness of this system.

TP2-4(3) 16:00-16:15

Design of A Novel Drug-delivery Module for Active Locomotive Intestinal Capsule Endoscopy

Jian Guo¹, Zihong Bao¹, Shuxiang Guo^{1,2}, Qiang Fu¹ 1 Tianjin Key Laboratory for Control Theory & Applications in Complicated Systems and Biomedical Robot Laboratory, Tianjin University of Technology, Binshui Xidao 391, Tianjin, China 2 Intelligent Mechanical Systems Engineering Department, Kagawa University, Takamatsu, Kagawa, Japan

- This paper proposed novel drug-delivery module for active locomotive intestinal capsule endoscopy. This module has three parts: plastic hinge connection, drug warehouse of movable magnet and fixed medicine warehouse cover
- The module robot can move autonomously and give medicine at different positions
- The developed capsule robot can be used to improve the capsule robot system and help people do experiments in vivo in the future.

and angles.

TP2-4(5) 16:30-16:45

Research on Accurate Screening Technology for **Circulating Tumor Cells**

Xiangkai Meng, Yuanhua Yu, Guangyong Jin ,Jiamei Liu,Xingjia Feng, Chunlei Li Changchun University of Science and Technology Changchun, Jilin Province, China

- · Circulating tumor cells(CTCs).
- For early clinical screening, detection and treatment of tumor cells and provide research foundation for precision medical.
- Microfluidic technology, chromatography, and centrifugation methods and combined the physical and biological characteristics of tumor cells.
- Stain and enrichment of CTCs.

and control str

docking syste

egy

Sketch map

The 3D Model of wireless spiral capsule robo with drug delivery

The CD-CTC

TP2-4(2) 15:45-16:00

Platform Design for a Natatores-like Amphibious robot Huikang Liu, Liwei Shi, Shuxiang Guo, Huiming Xing, Xihuan Hou, Yu Liu Key Laboratory of Convergence Medical Engineering System and Healthcare Technology, Beijing Institute of Technology, Beijing, China · Use the principles of natatores to develope a novel amphibious robot. The robot utilize coordinated movement of body to realize multimode motion. The mechanical design is divided into four aspects, and telescopic rod play a important role in power stroke stage and recovery stroke stage Use ADAMS to simulate the Natatores-like Amphibious robo kinematics and dynamics of the robot and analyze the stability.

TP2-4(4) 16:15-16:30

TP2-4(6) 16:45-17:00

IEEE ICMA 2018 Conference Digest **TP2-5: Element, Structures and Mechanisms II**

Session Chairs: Xihuan Hou, Beijing Institute of Technology

Chunyou Zhang, Beihang University

Conference Room 5, 15:30-17:00, Tuesday, 7 August 2018

TP2-5(1) 15:30-13:45

TP2-5(3) 16:00-16:15

Comparative Study of Stiffness Modeling Methods for A Novel Industrial Robotic Arm with Hybrid Open- and **Closed-Loop Kinematic Chains**

Longfei Sun and Fengyong Liang School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China Lijin Fang Faculty of Robot Science and Engineering, Northeastern University, Shenyang, China

- A novel industrial robotic arm with hybrid open- and closed-loop kinematic chains is
- proposed. An analytical method and a semi-analytical method based on strain energy and Castigliano's theorem are proposed to establish the stiffness model of the robot.
- The stiffness modeling methods are verified by the FEA and experimental results, and a comparative study of the two stiffness modeling methods is presented.

TP2-5(5) 16:30-16:45

Design and Research of a Centrifugal **Compressor for Automotive Fuel Cell Systems**

Lei Qi, Haipeng Geng, Jigang Zhang, Tingchen Du, Hao Lv and Lie Yu State Key Laboratory for Strength and Vibration of Mechanical Structures Xi'an, Shaanxi Province, China

- a centrifugal compressor for automotive fuel cell systems has been designed.
- A CFD software CFX is used to simulate three dimensional flow field of the designed centrifugal compressor.
- the load of the blade is analyzed and some adjustments are made so that it meets the mechanical properties.

The Novel Industrial Robotic arm

The Centrifugal Compressor

Development of a Chair Preventing Low Back Pain with Sitting Person Doing Hand Working at the Same Time

Keiji Ikegami*1, Hideyuki Hirata*2, Hidenori Ishihara*2 and Shuxiang Guo*2 *1 Graduate School of Engineering, Kagawa University, Takamatsu, JAPAN *2 Faculty of Engineering and Design, Kagawa University

- Sitting on a present chair long time with hand working causes low back pain
- Hypothesis of the conditions in which sitting
- person can do hand working.
- Monopod rocking chair of logs meets the conditions and prevented low back pain for 2 hours
- New swing model which is caused by one's breath and controlled by one's toes.

monopod rocking chair of logs

TP2-5(4) 16:15-16:30

Tianjin Key Laboratory of the Design and Intelligent Control of the Advanced Mechatronical System.Tianjin University of Technology,Tianjin, China

Reconfigurable fixture robots are capable of gripping the auto-body panels with the different radii of curvature, which can also meet the work scopes on the production lines. The three-dimensional model and the

- kinematic equations of the proposed reconfigurable fixture robot are established.
 - Reconfigurable Fixture Robot
- The working space and the modal analysis of the reconfigurable fixture robot are performed.

TP2-5(6) 16:45-17:00

Study on Sound Absorption of Perforated Plate

Wu Haiquan, Chen Wen, Liu Zheming, Wang Yonghua College of Mechanical and Electric Engineering, Changchun University of Science and Technology ChangChun, China

- · Noise pollution is one of the four modern pollution, so noise control is becoming more and more important.
- Microperforated plate sound absorbers have the advantages of simple structure, friendly environment, light weight and low price, and corrosion resistance
- The sound absorption ability of the multilayer microperforated plate is improved.

Multilayer Microperforated Plate

IEEE ICMA 2018 Conference Digest **TP2-6: AUV & Space Robots**

Session Chairs: Hongbo Wang, Parallel Robot and Mechatronic System Laboratory

of Hebei Province

Sheng Bi, University of Hong Kong Conference Room 6, 15:30-17:00, Tuesday, 7 August 2018

TP2-6(1) 15:30-13:45

Experimental Validation of Planar Free-Floating Emulator via Model-free Force-Feedback Control

> Narendran Muraleedharan, Iacopo Gentilini, and Douglas R. Isenberg Space Robotics Laboratory, Embry-Riddle Aeronautical University Prescott, USA

• A 3-DOF Robotic Platform (RP) mounts a six-axis Force-Torque (FT) transducer on its end-effector and a 4-DOF planar Space Robot (SR) is installed on the transducer flange. Planar free-floating is emulated by

between the SR and the FT transducer. Differently from HIL, this approach

does not require any knowledge of the SR inertial properties.

nullifying forces/torque at the interface

TP2-6(3) 16:00-16:15

Design of a Lift-propulsion VTOL UAV system

Xin Zhao, Zhou Zhou, Xiaoping Zhu School of Astronautics, Northwestern Polytechnical University Xi'an, China

- · A general design method for liftpropulsion VTOL UAV)is proposed.
- The power matching based conceptual parameter estimation and aerodynamic shape design are carried out.

• The attitude control law is designed.

The hovering and level flight test of

the prototype are carried out. Confirming the validity of the overall Lift-propulsion VTOL UAV design method and the attitude

TP2-6(5) 16:30-16:45

control law design.

Review of modeling and control in UAV autonomous maneuvering flight

Renshan Zhang, Jiyang Zhang and Huangchao Yu Department of Unmanned Systems, Nantional University of Defense Technology

- · Provides a comprehensive survey of the state-of-the-art of modeling and control of UAV maneuvering flight and exhibits the current status
- The topics include maneuver actions definition and classification. modeling and control technology of maneuver UAV.
- Some new trends for the realization of UAV maneuver flight were summarized.

BeiDou-3 Satellites Ping Nie, Xin Meng, Junren Sun and Zun Niu School of Electronics Engineering and Computer Science, Peking University

The signal strength of BDS-3 is comparable to that of the most excellent GPS, BDS-2 and Galileo satellites' signals.

TP2-6(2) 15:45-16:00

Initial Assessment and Impact on GNSS

Positioning Performance Analysis of Including

Including BDS-3 satellites improves the DOP, HPE and VPE by an average of about 4.5, 4.0, 4.0 percent and 3.0, 2.0, 0.5 percent over the GPS¥BDS-2 and GPS¥Galileo¥BDS-2 positioning.

TP2-6(4) 16:15-16:30

TP2-6(6) 16:45-17:00

IEEE ICMA 2018 Conference Digest TP2-7: Control Theory and Application VI

Session Chairs: Mingsheng Tang, Technical Institute of Physics and Chemistry, CAS Junjie Zhou, Beijing Institute of Technology Conference Room 7, 15:30-17:00, Tuesday, 7 August 2018

TP2-7(1) 15:30-13:45

Hierarchical Control Strategy Design for A 6WD Unmanned Skid-steering Vehicle

Yansong Zhang, Xueyuan Li*, Junjie Zhou, Xufeng Yin, Men Du Science and Technology on Vehicular Transmission Laboratory, Beijing Institute of Technology Beijing, China

- Develop a dynamic model for skid-Steering Vehicle "spark".
- Design a hierarchical control strategy for a 6 × 6 skid-steering vehicle.
- Simulate by Trucksim/Simulink.
 Prove that Hierarchical control strategy improve the vehicle maneuverability.

"SPARK" Unmanned Platform

TP2-7(3) 16:00-16:15

Reactive Power Control of Compound Reactive Power Compensation Device

Hongjun Wang¹, BoHui Wu¹, Hui Zhao¹, YoujunYue¹ Tianjin University of Technology391, Binshui Xidao, Xiqing District, Tianjin, 300384, China

- INTRODUCTION.
- SYSTEM STRUCTURE AND COMPARATIVE ANALYSISI
- OVERALL CONTROL STRATEGY

CONCLUSION

TP2-7(5) 16:30-16:45

TP2-7(2) 15:45-16:00

TP2-7(4) 16:15-16:30

TP2-7(6) 16:45-17:00

Wednesday August 8, 2018

Morning Sessions

- WA1-2 Manipulator Control I
- WA1-3 Sensor Design and Sensing System
- WA1-5 Modeling, Simulation Techniques and Methodology III
- WA1-6 Control Theory and Application VII
- WA1-7 Human-System Interaction
- WA2-1 Signal and Image Processing VI
- WA2-2 Manipulator Control II
- WA2-3 Signal Measurement and Process in Automatic Control
- WA2-5 Rotor Dynamics, Vibration Analysis and Vibration Control
- WA2-6 Manipulation Sensing & System
- WA2-7 Robot Navigation and Control Algorithm

IEEE ICMA 2018 Conference Digest WA1-1: Signal and Image Processing V

Session Chairs: Xiangiang Bao, Beijing Institute of Technology Chengtao Cai, Harbin Engineering University Conference Room 1, 9:30-11:00, Wednesday, 8 August 2018

WA1-1(1) 9:30-9:45

Development of the HALCON Software-based Harness Number Identification

Ying Zhang, Guohua Cao, Hongchang Ding, Changfu ZhaoSchool of Mechanical Engineering

- Changchun University of Science and Technology, Changchun, Jilin, China The paper proposes that after determining the wire diameter of the cable, the global and local thresholds are segmented according to the characteristics of different wire diameters. The researcher has targeted the method of
- numbering area positioning, line number deflection correction, and character breakage repair, and then targeted the processing optimization to obtain the online cable number information.
- Through experiments, the recognition of the line number character was successfully achieved, and a higher level of recognition accuracy was achieved, and the production efficiency was improved.

The Design and simulation of transcranial electric stimulation system

The identify the line number

Yueming Lin, Minghui Liang, Datong Chen, Dongbin Xu, Qiuyang Wang, Ke Zhang, Xiaodong Wang,Weibin Mu Qigihar Medical University . Qiqihar. China Transcranial electrical stimulation, as a widely used non-traumatic brain stimulation technology, has been widely used in medicine. MAX038 is selected as the chip of signal generation module. ADG1434, it can achieve a variety of stimulus model output.

Results show that the signal generation system can output waveform independently and control The signal generator circuit coupling output, so as to meet different therapeutic targets.

WA1-1(5) 10:30-10:45

FPGA Based Design and Implementation of Improved Edge Detection Algorithm using LOG Operator

Enzeng Dong, Kaifeng Li, Jigang Tong Complex System Control Theory and Application Key Laboratory School of Electrical and Electronic Engineering., Tianjin University of Technology Tianjin, China

- Basic theory of LOG operator
- The improved algorithm of
- LOG operator
- FPGA implementation of the improved algorithm
- Result ananysis

WA1-1(2) 9:45-10:00

The research of Liveness detection method based on sparse support vector machines

Yu Lijun ,Ding Ying, Wang Hui, Sun Weijie College of Automation, Harbin Engineering University, Harbin 150001, China

- Based on the existing technology, using the sparse support vector machine for training classification, a constraint on the loss vector is added in the traditional support vector machine model.
- The purpose of this is to reduce the number of support vectors., then the solution of support vector has better sparsity, it is also improved in the rate of operation and accuracy.

WA1-1(4) 10:15-10:30

Registration of Infrared and Visible Image Based on OpenCV

Chengtao Cai, Xin Ding, HongZhu Harbin Engineering University & East china sea centre of standar&metrology, s.o.a. . Harbin & Shanghai, China

- A novel registration algorithm of infrared and visible image based on morphological edge detection is proposed.
- The algorithm firstly performs a series of morphological operations based on the multi-directional structure elements on infrared and visible images to obtain the edge images of them.

Accurately match images

WA1-1(6) 10:45-11:00

Image Feature Based Machine Learning Approach for Road Terrain Classification Yang Chen , Pengfei Zhang, Shifeng Wang, Dawei Gong School of Opto-Electronic Engineering. Changchun University of Science and Technology Changchun, China Road terrain perception for smart vehicles with images.

- Extracted texture features for classification.
- Improve classification accuracy using principal component analysis.
- Abundant image information processed.

Four types of road terrain surfaces

IEEE ICMA 2018 Conference Digest WA1-2: Manipulator Control I

Session Chairs: Yan Zhao, Beijing Institute of Technology Jian Guo, Tianjin University of Technology Conference Room 2, 9:30-11:00, Wednesday, 8 August 2018

WA1-2(1) 9:30-9:45

A Path Optimization Algorithm for Motion Planning with the Moving Target Sicheng Liu, Houde Liu, Xiaojun Zhu, Kangkang Dong, Bin Liang Graduate School at Shenzhen, Tsinghua University

Shenzhen, China

- Improved bidirectional RRT* algorithm based on greedy heuristic.
- A path optimization algorithm tailored to moving target.
- Get the solution rapidly and has a rapid rate of convergence.
- Strong adaptability in different obstacle placements.

Motion planning in V-rep

WA1-2(3) 10:00-10:15

A HIL Simulation Facility for Task Verification of the Chinese Space Station Manipulator

Fangli Mou, Xuan Xiao, Tao Zhang, Qian Liu, Daming Li, Chengwei Hu and Wei Ma Tsinghua University and China Academy of Space Technology Beijing, China

- A HIL simulation facility designed to support the Chinese Space Station Manipulator.
- Outstanding advantages such as high bandwidth, low latency, and precise dynamic parameters.
 Special designs make the MTVF can

ensure emulation authenticity.

conducted by the MTVF.

Experimental validation has been

The MTVF hardware testing part

WA1-2(5) 10:30-10:45

Institute of Optics, Fine Mechanics and Physics Chinese Academy of Scie University of Chinese Academy of

- Definition of repulsive potential field.
- Collision avoidance with obstacles.Collision avoidance with other
- Collision avoidance with o manipulators
- Collision avoidance system design.
- Simulations and conclusions.

