
In-Line Detection of Surface Profile and Defects Using

Full-Field and High-Precision Automated Optical

Inspection with Cloud-Based Analysis System

Ming Chang, Yu-Cheng Chou, Po Ting Lin

Department of Mechanical Engineering

Chung Yuan Christian University

Chungli, Taoyuan, Taiwan

Ming Chang, Yu-Cheng Chou, Po Ting Lin

Department of Mechanical Engineering

Chung Yuan Christian University

Chungli, Taoyuan, Taiwan

Optical Measurement

Optomechatronics

Automated Optical Inspection

Parallel Computing

Cloud Computing

Software Design

Intelligent Embedded System

Design Under Uncertainty

Multidisciplinary Design Optimization

Multiobjective Optimization

Inspection of Handheld Devices

All images are from google.com.

Full-field In-Line Inspection System

Linear light

source

Line

CCD

module

Automated

inspection line

GPU

module

Parallel

image

processing

Parallel defect

inspection

GPU#1

GPU

#2

GPU#N

Conveyer

Control Center

Defect

Post-processing

Flawless products

2D Inspection of Defect in

Back-coated Glass

Motivation and Objectives

 Numerous methods have been proposed for different
applications of surface defect detection, and those
methods can generate satisfactory performance.

 However, those methods have not addressed a
situation where both the speed and precision
requirements need to be satisfied simultaneously

 In other words, an image to be processed by a
machine during each time window has hundreds of
mega pixels, whereas the time window is within one
second.

 This presentation shows a highly expandable
distributed image sensor computing system, DISCS,
to achieve in-line surface defect detection with high
performance on both the speed and precision.

Apparatus

(a) Hardware components of the optical inspection platform.

(b) Actual photo of one opto-mechanical module.

(c) Construction of illumination device with two 24-LED arrays

Inspection Principle

Glass substrate

Scattering effect at reflective
coating induced by defect

Line Scanned
Camera

Light slit

High reflective coating

Defect

Slanted parallel

light source

Moving direction

slanted angle

Light slit

Position of image acquisition

Fan-shape lighting of LED source:
Form the side-lighting effect consequently

Moving direction

High reflective
coating

Position of image acquisition

Slanted parallel light source
to forward

Line Scanned
Camera

Light slit

Moving direction

Glass substrate

S
lan

ted

p
arallel lig

h
t

so
u

rce to

rig
h

t

S
lan

ted

p
arallel lig

h
t

so
u

rce to
 left

Carrier plate with high
reflective coating

Distributed Image Sensor Computing System (DISCS)

 Characteristics

 Heterogeneous parallel computing system

 Consists of multiple CPUs and GPUs

 Adopts Message Passing Interface (MPI) and Compute Unified

Device Architecture (CUDA) programming models

 High speed and high precision in-line detection of surface defects

 Hardware Development

 Consists of independent machines that form a master-slave

parallel computing model.

 Each CUDA workstation is a slave machine, which performs the

same computations and sends the result to the master machine

and has at least one CPU and one GPU.

 All the machines are connected through a high-speed network.

System Architecture - Hardware

 Hardware architecture of the DISCS

System Architecture - Software

 Consists of MPI processes and CUDA threads.

 MPI processes run in CPUs and CUDA threads run in

GPUs.

Software architecture of the DISCS.

 The MPI master process

runs on the integration

server, whereas the MPI

slave processes run on

the CUDA workstations.

 The idea of the DISCS is

to let the MPI slave

processes handle the

defect detection, and let

the MPI master process

deal with the defect

classification.

CUDA-Based Defect Detection Algorithms - Binarization

 Straightforward and

based on a predefined

threshold.

 If a pixel value is larger

than the threshold, the

pixel value is set to

255.

 Otherwise, the pixel

value is set to zero.

The binarization algorithm.

CUDA-Based Defect Detection Algorithms - Labeling

Determination of Starting Point

0 0 0

0 1

0 0

0 9

Target pixel’s left,

upper-left, upper,

and upper-right

pixel value = 0 Situation1

Situation2

Target pixel’s left,

upper-left, and

upper-right pixel

value = 0, but

upper pixel value

≠ 0
Target pixel

value > 0

Target pixel

value > 0

CUDA-Based Defect Detection Algorithms - Labeling

Determination of End Point

1

9

9 9

1

9 0

0 9 9

1

9

9 9

1

9

9 9

9

9 9 0

0 0 0

9

9 2

Target pixel’s right,

bottom-right,

bottom, and

bottom-left pixel

value = 0

Target pixel’s right

and bottom-left

pixel value = 0,but

bottom-right and

bottom pixel value

≠ 0

Target pixel

value = 9 Situation1

Situation2

Target pixel

value = 9

CUDA-Based Defect Detection Algorithms - Labeling

Elimination of Redundant Starting Point

0 0 0 0 0

0 1 0 1 0

0 9 9 9 0

0 2 0 2 0

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 0 9 9 9 0

0 0 0 0 0 0 0 0 2 0 2 0

0 0 0 0 0 0 0 0 0 0 0 0

The target pixel value = 1
if there is any pixel, which is on the target left side

in the same row with 10 pixel width and has a value of 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 0 0 0 9 9 9 0

0 0 0 0 0 0 0 0 0 0 2 0 2 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0

0 1 0 9 0

0 9 9 9 0

0 2 0 2 0

0 0 0 0 0

0 0 0 0 0

0 1 0 1 0

0 9 9 9 0

0 2 0 2 0

0 0 0 0 0

The target pixel’s value is

changed from 1 to 9,

otherwise do nothing

CUDA-Based Defect Detection Algorithms - Labeling

Elimination of Redundant End Point

0 0 0 0 0

0 1 0 9 0

0 9 9 9 0

0 2 0 2 0

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 9 0 0 0 0 0 0 0 0

0 9 9 9 0 0 0 0 0 0 0 0

0 2 0 2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 9 0 0 0 0 0 0 0 0 0 0

0 9 9 9 0 0 0 0 0 0 0 0 0 0

0 2 0 2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0

0 1 0 9 0

0 9 9 9 0

0 9 0 2 0

0 0 0 0 0

0 0 0 0 0

0 1 0 9 0

0 9 9 9 0

0 2 0 2 0

0 0 0 0 0

The target pixel value = 2
if there is any pixel, which is on the target right side

in the same row with 10 pixel width and has a value of 2

The target pixel’s value is

changed from 1 to 9,

otherwise do nothing

CUDA-Based Defect Detection Algorithms – Edge Detection

Detection of Upper-Left Edge

0 0 0 0 0 0 0

0 0 0 255 0 0 0

0 0 255 255 255 0 0

0 255 255 255 255 255 0

0 255 255 255 255 0 0

0 255 255 255 0 0 0

0 0 0 0 0 0 0

Array

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

Array A

0 0 0 0 0 0 0

0 0 0 255 0 0 0

0 0 255 255 255 0 0

0 255 255 255 255 255 0

0 255 255