Configurations with obstacle avoidance

WA1-2(2) 9:45-10:00

WA1-2(4) 10:15-10:30

WA1-2(6) 10:45-11:00

IEEE ICMA 2018 Conference Digest WA1-3: Sensor Design and Sensing System

Session Chairs: Zixu Wang, Kagawa University Aiguo Ming, University of Electro-Communications Conference Room 3, 9:30-11:00, Wednesday, 8 August 2018

WA1-3(1) 9:30-9:45

A Miniature Device for In-Situ Measurement of Concrete Corrosion

Dean M. Corva, Seyyed Sobhan Hosseini, Scott Adams, Will Gates, Frank Collins, Abbas Z. Kouzani Deakin University. Geelong. Victoria 3216, Australia

- A low-cost aggregate-sized sensing device suitable for embedding within concrete structures, designed with large scale deployments in mind is presented.
- It includes electrodes and degradation measurement electronic circuitry. The circuitry includes a low-power microcontroller, a current source chip, among others.

Device for In-Situ Measurement of Concrete Corrosion

WA1-3(3) 10:00-10:15

The Optimization Design of Micro-Strip UHF Sensor and the Applied Research of GIS PD Detection

Jie Li¹, Jiabao Li¹, Yingfen Wang¹, Shizhen¹ and Yanhang Zhao² 1.Honghe Power Supply Bureau of Yunnan Power Grid Co., Ltd. Mengzi, China 2.State Key Laboratory of Power Transmission Equipment & System Security and New Technology (Chongqing University) Chongqing, China

- According to the characteristics of GIS PD, the UHF sensor is designed based on the micro-strip theory.
- Starting from the rectangular patch microstrip sensor, the fractal theory is used to optimize it, and the fractal micro-strip sensor is obtained.

 The fractal micro-strip sensor is fabricated, and the PD test platform is set up to verify the performance of UHF sensor.

WA1-3(5) 10:30-10:45

Yuxia Li, Bin Zhang, Jianfeng Li, Xiaoxia Wu, Pengfei Guo Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of SciencesChangchun, Jilin Province, China

- Introduction of hydomantic positon control system.
- Description and working principle of the hydromantic passive supporting control system.
- The hardware and software design of the positon control system.
- The test results on platform of 4m telescope and 1.2m primary mirror.
- Conclusion

Active Optics correction Experiments With Position control

WA1-3(2) 9:45-10:00

WA1-3(4) 10:15-10:30

Dipole Source Localization Based on Least Square Method and 3D Printing

Xin Lin, Yong Zhang, Mingjiang Ji, Xiande Zheng, Kehong Lv, Jing Qiu, and Guanjun Liu College of Artificial Intelligence, National University of Defense Technology Chanosha, China

- The sensor array was used for underwater dipole source loxalization.
- It consists of 9 pressure sensors, MPVZ5004GW6U.
- 3D printing was applied to fabricate the array shell.
- The center distance between adjacent sensors is is 14.48mm; the body length is160mm.

The Pressure Sensor Array

WA1-3(6) 10:45-11:00

Research on Key Technologies of Lidar 3D Point Cloud Imaging

Yanxin Yu, Yuxin Li, Chunyang Wang* and Xuelian Liu Department of Electronics and Information Engineering, Changchun University of Science and Technology, Changchun, China

- The three-dimensional laser scanning technology can directly obtain the spatial sample points or point cloud data on the surface of real objects.
- Firstly, the classifications of point cloud data measurement methods are introduced, then the denoising methods of point cloud data are summarized, and the methods of point cloud data surface reconstruction are summarized.

Reconstructed models using the extended GNG method for face reconstruction

IEEE ICMA 2018 Conference Digest WA1-5: Modeling, Simulation Techniques and Methodology III

Session Chairs: Yi Liu, Kagawa University Baofeng Gao, Beijing Institute of Technology Conference Room 5, 9:30-11:00, Wednesday, 8 August 2018

WA1-5(1) 9:30-9:45

Modeling and Analysis of a Variable Stiffness Actuator for a Safe Homebased Exoskeleton Yi Liu, Shuxiang Guo, Songyuan Zhang and Luc BOULARDOT Guo Lab., Kagawa University

- A variable stiffness actuator is integrated to the exoskeleton for adjusting the actuated joint stiffness independently.
- The characteristic of the elastic elements affects the performance of the variable stiffness actuator.
- The model of the variable stiffness actuator and simulated its stiffness characteristics with different spring coefficients, preloads and damping.

WA1-5(3) 10:00-10:15

Hardware-in-the-loop Simulation System for Process Control

Lili Zhao, He Tian Tianjin key Lab. for Control Theory & Applications in Complicated Systems2, Tianjin University of Technology, Tianjin, China • This paper provides a hardware-in-

 This paper provides a hardware-inthe-loop simulation system for offshore oil platform public system.

monitoring of the parameters of the

equipment, but also simulate the

operation and signal of industrial

The simulation of the system through the analog control box to simulate the analog signal to the production process conditions.
It can realize the real-time

simulation system platform

field device

The Ball Valve Model

WA1-5(5) 10:30-10:45

Seal Performance Analysis of Hard Seal Ceramic Ball Siaofang Zhou, Haiyan Shao, Yanjun Wang School of Mechanical Engineering, University of Jinan Jinan, China Set up a ball valve model. Analyze the seal performance of ball valve. The material of ball valve is Zirconia Ceramics.

WA1-5(2) 9:45-10:00

WA1-5(4) 10:15-10:30

WA1-5(6) 10:45-11:00

IEEE ICMA 2018 Conference Digest WA1-6: Control Theory and Application VII

Session Chairs: Huiming Xing, Beijing Institute of Technology Nan Xiao, Beijing Institute of Technology Conference Room 6, 9:30-11:00, Wednesday, 8 August 2018

WA1-6(1) 9:30-9:45

Design of Speech Control System for a Upper Limb Rehabilitation Robot Based on Wavelet Denoising Shuxiang Guo^{1,2} and Zhi Wang¹ Jian Guo^{1,2}, Qiang Fu^{1,3} and Nan Li¹ Tianjin Key Laboratory for Control Theory & Applications in Complicated Systems and Biomedical Robot Laboratory, Tianjin University of Technology Tianjin, China Intelligent Mechanical Systems Engineering Department, Kagawa University Kagawa, Japan This papre proposed a new type of exoskeleton upper limb rehabilitation robot based on biomechanics and a speech control system has been designed. For the speech recognition better, the speech signal was de-noised.

 Through the rehabilitation training experiment, the effectiveness of the speech system is verified.

WA1-6(3) 10:00-10:15

Speed Control of PMSM with Sliding Mode Disturbance Observer

Yongting Deng, Jianli Wang, Hongwen Li, Jing Liu and Dapeng Tian Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Science

- To promote the performance of PMSM speed loop, such as fast response, tracking accuracy and robustness.
- A sliding mode disturbance observer (SMDO) is proposed. The SMDO is used as a compensator, which is designed to estimate the lumped external disturbances and add a corresponding feedback compensation item to the output of the speed controller.

WA1-6(5) 10:30-10:45

WA1-6(2) 9:45-10:00

WA1-6(4) 10:15-10:30

WA1-6(6) 10:45-11:00

IEEE ICMA 2018 Conference Digest WA1-7: Human-System Interaction

Session Chairs: Linshuai Zhang, Kagawa University Jinglong Wu, Okayama University Conference Room 7, 9:30-11:00, Wednesday, 8 August 2018

WA1-7(1) 9:30-9:45

WA1-7(3) 10:00-10:15

An improved KFCM algorithm for unsupervised image segmentation based on neighborhood constraints

Huiying Jiao¹, Xianglian Meng², Jianhua Song³ ¹China Academy of Information and Communication Technology, Beijing, China, ²Automation College, Harbin Engineering University, Harbin, China, ³Electronic Engineering College, Heilongjiang University, Harbin, China

- Fuzzy C-means clustering (FCM) and its merits and demerits
- Neighborhood constraints in digital image processing
- Kernel fuzzy C-means clustering (KFCM) and and its improved algorithm
 Robustness and validity of the

proposed algorithm

WA1-7(5) 10:30-10:45

WA1-7(2) 9:45-10:00

WA1-7(4) 10:15-10:30

WA1-7(6) 10:45-11:00

IEEE ICMA 2018 Conference Digest WA2-1: Signal and Image Processing VI

Session Chairs: Xiangiang Bao, Beijing Institute of Technology

Shuxiang Guo, Kagawa University

Conference Room 1, 11:15-12:15, Wednesday, 8 August 2018

WA2-1(1) 11:15-11:30

Brain activation neuronal substrates of nonword priming effect: An fMRI study

Jingjing Yang, Xiujun Li, Qi Li, Dan Tong and Jinglong Wu The School of Computer Science and Technology, Changchun University of Science and Technology, Jilin, China

- We investigated changes in the behavioral performance and brain activities associated with nonword priming in a Non Word Stem Completion (NWSC) task.
- In the behavioral results, we found obvious facilitatory effects in subject's performance.
- In the fMRI results, we found the activations in the bilateral middle and inferior frontal gyrus with right hemispheric prevalence, the superior and inferior parietal gyrus, and the supplementary motor area.

WA2-1(3) 11:45-12:00

Application of a Novel Fast Transfer Alignment Algorithm on SINS for Vehicular Launching System

Meng Wang, Kunpeng He, Lianwu Guan*, Yanbin Gao, Liqiang Yu, Xulong Luo College of Automation,Harbin Engineering University, Harbin,China

We proposed a novel fast and highprecision transfer alignment algorithm on SINS applied to vehicular launching. The algorithm based on "speed +

attitude" matching model and lever

Hardware experiment platform of

vehicular Experiment

WA2-1(2) 11:30-11:45

Submarine Pipeline Identification in Side Sonar Scan Image

Yiping Chen1*, Hui Li2*, Yao Yao1*, Peng Yang2*, Xiufen Ye2*and Shuguo Xiao2* 1* Jiangsu Automation Research Institute College of Automation, Jiangsu, China 2* College of Automation, Harbin Engineering University, Heilongjiang, China

- · Amplify data set to improve detection accuracy and prevent overfitting.
- Use all pixels of the image as input to extract features automatically.
- Initial detection algorithm with improved BP neural network.
- Pipeline detection with genetic algorithm.

Identify pipelines covered by sand

WA2-1(4) 12:00-12:15

A Fast Hybrid Noise Filtering Algorithm Based on Median-Mean Xun Zhang, Hongzhou Liao, Xue Du, and Bo Xu Department of Automation, Harbin Engineering University Harbin, China The optical images often contain impulse noise and gaussian noise at the same time. When the mixed noise pollution is serious, the interaction between the noises can lead to a single filtering method that can not effectively eliminate the noise. In order to suppress these two kinds of noises simultaneously, a fast Median-Mean Joint Filtering algorithm of median and mean joint filtering is proposed.

71

IEEE ICMA 2018 Conference Digest WA2-2: Manipulator Control II

Session Chairs: Liang Zheng, Kagawa University Dapeng Tian, Changchun Institute of Optics, Fine Mechanics and Physics Conference Room 2, 11:15-12:15, Wednesday, 8 August 2018

WA2-2(1) 11:15-11:30

EVA Operations Weiyan Ren, Haiquan Li, Jianxun Liang and Ou Ma School of Aerospace Engineerings, Tsinghua University Beijing, China · A joint control method for the manipulator was proposed. · A control method is designed and applied to reduce the disturbance of the EVA supporting system. · A human-robot coupled EVA supporting system is modeled using the MSC ADAMS software. The model is used to simulate the Extravehicular Activity dynamic interaction between the astronaut and the manipulator.

Dynamics and Control of Manipulator-Supported

WA2-2(3) 11:45-12:00

A Vision-Based Robotic Grasping Approach under the Disturbance of Obstacles

Xionglei Zhao, Zhiqiang Cao, Qun Jia, Lei Pang, Yingying Yu, Min Tan Institute of Automation, Chinese Academy of Sciences Beijing, China

- Object detection based on deep learning.
- Obstacle extraction based on 3D
 point cloud
- Planning under the disturbance of obstacles

Snapshots of the grasping experiment

WA2-2(2) 11:30-11:45

WA2-2(4) 12:00-12:15

IEEE ICMA 2018 Conference Digest WA2-3: Signal Measurement and Process in Automatic Control

Session Chairs: Dongdong Bu, Beijing Institute of Technology James K Mills, University of Toronto Conference Room 3, 11:15-12:15, Wednesday, 8 August 2018

WA2-3(1) 11:15-11:30

WA2-3(3) 11:45-12:00

Real-time Electrical Simulation Inertia Detection Based on Savitzky-Golay Filtering Algorithm

Zhongquan Shuai, Fei Gao, Rong Fu and Wei Qi Engineering Research Center of Continuous Extrusion, Dalian Jiaotong University Dalian, China

- This paper proposes a method of brake dynamometer electrical simulation inertia detection.
- The effects of brake torque and speed signal on mass are analyzed respectively.
- Brake test results have verified the efficacy of the real-time electrical simulation inertial detection method.

WA2-3(2) 11:30-11:45

WA2-3(4) 12:00-12:15

Influence of Subdivision Error of Encoder on Speed Stability of Telescopes

Wang Shuai, Zhu Juan Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of SciencesChangchun, Jilin Province, China

- Position encoder is a very important factor on driving control performance.
- In order to achieve the required high resolution, the position encoder must subdivide the sinusoidal signal scanned by the encoder.
- This paper analyses the effect of periodic subdivision error on the velocity measurement and the speed stability of servo system from the dynamic application of encoder.

Subdivision Error of Encoder

IEEE ICMA 2018 Conference Digest WA2-5: Rotor Dynamics, Vibration Analysis and Vibration Control

Session Chairs: Xihuan Hou, Beijing Institute of Technology Aiguo Ming, University of Electro-Communications Conference Room 5, 11:15-12:15, Wednesday, 8 August 2018

WA2-5(1) 11:15-11:30

WA2-5(3) 11:45-12:00

Wavelet De-noising Algorithm and Application Based on Improved Threshold Function Xiaohui Jiang, Jie Sun, Quan YuWen, Bingsheng Liu and YangBo Bai

School of the Electrical and Electronic Engineering Tianjin University of Technology Tianjin, China

Introduction of the signal denoising methods and the wavelet denoising theory.
Analysis of Traditional Wavelet

Analysis of Improved Wavelet

Threshold De-noising

Threshold De-noising.

Analysis

Conclusion

WA2-5(2) 11:30-11:45

WA2-5(4) 12:00-12:15

IEEE ICMA 2018 Conference Digest WA2-6: Manipulation Sensing & System

Session Chairs: Linshuai Zhang, Kagawa University Jian Guo, Tianjin University of Technology Conference Room 6, 11:15-12:15, Wednesday, 8 August 2018

WA2-6(1) 11:15-11:30

WA2-6(3) 11:45-12:00

orientation.

Edge Detection Method Used for Red Laser Stripe Located on Microscope Images

Yuezong Wang and Benliang Geng The College of Mechanical Engineering and Applied Electronics Technology., Beijing University of Technology Beijing, China

The system consists of a stereo light microscope, two cameras, and a laser projector.
The method to reconstruct 3D

shape of microscopic object is

proposed based on laser stripe

scanning

• The method to detect microscopic edges is proposed based on Canny rule.

The System of Microscopic Vision System

WA2-6(2) 11:30-11:45

WA2-6(4) 12:00-12:15

Center of Mass and Friction Coefficient Exploration of Unknown Object for a Robotic Grasping Manipulation

Zhongqiu Zhao¹, Xueyong Li¹, Changhou Lu¹ and Yonghui Wang² ¹Key Laboratory of High Efficiency and Clean Mechanical Manufacture of MOE, School of Mechanical Engineering, ²Department of Physical Medicine and Rehabilitation Qilu Hospital, Shandong University, Jinan, China

- The position of Center of Mass and friction coefficient is detected simultaneously.
- The method can be used for unknown objects in irregular shapes.
 - The method does not need priori knowledge such as shape, volume, texture and other properties.

The Grasping Manipulation

IEEE ICMA 2018 Conference Digest WA2-7: Robot Navigation and Control Algorithm

Session Chairs: Shuoxin Gu, Kagawa University

Liwei Shi, Beijing Institute of Technology

Conference Room 7, 11:15-12:15, Wednesday, 8 August 2018

WA2-7(1) 11:15-11:30

WA2-7(3) 11:45-12:00

A Target Point based MAV 3D Exploration Method

Tong Baiming, Shan Jicheng, Dai Chaofan, and Liu Qingbao Department of Systems Engineering., National University of Defense Technology Changsha, China

- A target point based MAV 3D exploration method has been proposed.
- The proposed method outperform the RRT based next best view planner(nbvplanner)[1] in exploration time and path length.
- The proposed method decouple the planning of exploration trajectory into 4 steps

The exploration path of the proposed method(blue) and nbvplanner(red)

WA2-7(2) 11:30-11:45

Real-Time Collision Avoidance of a Redundant Dual-Arm Robot Based on Distance Function Method

- A new method for collision avoidance of a redundant dual arm robot is introduced.
- An optimization anti collision distance index and a weight function are introduced.
- The work ability and the collision avoidance of the robot are enhanced.
- The feasibility of the method is verified by using simulation.

A redundant dual-arm robot handling an object.

WA2-7(4) 12:00-12:15

Tele-Operation of Robot by Image Processing of Markers Attached to Operator's Head

Masahiko Minamoto¹⁾, Masaki Sato²⁾, Takahiro Kanno³⁾ and Kenji Kawashima³⁾ ¹⁾Monozukuri Engineering Department, Tokyo Metropolitan College of Industrial Technology, Tokyo,Japan²⁾ Mechanical Engineering, Faculty of Engineering, Chiba University, Chiba,Japan ³⁾ Institute of Biomaterial and Bioengineering, TokyoMedical and Dental University, Tokyo, Japan

- We propose an interface for teleoperation of the camera by tracking
- image of markers.A laparoscopic holder robot and a pick and place robot are controlled by this interface.
- The proposed interface by image
- processing can be constructed at low cost.
- User only has to move their head for all Marker tracking control system for teledegree-of-freedoms. operation of laparoscope holder robot

. scope

Slav

Index of Session Chairs

Λ		Fu, Yili	MP3-7
-A-		Fukuda, Toshio	MP1-1
Alizadeh, Tohid	MP3-3	Fukuda, Toshio	TA1-3
Alizadeh, Tohid	MP1-1	Fusaomi, Nagata	TA2-6
Amin, Heba	MP3-6	-G-	
-B-		Gao, Baofeng	WA1-5
Bao, Xianqiang	WA1-1	Go, Ritsu	MP3-7
Bao, Xianqiang	WA2-1	Gu, Shuoxin	WA2-7
Bao, Xianqiang	MP2-2	Guan, Lianwu	TP2-1
Bi, Sheng	TP2-6	Guo, Jian	MA1-P
Bu, Dongdong	WA2-3	Guo, Jian	MP2-1
Bu, Dongdong	TA2-4	Guo, Jian	TP2-4
Bu, Dongdong	TP1-5	Guo, Jian	WA1-2
-C-		Guo, Jian	WA2-6
		Guo, Shuxiang	TA2-1
Cai, Chengtao	TP1-1	Guo, Shuxiang	WA2-1
Cai, Chengtao	WA1-1	Ц	
Cao, Liwen	MP2-4	-[]-	
Cao, Xiaotao	TP2-2	Hou, Xihuan	TP2-5
Chang, Hongbin	TA1-6	Hou, Xihuan	WA2-5
Chen, Fei	MP2-2	Hou, Xihuan	MP2-3
-D-		Hu, Jinchun	TA1-7
Deng. Xin	MP3-6	-J-	
Dong, Enzeng	TP1-1	Jia, Chao	TA1-5
Du, Baosen	TP1-6		
F		-K-	
-1 -		Kazuhiro, Kosuge	MP1-2
Feng, Guo-Hua	TA2-3	Kong, Fankai	MP1-4
Feng, Ying	TA2-2	Kouzani, Abbas	TP2-1
Fu, Qiang	TA1-2	_1 _	
Fu, Qiang	MP3-1	-L-	

TD1 4	тт	
1P1-4	larn, I. J.	MP1-6
MP1-4	Tarn, T. J.	TA2-1
TA2-4	Tian, Dapeng	TA1-7
TA1-4	Tian, Dapeng	TP1-2
MP3-2	Tian, Dapeng	WA2-2
MP2-6	_\\/_	
TA2-5	- v v -	
TP1-3	Wang, Hongbo	TP2-6
WA1-5	Wang, Hongbo	MP1-5
	Wang, Hui	TP1-7
	Wang, Jianli	MP1-3
TA2-5	Wang, Lihua	TP1-5
TA1-1	Wang, Ming	MP2-6
TP1-7	Wang, Shijun	TP1-2
MP3-4	Wang, Shuai	TP2-3
TP2-4	Wang, Shuoyu	MP1-5
MP1-6	Wang, Xiaohai	TP2-2
WA2-3	Wang, Zixu	TA1-4
MP2-1	Wang, Zixu	WA1-3
WA1-3	Watanabe, Keigo	TA2-6
WA2-5	Wei, Yonggeng	TA1-3
TA1-2	Wu, Baoqi	MP3-5
	Wu, Jinglong	WA1-7
	Wu, Wei	TA2-3
TP1-3	-X-	
	Xiao, Nan	WA1-6
MP3-4	Xing, Huiming	WA1-6
MA1-P	Xing, Huiming	MP2-5
MP2-5	Xing, Huiming	TP1-4
WA2-7	Xu, Qingsong	TP2-3
TA2-7	-Y-	
	Yang, Li	MP2-7
TP2-7	Ye, Xiufen	TA1-5
	TP1-4 MP1-4 TA2-4 TA1-4 MP3-2 MP2-6 TA2-5 TP1-3 WA1-5 TA2-5 TA1-1 TP1-7 MP3-4 TP2-4 MP1-6 WA2-3 MP2-1 WA1-3 WA2-5 TA1-2 TP1-3 MP3-4 MP3-4 MA1-P MP3-4 MA1-P MP3-4 MA1-P MP3-4 MA1-P	TP1-4Tarn, T. J.MP1-4Tarn, T. J.TA2-4Tian, DapengTA1-4Tian, DapengMP3-2Tian, DapengMP2-6 $-\bigvee -$ TA2-5 $-\bigvee -$ TP1-3Wang, HongboWA1-5Wang, HongboWA1-5Wang, ItiuaTA1-1Wang, MingTP1-7Wang, ShujunMP3-4Wang, ShuaiTP2-4Wang, ZiauMP1-6Wang, ZiauWA1-3Watanabe, KeigoWA2-3Wei, YonggengTA1-2Wu, BaoqiWu, WeiTP1-3TP1-3 $-\chi -$ Xiao, NanMP3-4MP3-4Xing, HuimingMP2-5Xing, HuimingMP2-7Yang, LiYang, LiYang, LiTP1-7Ye, Xiufen

Yu, Lie	MP2-3
Yu, Xiuping	MP2-7
Yu, Yong	MP1-2

-Z-

Zhang, Chunyou	TP2-5
Zhang, Defu	MP3-1
Zhang, Linshuai	WA1-7
Zhang, Linshuai	WA2-6
Zhang, Wei	TA1-6
Zhang, Xiaoshuang	MP1-7
Zhang, Ye	MP2-4
Zhang, Yifei	MP3-5
Zhao, Yan	WA1-2
Zhao, Yan	MP3-2
Zhao, Yan	TA1-1
Zheng, Guojun	MP1-3
Zheng, Liang	MP1-7
Zheng, Liang	WA2-2
Zheng, Liang	TP1-6
Zhou, Junjie	TP2-7
Zhu, Hongmei	MP3-3
Zhu, Xiaoping	TA2-7
Zuo, Guoyu	TA2-2

Index of Authors

٨		Benhabib, Beno	WA2-6
-A-		Beyramzad, Jalil	MA1-P
Abdramane, Dembélé	TA2-6	Bi, Sheng	TP1-6
Adams, Scott	WA1-3	Boulardot, Luc	WA1-5
Adjallah, Kondo H.	TA1-3	Bu, Dongdong	MP1-2
Ahmed, Sabah	TA1-2	Bu, Dongdong	MP3-2
Ahn, Hee Sung	TP2-3	Bulading, Aimaiti	TP1-3
Ahn, Yeon Joo	TP2-3	\mathbf{C}	
Ajamieh, Ihab Abu	WA2-6	-0-	
Alattas, Reem J	TA1-6	Cai, Chengtao	MA1-P
Alizadeh, Tohid	MP3-3	Cai, Chengtao	MA1-P
Alizadeh, Tohid	WA2-7	Cai, Chengtao	MP3-5
Amadou, Touré	TA2-6	Cai, Chengtao	TP1-1
Amin, Heba	MP3-6	Cai, Chengtao	WA1-1
Arai, Tatsuo	MP2-1	Cai, Ganwei	TA1-6
Arai, Tatsuo	MP2-1	Cao, Changqing	MA1-P
Arakawa, Atsushi	TA2-6	Cao, Changqing	TA2-5
Arakawa, Atsushi	TA2-6	Cao, Guohua	WA1-1
Assal, Samy F. M.	TP1-3	Cao, Jian	TA2-3
Assal, Samy F.M.	MP3-6	Cao, Linlin	MA1-P
Azami, Osamu	MP1-1	Cao, Liwen	MA1-P
D		Cao, Qian	TP1-1
-D-		Cao, Shuang	TP1-7
Bai, Bing	TA2-7	Cao, Shuang	TA1-7
Bai, Deen	TP1-3	Cao, Xiaotao	MP1-1
Bai, Lang	MP1-4	Cao, Xuanhao	MP1-7
Bai, Luchang	MP3-2	Cao, Xuanhao	TA1-4
Bai, Yangbo	WA2-5	Cao, Yang	TP2-3
Bao, Chengcheng	TP2-2	Cao, Zhiqiang	MP3-1
Bao, Xianqiang	MP2-2	Cao, Zhiqiang	WA2-2
Bao, Xianqiang	MP2-2	Chai, Bo	TP1-3
Bao, Xianqiang	MP2-2	Chang, Hongbin	TA1-6
Bao, Zihong	TP2-4	Chang, Hongxing	TA1-1

Chang, Jingyuan	MA1-P	Chen, Mingjie	MA1-P
Chang, Xuling	TP1-2	Chen, Nan	TA1-6
Chang, Yadong	MA1-P	Chen, Peng	TA1-3
Chang, Ying	MP1-3	Chen, Pengfei	MP3-3
Chang, Yukang	MP1-6	Chen, Qimeng	MP1-2
Chen, Chaozhan	MP2-1	Chen, Rui	MP1-4
Chen, Dachuan	MP1-4	Chen, Shengyong	MP2-4
Chen, Daidai	MA1-P	Chen, Sizhong	MA1-P
Chen, Datong	MP2-4	Chen, Wei	TP1-1
Chen, Datong	TA2-2	Chen, Xiaojuan	MA1-P
Chen, Datong	TP1-2	Chen, Xiaoqi	MA1-P
Chen, Datong	WA1-1	Chen, Xiaoqi	MA1-P
Chen, Ding	MP1-4	Chen, Xiaoqi	MA1-P
Chen, Fan	TA2-3	Chen, Xingbang	MP3-1
Chen, Fan	TP1-3	Chen, Xinyu	TA1-1
Chen, Feng	TA2-1	Chen, Xuanwen	MP1-6
Chen, Guangsong	MA1-P	Chen, Xuechao	MP3-3
Chen, Guangsong	TA1-5	Chen, Xuechao	TP1-4
Chen, Guangsong	TA1-5	Chen, Yang	MA1-P
Chen, Guangsong	TA1-5	Chen, Yang	WA1-1
Chen, Guangsong	TP1-5	Chen, Yangquan	MA1-P
Chen, Hongli	MA1-P	Chen, Yiping	WA2-1
Chen, Hua	MA1-P	Chen, Zhan	TP1-4
Chen, Huanan	MP2-1	Chen, Zhan	TP1-4
Chen, Jianen	TA2-7	Chen, Zhan	TP2-4
Chen, Jiangcheng	TP1-6	Chen, Zhanjun	MP2-7
Chen, Jiqing	TA1-6	Chen, Zhaoyi	MA1-P
Chen, Junli	MA1-P	Chen, Zhaoyi	MP3-1
Chen, Junnan	MP2-1	Chen, Zhihua	TA2-7
Chen, Kun	MA1-P	Cheng, Jianhua	MA1-P
Chen, Kun	MA1-P	Cheng, Lijuan	TP1-3
Chen, Lei	TA1-6	Cheng, Long	MP3-1
Chen, Lin	TA2-3	Cheng, Wen	TP2-5
Chen, Mengjuan	MP3-5	Cheng, Wenjie	MP2-3
Chen, Ming	MA1-P	Cheng, Xu	MP2-4

Cheng, Yang	MP2-2	Deng, Zhun	TA2-5
Cheng, Yu	TP1-6	Deng, Zongquan	TP1-3
Chiang, Cheng-Ta	MA1-P	Ding, Fuguang	MP2-5
Chiang, Cheng-Ta	MA1-P	Ding, Fuguang	TP2-2
Chien, Liang-Yu	MA1-P	Ding, Han	MP3-3
Chirstos, Papavassiliou	MP2-4	Ding, Han	TA2-3
Choi, Jong Kap	TP2-3	Ding, Han	TP1-3
Chu, Jinlong	WA1-7	Ding, Hongchang	WA1-1
Chung, Won Jee	MP2-3	Ding, Huaqiu	MP1-4
Chung, Won Jee	TP2-3	Ding, Wenpeng	MP3-3
Collins, Frank	WA1-3	Ding, Xilun	MP1-1
Cong, Wang	MA1-P	Ding, Xin	MP3-5
Cong, Wang	MA1-P	Ding, Xin	WA1-1
Cong, Xiaodan	TP2-1	Ding, Ying	WA1-1
Corva, Dean M.	WA1-3	Dong, Enzeng	TP1-1
Cui, Dehua	MA1-P	Dong, Enzeng	TP1-1
Cui, Jie	TP2-3	Dong, Enzeng	WA1-1
Cui, Jinxin	MP2-2	Dong, Han	MP1-3
Cui, Lin	TA1-3	Dong, Huifang	MP2-6
Cui, Xinlei	MA1-P	Dong, Junxian	MP1-5
Cui, Xun	MA1-P	Dong, Kangkang	WA1-2
		Dong, Kangkang	WA2-6
-U-		Dong, Shengnan	MP2-1
Dai, Chaofan	WA2-7	Dou, Jianping	MP2-3
Dai, Hongli	MA1-P	Driscoll, Don	TA1-1
Dai, Ming	TA1-7	Du, Baosen	TP1-6
Dai, Wei	TA2-3	Du, Meng	TP2-7
Dang, Jianwu	TA1-4	Du, Qilong	TP2-6
Dasanayake, D.M.H.T	MP1-2	Du, Shengwu	WA2-3
Deng, Lijin	TA2-1	Du, Shengzhi	TP1-1
Deng, Lu	MP3-1	Du, Shengzhi	TP1-1
Deng, Tao	TP1-6	Du, Tingchen	MA1-P
Deng, Xin	MP3-6	Du, Tingchen	TP2-5
Deng, Yongting	MP2-7	Du, Tingchen	TA1-7
Deng, Yongting	WA1-6	Du, Tingchen	TP1-3

Du, Xiaojing	MA1-P	Feng, Xingjia	TP2-4
Du, Xiaojing	MP3-1	Feng, Yang	MA1-P
Du, Xiaoping	TP2-1	Feng, Ying	TA2-2
Du, Xiaozhou	TA2-4	Feng, Zhejun	MA1-P
Du, Xue	MP1-5	Feng, Zhejun	TA2-5
Du, Xue	WA2-1	Fernando, Shehan	MP1-2
Du, Yao	MA1-P	Fu, Huixuan	MA1-P
Du, Zhangming	MP3-1	Fu, Huixuan	MA1-P
Du, Zhefu	MP3-4	Fu, Huixuan	MP2-5
Duan, Wei	MP3-4	Fu, Jian	MP3-6
Duan, Yunqi	TA1-3	Fu, Lijun	TA1-7
Г		Fu, Mingyu	TA2-4
- - - - - - - - - - - - -		Fu, Qiang	MA1-P
Ejima, Yoshimichi	MA1-P	Fu, Qiang	TA2-4
Ejima, Yoshimichi	MA1-P	Fu, Qiang	TP2-4
Esmaeili, Babak	MA1-P	Fu, Qiang	WA1-6
Г		Fu, Rong	WA2-3
-۲-		Fu, Wang	TA2-5
Fan, Chunguang	MP1-1	Fu, Wei	TP2-7
Fan, Guoliang	TA2-4	Fu, Xingjian	WA1-6
Fan, Hongwei	MP2-3	Fu, Yili	TA1-1
Fan, Jizhuang	TP2-6	Fu, Yongling	MP3-6
Fan, Junfeng	MP2-5	Fu, Yongling	TA1-3
Fan, Xuxiao	TP1-4	Fu, Yongqing	TA2-1
Fan, Zhihao	MA1-P	Fumitake, Fujii	MP3-7
Fang, Lijin	TP2-5	\mathbf{C}	
Fang, Ming	MP1-5	-6-	
Fang, Ming	TA1-1	Gan, Haihong	TA2-6
Fang, Shihui	MP1-5	Gao, Zhiqiang	MA1-P
Fanni, Mohamed	MP1-1	Gao, Baofeng	MP3-2
Fanni, Mohamed	TA1-2	Gao, Fei	WA2-3
Fard, Behnam Miripour	MP3-3	Gao, Jianlong	TA1-3
Fei, Xingtong	TA2-2	Gao, Jinlong	MA1-P
Feng, Guo-Hua	TP2-2	Gao, Jinzhu	MA1-P
Feng, Sheng	MA1-P	Gao, Junyao	WA1-2

Gao, Qiang	MP2-5	Geng, Benliang	WA2-6
Gao, Qiang	TP2-3	Geng, Haipeng	MA1-P
Gao, Qiang	TA1-4	Geng, Haipeng	MA1-P
Gao, Qiang	TP1-7	Geng, Haipeng	MA1-P
Gao, Shuangshuang	MA1-P	Geng, Haipeng	MP2-3
Gao, Weijin	TP1-5	Geng, Haipeng	TP1-3
Gao, Xiaohui	TP2-3	Geng, Haipeng	TP2-5
Gao, Xuefeng	MA1-P	Geng, Haipeng	TP2-5
Gao, Ya	MA1-P	Geng, Haipeng	TA1-7
Gao, Yanbin	MP3-1	Gentilini, Iacopo	TP2-6
Gao, Yanbin	WA2-1	Ghanbari, Ahmad	MA1-P
Gao, Yanbin	TP2-1	Gilbert, Deon	TA1-1
Gao, Yang	TA2-4	Go, Ritsu	MA1-P
Gao, Yi	MA1-P	Go, Ritsu	MA1-P
Gao, Yibo	MP1-6	Golkarnarenji, Gelayol	TA1-1
Gao, Yongsheng	TA2-2	Gong, Dapeng	TP1-6
Gao, Yongsheng	TA2-2	Gong, Dawei	WA1-1
Gao, Zhiqiang	MA1-P	Gong, Qiuting	MP1-5
Gao, Zhiqiang	MA1-P	Gong, Weijing	TP1-5
Gao, Zhiqiang	MA1-P	Gong, Yuan	MP3-4
Gao, Zhiqiang	MA1-P	Goodall, Damian	TA1-1
Gao, Zhiqiang	TP1-7	Gu, Jinlin	MP2-5
Gao, Zhiqiang	TP1-7	Gu, Jinlin	WA1-2
Gao, Zhiqiang	TP1-7	Gu, Mingfei	MA1-P
Gao, Zhiqiang	TP2-7	Gu, Shuoxin	TP1-4
Gao, Zhiqiang	TP2-7	Gu, Shuoxin	WA1-3
Gao, Zhiqiang	TP2-7	Guan, Bo	MA1-P
Gates, Will	WA1-3	Guan, Lianwu	MP3-1
Ge, Dongsheng	MP3-3	Guan, Lianwu	TP2-1
Ge, Huijian	MP2-2	Guan, Lianwu	WA2-1
Ge, Qingcai	MP1-5	Gunasekara, P.S	MP1-2
Ge, Weimin	MA1-P	Guo, An	MP1-4
Ge, Weimin	MP2-4	Guo, An	TA2-7
Ge, Weimin	TP2-5	Guo, Hong	TP2-3
Ge, Weimin	TA2-7	Guo, Jian	MA1-P

Guo, Jian	MA1-P	Guo, Yangming	MP2-2
Guo, Jian	MP2-6	Guo, Yannan	TA1-4
Guo, Jian	MP3-7	Ц	
Guo, Jian	TA2-4	-[]-	
Guo, Jian	TP2-4	Habib, Maki K.	TA2-6
Guo, Jian	WA1-6	Hamada, Kosuke	TA2-6
Guo, Jian	WA1-7	Hamed, Amr	TA1-2
Guo, Jiang	TP1-6	Han, Bo	TP1-1
Guo, Jinjin	MP2-4	Han, Chunyang	MA1-P
Guo, Jinjin	WA1-6	Han, Chunyang	TP1-6
Guo, Juncheng	MA1-P	Han, Dongdong	TA2-5
Guo, Kang	MP2-1	Han, Hasiaoqier	MA1-P
Guo, Liang	TA1-3	Han, Hongbin	MA1-P
Guo, Liqiang	TA2-1	Han, Hongbin	TA1-4
Guo, Pengfei	WA1-3	Han, Jianchao	WA2-5
Guo, Pin	MP1-1	Han, Jianchao	WA2-5
Guo, Ping	TP2-4	Han, Jing	WA2-2
Guo, Qiao	TA2-4	Han, Kai	TA2-3
Guo, Shijie	WA2-7	Han, Kai	WA1-2
Guo, Shuxiang	MA1-P	Han, Kang	MP3-5
Guo, Shuxiang	MA1-P	Han, Liangliang	MP2-5
Guo, Shuxiang	MA1-P	Han, Ruiqing	MA1-P
Guo, Shuxiang	MP1-2	Han, Xiangbo	WA1-7
Guo, Shuxiang	MP2-2	Han, Yixing	MA1-P
Guo, Shuxiang	MP2-2	Han, Yu	TP2-3
Guo, Shuxiang	MP2-2	Hasegawa, Tomohiko	TA2-6
Guo, Shuxiang	MP2-2	Hassan, Ali	MP3-4
Guo, Shuxiang	MP2-2	He, Dong	TP2-4
Guo, Shuxiang	MP3-2	He, Junpei	TP1-6
Guo, Shuxiang	MP3-2	He, Kunpeng	WA2-1
Guo, Shuxiang	MP3-2	He, Shuai	MP3-2
Guo, Shuxiang	MP3-7	He, Shuai	WA1-2
Guo, Shuxiang	TA2-4	He, Xiangkun	MP1-6
Guo, Ting	MA1-P	He, Yu	MP2-2
Guo, Xijie	WA1-2	He, Yuqing	MA1-P

Hiasa, Shuma	TP1-4	Huo, Qi	MP2-5
Hirata, Hideyuki	TP2-5	Huo, Qi	TP1-6
Hong, Seung Ho	MP1-3	Huo, Qi	WA1-2
Hosseini, Seyyed Sobhan	WA1-3	1	
Hou, Shiying	MP3-4	-1-	
Hou, Xihuan	TP1-4	Ikeda, Takeshi	TA2-6
Hou, Xihuan	TP1-4	Ikegami, Keiji	TP2-5
Hou, Xihuan	TP2-4	Isenberg, Douglas R.	TP2-6
Hou, Xihuan	TP2-4	Ishihara, Hidenori	TP2-5
Hou, Xuyan	MP1-6	1	
Hou, Xuyan	TP1-6	-J-	
Hu, Chengwei	WA1-2	Ji, Lei	TA1-5
Hu, Chengwei	WA1-2	Ji, Lei	TA1-5
Hu, Heng	TP2-1	Ji, Ming	MP1-7
Hu, Hong	MP2-1	Ji, Mingjiang	TP1-4
Hu, Huajun	WA2-5	Ji, Mingjiang	WA1-3
Hu, Huajun	WA2-5	Ji, Xiaopin	TP1-5
Hu, Jinchun	WA2-3	Ji, Xuewu	MP1-6
Hu, Rong	TA2-7	Ji, Yuehui	MA1-P
Hu, Yukun	TP1-1	Ji, Yuehui	TP1-1
Hu, Zedong	TA2-2	Jia, Chao	TA1-5
Huang, Chin-Hu	MA1-P	Jia, Chao	WA2-5
Huang, Dagui	MA1-P	Jia, Chao	WA1-6
Huang, Fei	TA1-3	Jia, Ping	TA1-7
Huang, Hsuan-Hao	MA1-P	Jia, Qun	WA2-2
Huang, Jiaming	TA1-1	Jia, Renfeng	MP1-5
Huang, Jin	TA1-5	Jia, Shiyuan	TA1-7
Huang, Jin	TP1-5	Jia, Songmin	MA1-P
Huang, Kai	MP1-7	Jiang, Chunying	TA1-6
Huang, Kai	TA1-4	Jiang, Huai	MP1-7
Huang, Longping	TP2-4	Jiang, Jun	MP2-6
Huang, Mingguang	MA1-P	Jiang, Junhui	MP1-3
Huang, Peng	MA1-P	Jiang, Kai	MP3-7
Huang, Qiang	MP3-3	Jiang, Min	MP3-5
Huang, Qiang	TP1-4	Jiang, Shan	MA1-P

Jiang, Tao	TP1-2	Kim, Jeong Kweon	MP2-3
Jiang, Tao	TP2-2	Kojima, Masaru	MP2-1
Jiang, Xianzhi	MP3-7	Kojima, Masaru	MP2-1
Jiang, Xiaohui	WA2-5	Kong, Fankai	MP1-4
Jiang, Xin	TA2-3	Kong, Liuyang	MA1-P
Jiang, Xinggang	MA1-P	Kong, Liuyang	MA1-P
Jiang, Yinling	TA1-7	Kong, Liuyang	MA1-P
Jiang, Yu	MA1-P	Kong, Liuyang	MA1-P
Jiang, Yuhua	MP2-2	Kong, Liuyang	MA1-P
Jiang, Zainan	MP1-4	Kong, Liuyang	MP1-5
Jiao, Huiying	WA1-7	Kong, Liuyang	TA2-1
Jiao, Yuzhao	MP1-7	Kouzani, Abbas Z.	TA1-1
Jin, Guangyong	TP2-4	Kouzani, Abbas Z.	WA1-3
Jin, Haojun	WA1-5	Kulasekera, A.L.	MP1-2
Jin, Hongyan	MA1-P	Kuroda, Yusuke	MA1-P
Jin, Jing	MA1-P	Kurokawa, Kanako	TP1-4
Jin, Xiaoliang	MP3-7	Kusano, Takamasa	TA2-6
Jin, Yin	MA1-P	I	
Jing, Fengshui	MP2-5	-L-	
Jing, Wenbo	MA1-P	Lai, Xiaoming	WA2-5
Jinxin, Cui	MP2-2	Lai, Xiaoming	WA2-5
Jo, Hyeon Min	MP2-3	Lan, Wenbo	TA1-4
Jo, Hyeon Min	TP2-3	Lan, Xiaosong	TA1-1
K		Lei, Wei	TA1-7
-r\-		Li, Weidong	MA1-P
Kakogawa, Atsushi	MP1-6	Li, Chunying	MP2-6
Kang, Yi	MA1-P	Li, Ang	MA1-P
Kanno, Takahiro	MP1-1	Li, Bing	MA1-P
Kanno, Takahiro	WA2-7	Li, Bing	MP2-4
Karimi, Navab	WA2-7	Li, Boyang	TA1-6
Kawashima, Kenji	MP1-1	Li, Chao	MP3-7
Kawashima, Kenji	WA2-7	Li, Chao	TA2-5
Ke, Yijie	TA1-2	Li, Chongyang	MP1-1
Kim, Dae Young	MP2-3	Li, Chunlei	TP2-4
Kim, Dae Young	TP2-3	Li, Chunli	WA1-5
Li, Chunying	MA1-P	Li, Jin	MA1-P
--------------	-------	--------------	-------
Li, Dahua	MP1-5	Li, Jin	MA1-P
Li, Dahua	MP2-5	Li, Jin	TP2-4
Li, Dahua	TA1-4	Li, Jing	TA1-6
Li, Dahua	TP1-7	Li, Juan	TA2-4
Li, Daming	WA1-2	Li, Juan	TA2-4
Li, Dingwei	TP1-3	Li, Kaifeng	WA1-1
Li, Dong	TP2-3	Li, Kang	TP1-7
Li, En	TP2-1	Li, Long	MP1-6
Li, Fangming	MP2-7	Li, Min	TP2-4
Li, Guohong	MA1-P	Li, Ming	MP2-3
Li, Guohong	TP2-7	Li, Ming	TP2-3
Li, Guoping	MA1-P	Li, Mingai	MA1-P
Li, Guoyuan	MP2-4	Li, Minggao	MA1-P
Li, Haichao	TP1-7	Li, Mingji	MA1-P
Li, Haiquan	WA2-2	Li, Nan	WA1-6
Li, Hao	MA1-P	Li, Nan	WA1-7
Li, Hao	MA1-P	Li, Nanqiu	WA2-2
Li, Hao	TP2-5	Li, Ningning	TA1-4
Li, Hengyu	TA1-6	Li, Ningning	TP1-7
Li, Hongbo	TP2-2	Li, Pengyun	MP2-1
Li, Hongna	TA1-1	Li, Pengzhi	MP2-1
Li, Hongwen	WA1-6	Li, Qi	MA1-P
Li, Huaijian	MA1-P	Li, Qi	WA2-1
Li, Huaijian	MP3-1	Li, Qi	WA1-7
Li, Hui	WA2-1	Li, Qi	WA1-7
Li, Ji	MA1-P	Li, Qiang	MA1-P
Li, Ji	MA1-P	Li, Qiang	TA2-2
Li, Jiabao	WA1-3	Li, Qiang	TA2-2
Li, Jianfeng	WA1-3	Li, Qiang	TP2-7
Li, Jianming	TP1-2	Li, Qianqian	MA1-P
Li, Jianwen	TA1-7	Li, Qingqing	MA1-P
Li, Jiaqiang	TA2-3	Li, Rui	TA2-2
Li, Jie	WA1-3	Li, Shichao	TP2-7
Li, Jilong	TP2-5	Li, Shizhen	WA1-3

Li, Shuanzeng	MP1-3	Li, Yuan	MP2-5
Li, Shuxiao	TA1-1	Li, Yuanyuan	MA1-P
Li, Tiejun	WA2-7	Li, Yuhai	MA1-P
Li, Tongtong	TP1-2	Li, Yuhui	TA1-6
Li, Wanyou	MA1-P	Li, Yuting	MP1-3
Li, Wei	MP2-3	Li, Yuxia	WA1-3
Li, Wentao	TA2-5	Li, Yuxin	WA1-3
Li, Xiang	TA2-3	Li, Zengliang	MP2-4
Li, Xianling	MP2-1	Li, Zhiqi	MP1-1
Li, Xianming	TA2-5	Li, Zhiqi	MP2-2
Li, Xianxia	MA1-P	Li, Zhiqi	WA2-2
Li, Xiao	MP1-2	Li, Zihao	WA2-5
Li, Xiaodong	MP1-3	Lian, Yufeng	TA1-4
Li, Xiaoyu	MA1-P	Liang, Bin	WA1-2
Li, Xinle	MA1-P	Liang, Bin	WA2-6
Li, Xiujun	WA2-1	Liang, Bin	MP2-6
Li, Xiujun	WA1-7	Liang, Fengyong	TP2-5
Li, Xu	MP2-6	Liang, Hong	MA1-P
Li, XueAi	MP1-1	Liang, Hong	MA1-P
Li, Xueyong	TA2-6	Liang, Jianxun	WA2-2
Li, Xueyong	WA2-6	Liang, Jintao	TP1-5
Li, Xueyuan	TP2-7	Liang, Lihua	MP1-4
Li, Yanan	TA2-1	Liang, Lihua	MP1-7
Li, Yanhao	TA1-7	Liang, Lihua	MP1-7
Li, Yanhui	MP3-7	Liang, Lihua	TA1-7
Li, Yanzhao	TP2-4	Liang, Minghui	MP2-4
Li, Yi	MA1-P	Liang, Minghui	TA2-2
Li, Yi	MA1-P	Liang, Minghui	TP1-2
Li, Yi	MA1-P	Liang, Minghui	WA1-1
Li, Yibin	TP1-3	Liang, Shuo	TA1-2
Li, Yibin	TP1-5	Liang, Zize	TP2-1
Li, Yibin	TA1-7	Liao, Hongzhou	WA2-1
Li, Yongqiang	MP3-6	Liao, Hongzhou	MP1-5
Li, Youxiang	MP2-2	Liao, Yi	MP1-2
Li, Yuan	MA1-P	Lim, Dong Jae	MP2-3

Lim, Dong Jae	TP2-3	Liu, Hong	MP2-7
Lin, XiaoGong	MA1-P	Liu, Hong	WA2-2
Lin, Xiaogong	MP1-7	Liu, Hongda	TA1-7
Lin, Xin	TP1-4	Liu, Hongda	TP1-7
Lin, Xin	WA1-3	Liu, Hongli	MA1-P
Lin, Yueming	MP2-4	Liu, Hongli	MA1-P
Lin, Yueming	TA2-2	Liu, Hongli	MA1-P
Lin, Yueming	TP1-2	Liu, Hongli	MA1-P
Lin, Yueming	WA1-1	Liu, Hongqi	TP1-2
Lin, Yuqing	MP2-1	Liu, Hongqin	MA1-P
Lin, Yuqing	MP2-1	Liu, Houd	WA1-2
Ling, Yong	MP2-6	Liu, Houde	MP2-6
Liu, Bin	TA1-7	Liu, Houde	WA2-6
Liu, Bingrui	TA1-6	Liu, Huaxin	TP1-4
Liu, Bingsheng	WA2-5	Liu, Hui	TA2-3
Liu, Chaoda	MP2-6	Liu, Huikang	TP1-4
Liu, Chaoda	TA2-1	Liu, Huikang	TP1-4
Liu, Chenying	TA1-2	Liu, Huikang	TP2-4
Liu, Chuan	MA1-P	Liu, Huikang	TP2-4
Liu, Chunxia	TA2-1	Liu, Jiamei	TP2-4
Liu, Chuzhao	WA1-2	Liu, Jianxu	TA2-4
Liu, Cong	MA1-P	Liu, Jiayu	TP1-6
Liu, Cong	TP2-1	Liu, Jing	TP2-6
Liu, Cunqiu	WA1-2	Liu, Jing	WA1-6
Liu, Dong	MP2-7	Liu, Jinyue	MA1-P
Liu, Dong	TA2-7	Liu, Jun	TP2-5
Liu, Dong	WA1-6	Liu, Jun	TA2-7
Liu, Dongyu	MP2-2	Liu, Lian	TA2-1
Liu, Fanming	MP2-7	Liu, Liang	MP2-7
Liu, Guanjun	TP1-4	Liu, Liang	TA2-7
Liu, Guanjun	WA1-3	Liu, Liang	WA1-6
Liu, Hong	MP1-1	Liu, Lihua	WA1-6
Liu, Hong	MP1-1	Liu, Lixin	MA1-P
Liu, Hong	MP2-2	Liu, Peng	MP2-2
Liu, Hong	MP3-6	Liu, Qian	WA1-2

Liu, Qian	WA1-2	Liu, Yi	WA1-5
Liu, Qiang	MA1-P	Liu, Ying	TP1-4
Liu, Qiang	MA1-P	Liu, Yinghui	MA1-P
Liu, Qiang	MP1-3	Liu, Yiwei	MP1-1
Liu, Qiang	TP2-2	Liu, Yixiang	TP1-4
Liu, Qingbao	WA2-7	Liu, Yongguang	TP2-3
Liu, Qingping	MA1-P	Liu, Yu	TP1-4
Liu, Qitong	MA1-P	Liu, Yu	TP1-4
Liu, Qitong	TP2-2	Liu, Yu	TP2-4
Liu, Rang	MA1-P	Liu, Yu	TP2-4
Liu, Ruimin	TP2-6	Liu, Yu	TA1-6
Liu, Runqi	MP1-7	Liu, Yubin	TP1-4
Liu, Shan	MA1-P	Liu, Yulong	MP1-6
Liu, Shan	TP1-6	Liu, Yunqing	TP2-1
Liu, Shuxuan	TP1-2	Liu, Yutao	MA1-P
Liu, Sicheng	WA1-2	Liu, Yuzheng	MA1-P
Liu, Tao	MP2-7	Liu, Zheming	TP2-3
Liu, Wei	WA2-3	Liu, Zheming	TP2-5
Liu, Weiping	MA1-P	Lu, Changhou	TA2-6
Liu, Xiaolong	TP2-4	Lu, Changhou	WA2-6
Liu, Xiaomeng	TA1-1	Lu, Jiabin	MA1-P
Liu, Xiaoming	MP2-1	Lu, Jiahao	TA2-2
Liu, Xiaoming	MP2-1	Lu, Kaiyuan	MP2-1
Liu, Xiaoqing	WA2-5	Lu, Zhizhong	WA1-5
Liu, Xilong	MP3-5	Luan, Kuan	TP2-4
Liu, Xinke	MP2-2	Luo, Ani	MA1-P
Liu, Xinzhi	TA2-3	Luo, Chao	MP2-2
Liu, Xuelian	MA1-P	Luo, Chen	MP2-5
Liu, Xuelian	WA1-3	Luo, Chen	MP3-5
Liu, Yang	MA1-P	Luo, Haitao	MA1-P
Liu, Yang	MA1-P	Luo, Haitao	TP2-3
Liu, Yang	MA1-P	Luo, Xiaoping	TP2-2
Liu, Yanjie	MP1-6	Luo, Xuesong	TA1-2
Liu, Yechao	MP2-2	Luo, Xulong	WA2-1
Liu, Yi	WA1-2	Luo, Yang	TA2-2

Luo, Yang	TA2-2	Ma, Youjie	TP1-7
Luo, Yuluo	MA1-P	Ma, Youjie	TP1-7
Lv, Baolin	MA1-P	Ma, Youjie	TP2-7
Lv, Hao	MA1-P	Ma, Youjie	TP2-7
Lv, Hao	TP1-3	Ma, Youjie	TP2-7
Lv, Hao	TP2-5	Mahir, Abdelwahid	WA2-7
Lv, Hao	TA1-7	Mai, Xiaoming	TP1-6
Lv, Kehong	WA1-3	Mao, Mingzhi	WA1-6
Lv, Shaofeng	MA1-P	Mao, Yanhui	MA1-P
Lv, Shun	TA1-5	Mao, Zemin	TP2-3
Lv, Yaoyu	MP2-5	Matsuhira, Nobuto	MP3-4
Lv, Yaoyu	TA1-3	Mei, Xinkui	TA1-5
Lv, Yaoyu	TP1-6	Meng, Cheng	MP3-7
Ν./		Meng, Fei	TP1-4
-IVI-		Meng, Linmin	TP2-6
Ma, Donghui	TA1-3	Meng, Xiangdong	MA1-P
Ma, Hongbin	TA1-1	Meng, Xiangkai	MP1-2
Ma, Hongdao	MP1-2	Meng, Xiangkai	TP2-4
Ma, Hongdao	MP3-2	Meng, Xianglian	MA1-P
Ma, Huidong	MP2-4	Meng, Xianglian	MA1-P
Ma, Liulong	MP1-6	Meng, Xianglian	WA1-7
Ma, Ou	WA2-2	Meng, Xin	MP1-1
Ma, Shugen	MP1-6	Meng, Xin	TP2-6
Ma, Tianyi	TP1-7	Miao, Mengliang	MP1-4
Ma, Wei	WA1-2	Miki, Satoru	MP3-4
Ma, Wei	WA1-2	Mills, James K.	WA2-6
Ma, Xiaoshuai	MP3-3	Minamoto, Masahiko	WA2-7
Ma, Xu	MA1-P	Ming, Aiguo	MP3-3
Ma, Yao	TA2-4	Ming, Aiguo	TP1-4
Ma, Youjie	MA1-P	Mir, Aqeela	MP3-4
Ma, Youjie	MA1-P	Miyazaki, Tetsuro	MP1-1
Ma, Youjie	MA1-P	Mo, Jiaqing	TA1-4
Ma, Youjie	MA1-P	Mo, Zhijie	MP2-5
Ma, Youjie	MA1-P	Mohamed, Abdelfatah M.	MP1-1
Ma, Youjie	TP1-7	Mohamed, Elkeran	MP1-2

Mohamed, Fanni	MP1-2	Oh, YongHwan	TA1-2
Mosadeghzad, Mohamad	MP3-3	Oka, Yoshimichi	MP1-6
Mou, Fangli	WA1-2	Otsuka, Akimasa	TA2-6
Mou, Fangli	WA1-2	D	
Mu, Deqiang	TA1-3	-L-	
Mu, Weibin	MP2-4	Pan, Bo	TA1-1
Mu, Weibin	TA2-2	Pan, Bo	WA2-5
Mu, Weibin	TP1-2	Pan, Hongli	MP1-4
Mu, Weibin	WA1-1	Pan, Liang	MP3-4
Muraleedharan, Narendran	TP2-6	Pan, Qinxue	TP1-3

-N-

Nagai, Isaku	TA2-6
Nagai, Isaku	TA2-6
Nagai, Isaku	TA2-6
Nagata, Fusaomi	TA2-6
Naito, Yuta	MP3-4
Nakamura, Yoshikazu	TA2-6
Nakatsuka, Takanori	TA2-6
Ndawula, Isaac	TP1-3
Ni, Bo	TP2-2
Ni, Fenglei	MP3-6
Ni, Fenglei	WA2-2
Ni, Jianyun	WA2-5
Ni, Jinping	MP1-4
Ni, Mingyang	MP2-1
Nie, Jun	MP1-7
Nie, Ping	TP2-6
Niu, Bin	TP2-7
Niu, Zun	TP2-6
Noorani, Mohammad-Reza Sayyed	MA1-P
Noureldin, Aboelmagd	TP2-1

-0-

Ochi, Hiroaki

TA2-6

Oh, YongHwan	TA1-2
Oka, Yoshimichi	MP1-6
Otsuka, Akimasa	TA2-6

Pan, Bo	TA1-1
Pan, Bo	WA2-5
Pan, Hongli	MP1-4
Pan, Liang	MP3-4
Pan, Qinxue	TP1-3
Pan, Ruipeng	TP1-3
Pang, Lei	WA2-2
Patel, Sarosh	TA1-6
Peña, Cesar	MP1-3
Peng, Shuangchun	MP3-4
Piao, Yan	TA2-1
Ping, Chang	TP1-2
Ping, Chang	TP2-2
Ping, Ping	MP1-2

-Q-

Qi, Lei	MA1-P
Qi, Lei	TP2-5
Qi, Lei	TP2-5
Qi, Lin	TA1-3
Qi, Wei	WA2-3
Qi, Xiaoye	MP3-6
Qian, Linfang	MA1-P
Qian, Linfang	TA1-5
Qian, Linfang	TA1-5
Qian, Linfang	TA1-5
Qian, Linfang	TP1-5
Qian, Siyu	MA1-P
Qian, Zedong	MP3-5
Qiao, Dawei	MP3-6

Qin, Mingyue	MP3-3	Shao, Haiyan	MA1-P
Qiu, Binbin	WA1-6	Shao, Haiyan	TA2-5
Qiu, Binghui	MP3-6	Shao, Haiyan	WA1-5
Qiu, Hua	MP2-3	Shao, Lei	MA1-P
Qiu, Jing	TP1-4	Shao, Lei	MA1-P
Qiu, Jing	WA1-3	Shao, Lei	MA1-P
Qiu, Songde	MP3-3	Shao, Lei	MA1-P
Quan, Jun	TA1-4	She, Jing	MA1-P
Quan, Qiquan	TP1-3	Shen, Bo	MP1-5
Quan, Yuwen	WA2-5	Shen, Bo	TA2-2
D		Shen, Honghai	TA1-7
-K-		Shen, Jingshi	MA1-P
Rao, Xiaoshan	MP1-6	Shen, Jun	MP3-3
Rao, Xiaoshan	TP1-6	Shen, Lele	TA1-5
Ren, Ran	MA1-P	Shen, Rui	MP2-2
Ren, Weiyan	WA2-2	Shen, Xin	TP2-6
Rodriguez, Efrain	MP1-3	Shen, Yaohua	MA1-P
Rodriguez, Juan Pablo	MP1-3	Shen, Yecheng	MP2-1
Rong, Weibin	TA2-5	Shen, Yueling	TA1-6
Ruan, Jian	WA2-6	Sheng, Zhong	TA2-5
C		Shi, Zhen	MP2-7
-3-		Shi, Chaochao	TA2-5
Salman, Maha	TA1-2	Shi, Guangfeng	TA2-5
Sameh, Ahmed	MP1-1	Shi, Haobin	MP1-6
Sato, Masaki	WA2-7	Shi, Hongwei	MA1-P
Sato, Ryuki	TP1-4	Shi, Lemin	MP1-2
Sava, Alexandre	TA1-3	Shi, Liwei	TP1-4
Seda, Yuta	TA2-6	Shi, Liwei	TP1-4
Semianiw, Nathan I.	TA1-1	Shi, Liwei	TP2-4
Seol, Sang Seok	MP2-3	Shi, Liwei	TP2-4
Seyyedrasuli, Mirkamal	MA1-P	Shi, Wei	MA1-P
Shan, Jicheng	WA2-7	Shi, Wenming	TP2-2
Shan, Jinjun	TA1-7	Shi, Xin	TA1-3
Shan, Yuhao	MA1-P	Shi, Xuanyang	WA1-2
Shao, Chang	TP1-3	Shi, Yajun	TA2-3

Shi, Yanmei	MA1-P	Sui, Yongxin	MP2-1
Shi, Yiran	TA1-1	Sui, Zhen	TA1-2
Shi, Yuetian	MP1-6	Sun, Gang	TA2-4
Shi, Yuetian	TP1-6	Sun, Gang	MP1-6
Shi, Zhen	WA1-5	Sun, Haijiang	TA2-1
Shi, Zhengde	TA2-1	Sun, Jie	WA2-5
Shuxiang, Guo	TP1-4	Sun, Jing	WA2-5
Shuxiang, Guo	TP1-4	Sun, Jing	WA2-5
Shuxiang, Guo	TP1-4	Sun, Junren	TP2-6
Shuxiang, Guo	TP2-4	Sun, Kui	MP1-1
Shuxiang, Guo	TP2-4	Sun, Lei	MA1-P
Shuxiang, Guo	TP2-4	Sun, Linjian	TP1-2
Shuxiang, Guo	TA2-5	Sun, Longfei	TP2-5
Shuxiang, Guo	TP2-5	Sun, Peng	MP3-6
Shuxiang, Guo	WA1-3	Sun, Pengpeng	TP2-2
Shuxiang, Guo	WA1-5	Sun, Ping	TA1-6
Shuxiang, Guo	WA1-6	Sun, Qichen	WA2-5
Shuxiang, Guo	WA1-7	Sun, Ruijie	TA2-7
Shuxiang, Guo	WA1-7	Sun, Tao	MP3-4
Shuxiang, Guo	MP2-6	Sun, Weijie	TA2-1
Shuai, Zhongquan	WA2-3	Sun, Weijie	TP2-1
Sobh, Tarek M	TA1-6	Sun, Weijie	WA1-1
Song, Dapeng	WA1-7	Sun, Wenlei	MA1-P
Song, Jianhua	WA1-7	Sun, Xiaodong	TA1-1
Song, Lulu	MA1-P	Sun, Xiwei	MA1-P
Song, Yishuo	TP2-1	Sun, Yanhua	TP2-5
Song, Yu	MA1-P	Sun, Yanhua	TA1-7
Song, Yu	WA1-7	Sun, Yanjun	MA1-P
Song, Zithong	MA1-P	Sun, Yishan	WA1-5
Su, Chun	MP2-3	Sun, ZhaoWu	TP1-3
Su, Shuxiang	TP1-4	Suzuki, Shintaro	TA2-6
Su, Shuxiang	TP1-4	т	
Su, Shuxiang	TP2-4	-1-	
Su, Xin	MP3-1	Takahashi, Satoshi	MA1-P
Su, Yu	TP2-2	Takahashi, Satoshi	MA1-P

Takehiro, Shiinoki	MP3-7	17	
Tan, Fanjiao	TA2-5	-V-	
Tan, Jingjing	MP2-5	Vumiliya, Angelo	MA1-P
Tan, Min	WA2-2	۱۸/	
Tan, Zhenhai	MA1-P	-	
Tan, Zhenhai	MA1-P	Wang, Lili	TA2-4
Tang, Biao	MP2-6	Wang, Aibo	MA1-P
Tang, Dewei	TP1-3	Wang, Binghan	MP1-4
Tang, Lijun	MP3-4	Wang, Bo	MP2-3
Tang, Mingsheng	MP2-7	Wang, Bohan	MP2-6
Tang, Sixun	MA1-P	Wang, Boyu	MA1-P
Tang, Sixun	TP2-5	Wang, Boyu	TP1-1
Tang, Xiaoqing	MP2-1	Wang, Chunhong	MP2-7
Tang, Yuan	MP3-6	Wang, Chunjie	TA1-3
Teng, Yanbin	MA1-P	Wang, Chunlei	MP1-6
Tian, Changqing	MP2-7	Wang, Chunlin	MP2-4
Tian, Dapeng	TA1-7	Wang, Chunwei	MP1-2
Tian, Dapeng	WA1-6	Wang, Chunyang	MA1-P
Tian, He	WA1-5	Wang, Chunyang	WA1-3
Tian, Hesuo	MA1-P	Wang, Cunyu	MP1-3
Tian, Tian	MA1-P	Wang, Dejiang	MA1-P
Tian, Xiaodi	TA1-1	Wang, Dejiang	MA1-P
Tian, Xinchao	MP3-7	Wang, Dinggang	TP1-2
Tian, Xue	TA2-5	Wang, Dinggang	TP2-2
Tian, Yantao	MP1-7	Wang, Gang	MA1-P
Tian, Yantao	TA1-2	Wang, Haitao	TA1-2
Tian, Yantao	TA1-4	Wang, Han	MP1-1
Tian, Yunong	TP2-1	Wang, Haonan	TP2-3
Tong, Baiming	WA2-7	Wang, Hongbo	MA1-P
Tong, Dan	WA2-1	Wang, Hongfei	MA1-P
Tong, Jigang	WA1-1	Wang, Hongjun	MA1-P
Tong, Shoufeng	MA1-P	Wang, Hongjun	TA1-4
Tong, Xin	MP1-3	Wang, Hongjun	TP2-7
Tseng, Wei-Ming	TP2-2	Wang, Hui	MP2-6
Tu, Yijun	WA2-3	Wang, Hui	TA2-1

Wang, Hui	TP1-1	Wang, Ming	MP2-6
Wang, Hui	TP1-1	Wang, Mingming	MA1-P
Wang, Hui	TP2-1	Wang, Mingming	TA1-5
Wang, Hui	TP2-1	Wang, Peng	TP2-4
Wang, Hui	WA1-1	Wang, Ping	WA1-5
Wang, Hui	WA1-6	Wang, Qi	TA2-1
Wang, Jian	MP2-5	Wang, Qi	TP1-7
Wang, Jian	MP3-5	Wang, Qiang	MP2-6
Wang, Jian	TP2-2	Wang, Qiang	TA2-1
Wang, Jianli	WA1-6	Wang, Qiang	TP1-1
Wang, Jiannan	TA1-1	Wang, Qiang	TP2-1
Wang, Jianping	MA1-P	Wang, Qiuyang	MP2-4
Wang, Jiawei	MP3-7	Wang, Qiuyang	TA2-2
Wang, Jinghui	MA1-P	Wang, Qiuyang	TP1-2
Wang, Jinghui	MP2-4	Wang, Qiuyang	WA1-1
Wang, Jinhua	TA1-2	Wang, Rongchuan	TA2-3
Wang, Jinjin	MP2-1	Wang, Rui	MA1-P
Wang, Jun	TA1-2	Wang, Rui	MA1-P
Wang, Kai	MP1-3	Wang, Rui	TA2-5
Wang, Kai	TP1-6	Wang, Rui	TA2-7
Wang, Kaiying	MA1-P	Wang, Shaoping	TA1-2
Wang, Lan	MP3-7	Wang, Shaoyang	MP1-5
Wang, Lei	MP1-2	Wang, Sheng	MP1-2
Wang, Li	TA2-4	Wang, Shifeng	WA1-1
Wang, Liang	TP1-5	Wang, Shifeng	WA2-3
Wang, Lihua	TP1-5	Wang, Shijun	TP1-2
Wang, Lingling	MA1-P	Wang, Shijun	TP2-2
Wang, Lingling	MP2-4	Wang, Shuai	MP2-7
Wang, Longqi	MA1-P	Wang, Shuai	WA2-3
Wang, Luoxin	MA1-P	Wang, Shuang	TA2-7
Wang, Meiling	MP1-5	Wang, Shukun	TA2-5
Wang, Meng	MA1-P	Wang, Shuo	MP3-1
Wang, Meng	WA2-1	Wang, Shuoyu	MP1-5
Wang, Meng	MP3-1	Wang, Shuoyu	TA2-2
Wang, Min	MP2-7	Wang, Shuoyu	TA1-6

Wang, Song	TA1-4	Wang, Yang	TP1-6
Wang, Sun-an	MA1-P	Wang, Yangping	TA1-4
Wang, Tao	MA1-P	Wang, Yanjun	WA1-5
Wang, Tian	MP1-2	Wang, Yanwei	TA2-1
Wang, Tianqi	MP1-2	Wang, Yaozhong	MA1-P
Wang, Tianqi	MP2-6	Wang, Yi	MA1-P
Wang, Ting	MA1-P	Wang, Yichen	TA1-1
Wang, Ting	TA2-5	Wang, Yingfen	WA1-3
Wang, Tingting	TA2-7	Wang, Yong	TP1-2
Wang, Weirong	TA1-1	Wang, Yonghua	TP2-3
Wang, Wenbo	TP1-5	Wang, Yonghua	TP2-5
Wang, Wenrui	MP2-5	Wang, Yonghui	TA2-6
Wang, Wenrui	WA1-2	Wang, Yonghui	WA2-6
Wang, Wu	MA1-P	Wang, Yuanhui	TP2-2
Wang, Wugui	MP2-4	Wang, Yuchao	MA1-P
Wang, Xian	TA2-5	Wang, Yuchao	MP2-5
Wang, Xiaodong	MP2-4	Wang, Yuchao	MA1-P
Wang, Xiaodong	TA2-2	Wang, Yuezong	WA2-6
Wang, Xiaodong	TP1-2	Wang, Yufeng	MP3-6
Wang, Xiaodong	WA1-1	Wang, Yutang	TA1-7
Wang, Xiaofeng	MA1-P	Wang, Yuxin	MP2-2
Wang, Xiaofeng	MP2-4	Wang, Yuxin	MP2-2
Wang, Xiaofeng	TP2-5	Wang, Yuxin	MP3-2
Wang, Xiaofeng	TA2-7	Wang, Ze	WA2-3
Wang, Xiaohai	WA1-7	Wang, Zhaoze	MA1-P
Wang, Xiaohong	TA1-4	Wang, Zhe	MP1-2
Wang, Xiaohui	TA2-5	Wang, Zhe	MP2-5
Wang, Xiaoyu	MP1-7	Wang, Zhe	TP2-4
Wang, Xiaoyuan	MA1-P	Wang, Zhengan	MP2-6
Wang, Xuemeng	MA1-P	Wang, Zhenyang	MP1-4
Wang, Xueying	TP1-1	Wang, Zhi	WA1-6
Wang, Xueying	TP2-1	Wang, Zhigang	MA1-P
Wang, Xusheng	MA1-P	Wang, Zhigang	MP2-4
Wang, Yan	MP1-4	Wang, Zhouhang	TA1-3
Wang, Yanbo	TP1-6	Wang, Ziruohu	TP2-7

Wang, Zixu	TA2-5	Wu, Qingwen	TA1-3
Watanabe, Keigo	TA2-6	Wu, Qiong	MA1-P
Watanabe, Keigo	TA2-6	Wu, Qiong	MA1-P
Watanabe, Keigo	TA2-6	Wu, Qiong	MA1-P
Watanabe, Keigo	TA2-6	Wu, Qiong	MA1-P
Wei, Bing	MP2-6	Wu, Shuang	WA1-2
Wei, Chao	MP1-2	Wu, Si	TA2-5
Wei, Chao	MP3-2	Wu, Tingke	TP2-3
Wei, Ke	TP1-7	Wu, Tong	TA1-2
Wei, Shilin	MA1-P	Wu, Wei	TA2-3
Wei, Wei	TA2-5	Wu, Wenshuai	MA1-P
Wei, Xiaoqian	MA1-P	Wu, Xiaoxia	WA1-3
Wei, Yonggeng	TA1-3	Wu, Yan	WA1-7
Wen, Hao	MA1-P	Wu, Yanjuan	TA1-4
Weng, Xiangyu	MP3-5	Wu, You	MA1-P
Wickramasinghe , H.D	MP1-2	Wu, Zehao	TP1-5
Wu, Baolin	MP3-5	Wu, Zehua	MA1-P
Wu, Baoqi	MP1-7	Wu, Zhicheng	WA1-5
Wu, Bing	TP1-2	V	
Wu, Bohui	TP2-7	-/-	
Wu, Fengxia	MA1-P	Xi, Ning	TP1-6
Wu, Haiquan	TP2-3	Xia, Li	MA1-P
Wu, Haiquan	TP2-5	Xia, Weixing	TP1-2
Wu, Haiyan	TP2-2	Xia, Yongming	MP2-1
Wu, Jian	MP1-6	Xiao, Ling	MP2-3
Wu, Jiaqi	MP1-3	Xiao, Nan	MP2-2
Wu, Jiaqing	MP2-2	Xiao, Nan	MP2-2
Wu, Jie	MA1-P	Xiao, Nan	MP2-2
Wu, Jinglong	MA1-P	Xiao, Nan	MP2-2
Wu, Jinglong	MA1-P	Xiao, Nan	MP2-2
Wu, Jinglong	MA1-P	Xiao, Nan	MP3-2
Wu, Jinglong	MA1-P	Xiao, Nan	MP3-2
Wu, Jinglong	WA2-1	Xiao, Shuguo	TA1-5
Wu, Jinglong	WA1-7	Xiao, Shuguo	WA2-1
Wu, Qingwen	MP3-2	Xiao, Xuan	WA1-2

Xiao, Xuan	WA1-2	Xu, Lixin	MP3-1
Xiao, Yao	TP2-2	Xu, Qingsong	TP1-5
Xie, Shuzhi	WA2-5	Xu, Shaochen	TA1-2
Xie, Yongchun	TA2-7	Xu, Wenxin	MA1-P
Xie, Yu	MP3-4	Xu, Xiangming	MA1-P
Xie, Zongwu	MP1-1	Xu, Xiaoming	TA2-3
Xing, Huiming	TP1-4	Xu, Xu	MP3-1
Xing, Huiming	TP1-4	Xu, Yang	TA1-2
Xing, Huiming	TP2-4	Xu, Zhang	MA1-P
Xing, Huiming	TP2-4	Xu, Zhaokun	TA2-2
Xing, Shihong	MA1-P	Xu, Zhaoping	MP2-7
Xing, Zhengyuan	TA1-5	Xu, Zhaoping	TA2-7
Xiong, Daojun	MP3-1	Xu, Zhaoping	WA1-6
Xu, Aidong	MP1-3	Xu, Zhenbang	MA1-P
Xu, Bo	WA2-1	Xu, Zhenbang	MP3-2
Xu, Ce	MP3-2	Xu, Zhenbang	MP2-5
Xu, Ce	TP1-6	Xu, Zhenbang	TP1-6
Xu, Chaozheng	MP2-4	Xu, Zhenbang	WA1-2
Xu, Dongbin	MP2-4	Xue, Duorui	TA2-4
Xu, Dongbin	TA2-2	Xue, Guobin	TP1-2
Xu, Dongbin	TP1-2	Xue, Guobing	TP2-2
Xu, Dongbin	WA1-1	Xue, Pingping	TP1-6
Xu, Dongping	TA2-1	Xue, Wei	TA1-4
Xu, Feng	MA1-P	Xue, Wei	TP1-7
Xu, Fengyu	TP2-3	V	
Xu, Hao	MP1-2	-1-	
Xu, Hao	MP3-2	Yan, Dong	WA2-7
Xu, Jiajia	TP1-2	Yan, Jiawen	TA1-1
Xu, Jian	TA2-7	Yan, Junliang	MA1-P
Xu, Jianan	MP1-4	Yan, Junliang	MP3-1
Xu, Jing	MP1-5	Yan, Liu	MA1-P
Xu, Jing	TA1-1	Yan, Shaoze	TA1-3
Xu, Junfei	TP1-7	Yan, Weifan	MP1-1
Xu, Liang	TA1-4	Yan, Xu	TA2-5
Xu, Liang	TP1-7	Yang, Baisong	MA1-P

Yang, Baisong	TP1-5	Yang, Zelin	TP1-2
Yang, Bao	MA1-P	Yao, Guang	TP1-3
Yang, Bo	MA1-P	Yao, Yao	WA2-1
Yang, Bo	MA1-P	Ye, Changlong	MP2-6
Yang, Bo	TP1-6	Ye, Changlong	TA1-6
Yang, Guang	MP1-5	Ye, Peiqing	MP1-3
Yang, Hui	MP3-5	Ye, Xiufen	MP1-2
Yang, Jiajia	MA1-P	Ye, Xiufen	TA1-5
Yang, Jiajia	MA1-P	Ye, Xiufen	TA2-6
Yang, Jing	MP3-7	Ye, Xiufen	WA2-1
Yang, Jingjing	WA2-1	Ye, Zhou	TA1-6
Yang, Jingjing	WA1-7	Yin, Zhixiang	TA1-3
Yang, Junyou	MP1-5	Yoo, SeungJae	TA1-2
Yang, Kaiming	MP1-6	You, Feng	TP2-2
Yang, Lei	TP2-1	Yu, Changshuai	TP2-3
Yang, Li	MP2-7	Yu, Fengqi	MP3-3
Yang, Lin	MA1-P	Yu, Haoyang	MA1-P
Yang, Lin	TP2-3	Yu, Hong	MA1-P
Yang, Peng	WA2-1	Yu, Hong	MA1-P
Yang, Qiuxia	MP3-2	Yu, Hong	MA1-P
Yang, Rong	TA1-6	Yu, Hong	MA1-P
Yang, Shuai	MA1-P	Yu, Hong	MA1-P
Yang, Shuai	WA2-5	Yu, Hong	MP1-5
Yang, Shuai	WA2-5	Yu, Hong	TA2-1
Yang, Shuangming	TA1-7	Yu, Huadong	TP2-3
Yang, Shuyan	TA1-6	Yu, Huadong	WA1-7
Yang, Tao	TP1-2	Yu, Huangchao	TP2-6
Yang, Wenbo	MP2-5	Yu, Jianbo	MA1-P
Yang, Xiaodong	TP2-2	Yu, Junzhi	MP2-6
Yang, Xiaoxia	MP2-7	Yu, Lei	TA2-1
Yang, Xujie	MA1-P	Yu, Lie	MA1-P
Yang, Xujie	MP2-6	Yu, Lie	MP2-3
Yang, Yunqiang	TA1-3	Yu, Lie	TP1-5
Yang, Zaibin	TP2-3	Yu, Lie	TP2-5
Yang, Zelin	TP1-6	Yu, Lie	TP2-5

Yu, Lie	TA1-7	7	
Yu, Lijun	MP2-6	-Z-	
Yu, Lijun	TA2-1	Zang, Xizhe	TP1-4
Yu, Lijun	TP1-1	Zeng, Haitao	TA2-4
Yu, Lijun	TP1-1	Zeng, Xiaodong	MA1-P
Yu, Lijun	TP2-1	Zeng, Xiaodong	TA2-5
Yu, Lijun	TP2-1	Zeng, Yong	MA1-P
Yu, Lijun	WA1-1	Zeng, Yuwen	MP2-2
Yu, Lingtao	MP3-7	Zeng, Yuwen	MP2-2
Yu, Liqiang	WA2-1	Zeng, Yuwen	MP3-2
Yu, Ran	MP2-4	Zhai, Wenyu	MA1-P
Yu, Xiao	MP1-5	Zhai, Wenyu	TA1-5
Yu, Xiao	TP1-1	Zhan, Qi	MP3-7
Yu, Xiuping	MP2-7	Zhang, Ke	MP2-4
Yu, Yang	MA1-P	Zhang, Bainan	MP2-2
Yu, Yang	TP1-6	Zhang, Baofeng	TA1-5
Yu, Yanxin	WA1-3	Zhang, Bin	MP1-1
Yu, Yingying	WA2-2	Zhang, Bin	MP2-7
Yu, Yiyang	MA1-P	Zhang, Bin	WA1-3
Yu, Yuanhua	MP1-2	Zhang, Chang-Hua	TA1-6
Yu, Yuanhua	TP2-4	Zhang, Chunting	MA1-P
Yu, Yue	MA1-P	Zhang, Chunyou	TP1-5
Yu, Yueqing	MP2-1	Zhang, Chunyou	TP1-5
Yu, Zhangguo	MP3-3	Zhang, Chunyou	TP1-5
Yu, Zhangguo	TP1-4	Zhang, Defu	MA1-P
Yu, Zhaoji	TP1-6	Zhang, Defu	MP2-1
Yuan, Bowen	TP2-6	Zhang, Deyang	WA1-6
Yuan, Weilin	MP3-4	Zhang, Deyuan	MA1-P
Yuan, Yifang	TA2-7	Zhang, Guishan	TP1-7
Yuan, YuQi	MA1-P	Zhang, Guojun	WA2-2
Yue, Youjun	MA1-P	Zhang, Hailong	MA1-P
Yue, Youjun	TA1-4	Zhang, Haiying	TA2-4
Yue, Youjun	TP2-7	Zhang, He	TP2-6
Yun, Zerong	MA1-P	Zhang, Hongjun	TP1-5
Yun, Zerong	MP2-4	Zhang, Hongmei	MA1-P

Zhang, Houxiang	MP2-4	Zhang, Mengjie	TP1-3
Zhang, Huaxin	TP2-1	Zhang, Ming	WA2-3
Zhang, Hui	MP1-3	Zhang, Mingxi	MA1-P
Zhang, Huizhen	MA1-P	Zhang, Ningchuan	WA1-7
Zhang, Jiabo	WA2-5	Zhang, Peipei	MP2-3
Zhang, Jianguo	MP2-1	Zhang, Peng	TA1-3
Zhang, Jianku	MA1-P	Zhang, Peng	TA2-4
Zhang, Jianxin	TA2-4	Zhang, Pengfei	WA1-1
Zhang, Jigang	MA1-P	Zhang, Pengfei	WA2-3
Zhang, Jigang	TP1-3	Zhang, Qi	MP2-4
Zhang, Jigang	TP1-5	Zhang, Qiang	MP1-5
Zhang, Jigang	TP2-5	Zhang, Renshan	TP2-6
Zhang, Jingnan	WA2-2	Zhang, Renyu	MP1-6
Zhang, Jingnan	WA1-5	Zhang, Shaokang	MA1-P
Zhang, Jingnan	MP1-7	Zhang, Shizhong	MA1-P
Zhang, Jingping	MA1-P	Zhang, Songtao	MP1-4
Zhang, Jinyu	TA2-3	Zhang, Songtao	MP1-7
Zhang, Jiyang	TP2-6	Zhang, Songyuan	WA1-5
Zhang, Jun	TA1-6	Zhang, Tao	WA1-2
Zhang, Ke	TA2-2	Zhang, Tianhao	WA1-5
Zhang, Ke	TP1-2	Zhang, Wanming	TA2-6
Zhang, Ke	WA1-1	Zhang, Wei	MA1-P
Zhang, Kun	MP2-5	Zhang, Weimin	MP3-3
Zhang, Lanyong	MP2-4	Zhang, Wenrui	TA2-5
Zhang, Le	MP2-4	Zhang, Wensen	TA1-3
Zhang, Lei	MA1-P	Zhang, Xiaojian	TA2-3
Zhang, Lei	MP2-4	Zhang, Xiaoshuang	MP1-7
Zhang, Lei	TA2-3	Zhang, Xinchao	MA1-P
Zhang, Lei	WA1-2	Zhang, Xinghong	TA1-1
Zhang, Lingling	MP2-7	Zhang, Xudong	MA1-P
Zhang, Lingling	TA2-7	Zhang, Xue	TP1-1
Zhang, Lingling	WA1-6	Zhang, Xue	TP2-1
Zhang, Linshuai	MA1-P	Zhang, Xun	WA2-1
Zhang, Linshuai	WA1-7	Zhang, Xuping	MP2-1
Zhang, Man	TA1-5	Zhang, Yang	WA1-7

Zhang, Yanlu	MP2-6	Zhao, Hui	MA1-P
Zhang, Yansong	TP2-7	Zhao, Hui	TA1-4
Zhang, Yanyan	MP2-3	Zhao, Hui	TP2-7
Zhang, Yanyan	TP1-5	Zhao, Ji	TP1-6
Zhang, Ye	TP1-2	Zhao, Jianghai	MP1-5
Zhang, Yifei	MP3-5	Zhao, Jianghai	TA2-3
Zhang, Ying	WA1-1	Zhao, Jie	TA2-2
Zhang, Yong	MP1-3	Zhao, Jie	TA2-2
Zhang, Yong	TP1-4	Zhao, Jiliang	TP2-2
Zhang, Yong	WA1-3	Zhao, Jingchao	WA1-2
Zhang, Yonggang	MA1-P	Zhao, Jingdong	MP1-4
Zhang, Yuanfei	MP1-1	Zhao, Jinxin	MA1-P
Zhang, Yuanfei	MP1-1	Zhao, Lili	WA1-5
Zhang, Yunong	WA1-6	Zhao, Peng	MP1-4
Zhang, Zheng	MP3-4	Zhao, Peng	MP1-7
Zhang, Zhixiang	TA1-3	Zhao, Peng	MP1-7
Zhang, Zhiyong	MP1-6	Zhao, Peng	TA1-7
Zhang, Zhongliang	MA1-P	Zhao, Shunli	MA1-P
Zhang, Zhongliang	MA1-P	Zhao, Songbo	TA1-4
Zhang, Zhuo	MP2-1	Zhao, Songbo	TP1-7
Zhang, Zhuoliang	MP3-1	Zhao, Weiguo	MP1-1
Zhang, Zixuan	MP2-3	Zhao, Xia	MP2-3
Zhao, Changfu	WA1-1	Zhao, Xin	MP3-3
Zhao, Changhai	MP2-6	Zhao, Xin	TP2-6
Zhao, Dan	MP3-4	Zhao, Xionglei	WA2-2
Zhao, Dawei	MP2-5	Zhao, Yan	MP2-2
Zhao, Fangzhou	WA1-2	Zhao, Yan	MP2-2
Zhao, Faqing	MA1-P	Zhao, Yan	MP3-2
Zhao, Gang	MA1-P	Zhao, Yan	MP3-2
Zhao, Guomei	MA1-P	Zhao, Yan	TA1-5
Zhao, Haibo	MP1-1	Zhao, Yan	TA1-7
Zhao, Hongdong	MA1-P	Zhao, Yanhang	WA1-3
Zhao, Huan	MP3-3	Zhao, Yaping	MP3-2
Zhao, Huan	TA2-3	Zhao, Yihan	TP2-4
Zhao, Huan	TP1-3	Zhao, Zhijun	TP1-3

Zhao, Zhiyuan	MP3-2	Zhou, Xiaofang	WA1-5
Zhao, Zhongqiu	WA2-6	Zhou, Xingyu	TA2-7
Zheng, Guojun	MP1-3	Zhou, Xinyu	TP1-4
Zheng, Liang	TP1-4	Zhou, Xuesong	MA1-P
Zheng, Liang	WA1-3	Zhou, Xuesong	MA1-P
Zheng, Shanglong	MP1-4	Zhou, Xuesong	MA1-P
Zheng, Shicheng	TA1-3	Zhou, Xuesong	MA1-P
Zheng, Wenfeng	MA1-P	Zhou, Xuesong	MA1-P
Zheng, Wenfeng	TP1-6	Zhou, Xuesong	TP1-7
Zheng, Xiande	TP1-4	Zhou, Xuesong	TP1-7
Zheng, Xiande	WA1-3	Zhou, Xuesong	TP1-7
Zheng, Yan	WA1-5	Zhou, Xuesong	TP2-7
Zheng, Yuqi	MP1-5	Zhou, Xuesong	TP2-7
Zhi, Hui	MA1-P	Zhou, Xuesong	TP2-7
Zhi, Jiankang	MP3-6	Zhou, Yang	TP2-4
Zhong, Bin	MP2-3	Zhou, Yijun	MP2-5
Zhong, Jianming	MA1-P	Zhou, Yijun	MP3-5
Zhou, Lei	TP1-3	Zhou, Yueyuan	MA1-P
Zhou, Chao	MP3-1	Zhou, Yueyuan	TP1-1
Zhou, Haicheng	MP2-7	Zhou, Yunhu	MP3-6
Zhou, Haicheng	TA2-7	Zhou, Zhenggan	TA2-5
Zhou, Haicheng	WA1-6	Zhou, Zhou	MP1-4
Zhou, Jian	MA1-P	Zhou, Zhou	TP2-6
Zhou, Jian	MP2-3	Zhou, Zhou	TA2-7
Zhou, Jian	TP1-3	Zhu, Changming	TP2-1
Zhou, Jian	TP1-5	Zhu, Chengfei	TA1-1
Zhou, Jian	MA1-P	Zhu, Chuanming	MP1-6
Zhou, Jinpeng	MA1-P	Zhu, Hong	WA1-1
Zhou, Jun	TA2-5	Zhu, Hongmei	MP3-3
Zhou, Junjie	TP2-7	Zhu, Juan	WA2-3
Zhou, Junqiang	TA1-5	Zhu, Lei	TP1-6
Zhou, Junqiang	WA1-6	Zhu, Mingchao	MA1-P
Zhou, Kun	TP1-3	Zhu, Mingchao	MP2-5
Zhou, Nianrong	MP3-4	Zhu, Minghcao	WA1-2
Zhou, Qi	MA1-P	Zhu, Xiaojun	MP2-6

WA1-2
WA2-6
MP1-4
TP2-6
TA2-7
TP1-1
TA1-5
TA1-5
TA2-7
WA2-3
MP2-7
MP1-7
TA2-4
TA2-2
TA1-6

Advisory Council Honorary Chairs:

T. J. Tarn, Washington University, USA Toshio Fukuda, Nagoya University, Japan Advisory Council Chairs:

Jianbiao Ma, Tianjin University of Tech., China Tianyou Chai, Northeastern University, China Hegao Cai, Harbin Institute of Technology, China Kazuhiro Kosuge, Tohoku University, Japan Liding Wang, Dalian University of Tech., China A.A. Goldenberg, University of Toronto, Canada Paolo Dario, Scuola Superiore Sant'Anna, Italy Masayoshi Tomizuka, UC Berkeley, USA Mario A. Rotea. University of Massachusetts. USA

Ju-Jang Lee, KAIST, Korea

Ren C. Luo, National Taiwan University, Taiwan Yu Yao, Harbin Engineering University, China Yanrong Li, UESTC, China

Zhongmin Su, CUST, China

Founding Council Chair:

Shuxiang Guo, Kagawa University, Japan General Chair:

General Chair:

Baofeng Zhang, Tianjin University of Technology, China General Co-Chairs:

Qingchun Zheng, Tianjin University of Technology, China William R. Hamel, University of Tennessee, USA James K. Mills, Univ. of Toronto, Canada Hajime Asama, University of Tokyo, Japan

Darwin G. Caldwell, Italian Institute of Tech., Italy Max Q. -H. Meng, Chinese University of Hong Kong

Jie Zhao, Harbin Institute of Technology, China

Yuxin Zhao, Harbin Engineering University, China Yunliang Wang, Tianjin Univ. of Technology, China

Jean Zu, University of Toronto

Makoto Kaneko, Osaka University, Japan

Tiejun Li, Hebei University of Technology, China Shuxin Wang, Tianjin University, China

Jingtai Liu, Nankai University, China

Program Chair:

Jian Guo, Tianjin University of Technology, China Program Co-Chairs:

Stefan Byttner, Halmstad University, Sweden Wan Kyun Chung, POSTECH, Korea

Huosheng Hu, University of Essex, U.K.

Wai Tung Ng, University of Toronto, Canada Issam Bahadur, Sultan Qaboos University, Canada

Kevin Lynch, Northwestern University, USA

Qing Zhao, University of Alberta, Canada

Hiroshi Toshiyoshi, University of Tokyo, Japan Arianna Menciassi, Scuola Superiore Sant'Anna,Italy

Koichi Hashimoto, Tohoku University, Japan

Jianwei Zhang, University of Hamburg, Germany

Anqi Qiu, National University of Singapore, Singapore

Yili Fu, Harbin Institute of Technology, China

Liwei Shi, Beijing Institute of Technology, China

Yizhong Wang, Tianjin University of Science &Technology, China Limei Song, Tianjin Polytechnic University, China

Shijie Guo, Hebei University of Technology, China

Organizing Committee Chairs:

Shuxiang Guo, Kagawa University, Japan Li Chen, Tianjin University of Technology, China

Organizing Committee Co-chairs

Minfang Chen, Tianjin Univ. of Technology, China Enzeng Dong, Tianjin Univ. of Technology, China Aiguo Ming, U. of Electro-Communications, Japan

Tutorials/Workshop Chairs:

Guangjun Liu, Ryerson University, Canada Keisuke Suzuki, Kagawa University, Japan Weimin Ge, Tianjin Univ. of Technology, China

Invited/Organized Session Chairs: Yangmin Li, The Hong Kong Polytechnic University, China

Kazuhito Yokoi, AIST, Japan Paul Wen, Univ. of Southern Queensland, Australia Jun Liu, Tianjin Univ. of Technology, China

Awards Committee Co-chairs

Xinkai Chen, Shibaura Institute of Technology, Japan Hong Zhang, University of Alberta, Canada Shougen Yin, Tianjin Univ. of Technology, China

Publications Chair: Liwei Shi, Beijing Institute of Technology, China Publicity Chairs:

Jinjun Shan, York University, Canada Xiufen Ye, Harbin Engineering University, China

Hideyuki Sawada, Waseda University, Japan Qiang Fu, Bin Liu, Tianjin Univ. of Tech., China

Finance Chairs:

Libao Cheng, Tianjin Univ. of Technology, China Hidenori Ishihara, Kagawa University, Japan

Local Arrangement Chairs:

Qiang Fu and Yu Song, Tianjin Univ. of Tech., China **Secretariats:**

Y. Liu, Z. Wang, S. Gu, L. Zheng , KU, Japan

Xujie Ynag, Zihong Bao Qi Zhan, Tianjin Univ. of Technology, China

IEEE IEEE ICMA 2019

2019 IEEE International Conference on Mechatronics and Automation August 4-7, 2019, Tianjin, China

Co-sponsors: IEEE Robotics and Automation Society, Tianjin Univ. of Technology, Kagawa Univ. and BIT

Technical Co-sponsors: CAA, RSJ, JSME, SICE, JSPE, HIT, BIT, HEU, UEC, UESTC, CUST

Call for Papers \bigcirc Index

The 2019 IEEE International Conference on Mechatronics and Automation (ICMA 2019) will take place in Tianjin, China from August 4 to August 7, 2019. Tianjin is a municipality direct under the Central Government, as well as an opening city. It's situated in the eastern part of the North China Plain, covering an area of 11,917 square km and with a population of 12,930,000.

As the host city of ICMA 2019, Tianjin not only provides the attendees with a great venue for this event, but also an unparalleled experience in Chinese history through several historical architectures. You are cordially invited to join us at IEEE ICMA 2019 in Tianjin. The objective of ICMA 2019 is to provide a forum for researchers, educators, engineers, and government officials involved in the general areas of mechatronics, robotics, automation and sensors to disseminate their latest research results and exchange views on the future research directions of these fields.

The topics of interest include, but not limited to the following:

- Intelligent mechatronics, robotics, biomimetics, automation, control systems,
- Opto-electronic elements and Materials, laser technology and laser processing
- Elements, structures, mechanisms, and applications of micro and nano systems
- Teleoperation, telerobotics, haptics, and teleoperated semi-autonomous systems
- -Sensor design, multi-sensor data fusion algorithms and wireless sensor networks
- Biomedical and rehabilitation engineering, prosthetics and artificial organs
- Control system modeling and simulation techniques and methodologies
- AI, intelligent control, neuro-control, fuzzy control and their applications
- Industrial automation, process control, manufacturing process and automation

Contributed Papers: All papers must be submitted in PDF format prepared strictly following the IEEE PDF Requirements for Creating PDF Documents for IEEE Xplore. The standard number of pages is 6 and the maximum page limit is 8 pages with extra payment for the two extra pages. See detailed instructions in the conference web site. All papers accepted by IEEE ICMA 2019 will be indexed by EI and included in IEEE Xplore®. Extensions of selected papers will be published in a regular or a special issue of the journals of IJMA.

Organized Sessions: Proposals with the title, the organizers, and a brief statement of purpose of the session must be submitted to an OS Chair by March 20, 2019. **Tutorials & Workshops:** Proposals for tutorials and workshops that address related topics must be submitted to one of the Tutorial/Workshop Chairs by May 1, 2019.

Important Dates:

April 10,	2019	Full papers and organized session proposals
May 1,	2019	Proposals for tutorials and workshops
May 15,	2019	Notification of paper and session acceptance
June 1,	2019	Submission of final papers in IEEE PDF format

For detailed up-to-date information, please visit the IEEE ICMA conference website at:

http://2019.ieee-icma.org

International Journal of Mechatronics and Automation (IJMA)

CALL FOR PAPERS

IJMA is a fully refereed international journal that presents the state-of-the-art research in the area of mechatronics and industrial automation. The intention of *IJMA* is to provide an international forum to report latest developments from interdisciplinary theoretical studies, computational algorithm development and practical applications. It particularly welcomes those emerging methodologies and techniques which bridge theoretical studies and applications and have significant potential for real-world applications.

http://ijma.ieee-icma.org; ISSN (Online): 2045-1067 - ISSN (Print): 2045-1059

Objectives

The main objective of *IJMA* is to establish an excellent channel of communication between experts in academic and research institutions, practitioners and professionals working in the industry, and policy makers.

Readership

IJMA provides a forum for information exchange between professionals, academicians and engineers who are working in the area of mechatronics, control engineering, and industrial automation, helping them to disseminate information and to learn from each other's work.

Contents

IJMA publishes original papers, technical reports, case studies, review papers and tutorials. Special Issues devoted to important topics in advanced mechatronic systems, robotics, control engineering and industrial automation will be published from time to time.

Subject Coverage

Suitable topics include, but are not limited to:

- Intelligent mechatronics, robotics and biomimetics
- Novel and unconventional mechatronic systems and robots
- Modelling and control of mechatronics systems and robots
- Elements, structures, mechanisms of micro and nano systems
- Sensors, wireless sensor networks and multi-sensor data fusion
- · Biomedical and rehabilitation engineering, prosthetics and artificial organs
- Al, neural networks and fuzzy logic in mechatronics and robotics
- Industrial automation, process control and networked control systems
- Telerobotics, human computer interaction, human-robot interaction

Specific Notes for Authors

Submitted papers should not have been previously published nor be currently under consideration for publication elsewhere. (N.B. Conference papers may only be submitted if the paper was not originally copyrighted and if it has been completely re-written)

All papers are refereed through a double blind process. A guide for authors, sample copies and other relevant information for submitting papers are available on the <u>Submission of Papers</u> web-page.

You may send one copy in the form of an MS Word file attached to an e-mail to: Professor Shuxiang Guo, below

Editors and Members of the Editorial Board Editor in Chief

Prof. Shuxiang Guo

Kagawa University Department of Intelligent Mechanical Systems Engineering 2217-20, Hayashi-cho Takamatsu, 761-0396, JAPAN guo@eng.kagawa-u.ac.jp

Editorial Board Members

Toshio Fukuda, Nagoya University, JAPAN Martin Adams, Nanyang Technological University, SINGAPORE Gursel Alici, University of Wollongong, AUSTRALIA Hajime Asama, University of Tokyo, JAPAN Darwin G Caldwell, Italian Institute of Technology, ITALY Fabio Celani, Sapienza University of Rome, ITALY Alexander Ferworn, Ryerson University, CANADA Dagui Huang, UESTC, CHINA Jeffrey Johnson, Open University, UK

Executive Editor

Prof. Huosheng Hu

University of Essex School of Computer Science and Electronic Engineering Wivenhoe Park Colchester CO4 3SQ, UK huosheng.hu@gmail.com

T.J. Tarn, Washington University in St. Louis, USA William R. Hamel, the University of Tennessee, USA Max Meng, Chinese University of Hong Kong, CHINA James K. Mills, University of Toronto, CANADA Aiguo Ming, University of Electro-Communications, JAPAN Hong Zhang, University of Alberta, CANADA Jianwei Zhang, University of Hamburg, GERMANY Jong-Hwan Kim, KAIST, KOREA Chang Liu, Northwestern University, USA Nazim Mir-Nasiri, Swinburne University of Technology, MALAYSIA International Journal of

Mechatronics and Automation

International Journal of

Mechatronics and Automation

Volume 5, No. 4, 2016

Publisher's website: www.inderscience.com

Email: editorial@inderscience.com

ISSN (Online): 2045-1067 ISSN (Print): 2045-1059

Copyright© 2016 Inderscience Enterprises Ltd No part of this publication may be reproduced stored or transmitted in any material form or by any means (including electronic, mechanical, photocopying, recording or otherwise) without the prior written permission of the publisher, except in accordance with the provisions of the Copyright Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd or the Copyright Clearance Center Inc.

Published and typeset in the UK by Inderscience Enterprises Ltd

Scope of the Journal

IJMA is a fully refereed international journal that presents the state-of-the-art research in the area of mechatronics and industrial automation. The intention of IJMA is to provide an international forum to report latest developments from interdisciplinary theoretical studies, computational algorithm development and practical applications. It particularly welcomes those emerging methodologies and techniques which bridge theoretical studies and applications and have significant potential for real-world applications.

Contents

IJMA publishes original papers, technical reports, case studies, review papers and tutorials. Special Issues devoted to important topics in advanced mechatronic systems, robotics, control engineering and industrial automation will be published from time to time.

Subject coverage:

Suitable topics include, but are not limited to:

- Intelligent mechatronics, robotics and biomimetics
- Novel and unconventional mechatronic systems and robots
- Modelling and control of mechatronics systems and robots
- Elements, structures, mechanisms of micro and nano systems
- Sensors, wireless sensor networks and multi-sensor data fusion
- Biomedical and rehabilitation engineering, prosthetics and artificial organs
- Al, neural networks and fuzzy logic in mechatronics and robotics
- Industrial automation, process control and networked control systems
- Telerobotics, human computer interaction, human-robot interaction

www.inderscience.com/ijma

visit www.inderscience.com

Members of the Editorial Board

Editor-in-Chief Prof. Shuxiang Guo Kagawa University, Japan

Executive Editor Prof. Huosheng Hu University of Essex, UK

Editorial Board Prof. Martin Adams Nanyang Technological University Singapore

Prof. Gursel Alici University of Wollongong Australia

Prof. Hajime Asama University of Tokyo Japan

Prof. Darwin G Caldwell Italian Institute of Technology Italy

Prof. Fabio Celani Sapienza University of Rome Italy

Prof. Alexander Ferworn Ryerson University Canada

Prof. Toshio Fukuda Nagoya University Japan

Prof. William R. Hamel The University of Tennessee, USA

Prof. Dagui Huang University of Electronic Science and Technology of China, China Prof. Jeffrey Johnson Open University UK

Prof. Jong-Hwan Kim KAIST Korea, Republic of

Prof. Chang Liu Northwestern University USA

Prof. Max Meng Chinese University of Hong Kong Hong Kong

Prof. James K. Mills University of Toronto Canada

Prof. Aiguo Ming University of Electro-Communications Japan

Prof. Nazim Mir-Nasiri Swinburne University of Technology Malaysia

Prof. T.J. Tarn Washington University in St. Louis USA

Prof. Hong Zhang University of Alberta Canada

Prof. Jianwei Zhang University of Hamburg Germany

What the editors say about IJMA

The new IJMA will cover the area of mechatronics and automation that is currently very important and hot topics. I see that the technology of mechatronics and automation will play a major role in developing new technological products. Hence, I am expecting that the new journal will be a great hit with every researcher who is working on future innovations. It gives a great pleasure to be a part of the IJMA team.

Toshio Fukuda, Nagoya University, Japan

I am honored to be a part of this exciting new journal which addresses an important and emerging area of research, and believe that it will be extraordinarily successful. I am confident that IJMA will have a significant impact in the area of mechatroronics and automation.

T.J. Tarn,

Washington University in St. Louis, USA

It is certainly an honor for me to serve as an Editorial Board member for this important new journal. Mechatronics and automation technologies are central in a wide range of expanding industries across the world. IJMA promises to provide both basic and applied researchers a high quality avenue to report their work in this exciting aspect of modern engineering.

William R. Hamel, The University of Tennessee, USA

Mechatronics and industrial automation are at the heart of technological development and it is vital that researchers have high quality publications in which they can rapidly disseminate their results. IJMA will cover a vital and underrepresented area of research and I am confident that it will have a significant impact on the community, quickly becoming a leading journal in this field.

Darwin G Caldwell, Italian Institute of Technology, Italy

I am honored to be invited to serve as an Editorial Board member of this new journal. Under the guidance of Editors and Editorial Board, this new journal will be an important forum for the publication of exciting new developments in emerging technological areas.

James K. Mills, University of Toronto, Canada

The birth of the new journal is a big event in the exciting field of Mechatronics and Automation, and I am very proud to be a part of the strong editorial team that will maintain high quality and standards of all the papers published in it. The IJMA is certainly going to be a vital and unique source of information on the latest theoretical and practical achievements of the researchers in this multidisciplinary and very essential engineering area.

Nazim Mir-Nasiri,

Swinburne University of Technology, Malaysia

Methods of payment

To be completed by all subscribers

Terms are payment with order. Payment by cheque, banker's draft or credit card is acceptable.

Name of subscriber

Position		
Institution		
Address		
Fax		
E-mail		
Credit card type and number		
Expiry date		
Three-digit security number (on the reverse of the credit card)		
Signature		
Date		

Please address subscription orders to the address overleaf

Subscription order form

To find out the subscription rates for International Journal of Mechatronics and Automation (IJMA), please go to www.inderscience.com/ijma or http://www.inderscience.com/subscribe.php (for all Inderscience titles, including IJMA)

This form may be photocopied or downloaded from *www.inderscience.com/www/ielsubsform2.pdf*

Journals may be ordered online from *http://inderscience.metapress.com*

Please address subscription orders to:

Inderscience Enterprises Ltd. (Order Dept.) World Trade Centre Building II 29 Route de Pre-Bois, Case Postale 856, CH-1215 Genève 15, SWITZERLAND

For rush orders please: fax: +44 1234 240515 or E-mail: subs@inderscience.com

Please enter the following regular subscriptions to IJMA

...... subscriptions (Print or Online) [delete as necessary]

..... subscriptions (Print and Online)

Total cost

Methods of payment overleaf

Relevant Inderscience Titles

- International Journal of Advanced Mechatronic Systems
- International Journal of Applied Systemic Studies
- International Journal of Automation and Control
- International Journal of Bio-Inspired Computation
- International Journal of Biomechatronics and Biomedical Robotics
- International Journal of Computational Vision and Robotics
- International Journal of Computer Applications in Technology
- International Journal of Industrial Electronics and Drives
- International Journal of Instrumentation Technology
- International Journal of Intelligent Systems Technologies and Applications
- International Journal of Mechatronics and Manufacturing Systems
- International Journal of Modelling, Identification and Control

International Journal of Sensor Networks

- International Journal of System Control and Information Processing
- International Journal of Systems, Control and Communications

These titles are part of a unique profile on: ELECTRONIC SYSTEMS, CONTROL AND ARTIFICIAL INTELLIGENCE

For information about these titles and the substantial portfolio of journals developed by Inderscience, please visit the website at: www.inderscience.com

Notes for Authors and Submission of Papers

Submitted papers should not have been previously published or be currently under consideration for publication elsewhere.

All papers are refereed through a double-blind process. A guide for authors and other relevant information for submitting papers are available on the Submission of Papers section of the Inderscience website: please go to

Author Guidelines (www.inderscience.com/guidelines)

To submit a paper, please go to

Submission of Papers (http://www.inderscience.com/papers)

For queries concerning the journal, please contact:

Editor-in-Chief Prof. Shuxiang Guo Kagawa University Department of Intelligent Mechanical Systems Engineering, 2217-20 Shinmachi, Hayashi-cho, Takamatsu, 761-0396, Japan E-mail: guo@eng.kagawa-u.ac.jp

With a copy to: Editorial Office, E-mail: subs@inderscience.com

(Please include in your email the title of the Journal)

IEEE ICMA 2018 International Conference

本会议由中国吉林省华邦会议展览有限公司支持。

This conference is supported by Jilin Huabang Conference and Exhibition Co., Ltd..

IEEE ICMA 2018 Program at a Glance

		August 5-8, 2018
	She	raton Changchun Jingyuetan Hotel, Changchun, Jilin, China
Sunday, August 5, 2018		
	13:30 - 18:30	Registration Desk Open on 1F
	10100 10100	World Youth Development Workshops on Opto-Mechatronics at
	13:30 - 15:40	Conference Deem 1
	16:00 - 17:00	<u>Keynote Speech (Prof. Toshio Fukuda) (Conference Room 1)</u>
	17:30 - 18:30	Reception at Conference Room 2
Monday, August 6, 2018		
	8:30 - 9:00	Opening Ceremony (Yitian Convention Center)
	9:00 - 9:50	<u>Plenary Talk #1</u> (Dr. Peter B. Luh) (Yitian Convention
		Plenary Talk #2 (Dr. Darwin G. Caldwell) (Vitian Convention
	9:50 - 10:40	Center)
	10:40 - 11:00	Morning Break
	11:00 - 12:00	Technical Sessions MA1 (Poster Session) (Yitian Convention
	12:00 12:20	Center)
	12:00 - 15:00	Technical Sessions MP1 (Conference Boom on -15 and 15)
	15:00 - 15:15	Afternoon Break
	15:15 - 16:45	Technical Sessions MP2 (Conference Room on -1F and 1F)
	17:00 - 18:00	Technical Sessions MP3 (Conference Room on -1F and 1F)
Tuesday, August 7, 2018		
	8:30 - 10:00	Technical Sessions TA1 (Conference Room on -1F and 1F)
	10:00 - 10:30	Morning Break
	10:30 - 12:00	Technical Sessions TA2 (Conference Room on -1F and 1F)
	12:00 - 13:30	Lunch Break
	13:30 - 15:00	Technical Sessions TP1 (Conference Room on -1F and 1F)
	15:00 - 15:30	Afternoon Break
	15:30 - 17:00	Technical Sessions TP2 (Conference Room on -1F and 1F)
	18:30 - 21:00	Changchun Jingvuetan Hotel.
Wednesday, August 8, 2018		
	8:30 - 9:20	Plenary Talk #3 (Dr. Dong Sun) (Yitian Convention Center)
	9:30 - 11:00	Technical Sessions WA1 (Conference Room on -1F and 1F)
	11:00 - 11:15	Morning Break
	11:15 - 12:15	Technical Sessions WA2 (Conference Room on -1F and 1F)
	12:30 - 13:30	Farewell Party at Conference Room 2
>	* 15 minutes (Speec	h: 12 minutes, Q&A:3 minutes) are scheduled for oral presentation including
	discussions for eac	n paper.

* 30 minutes (core time) are scheduled for poster presentation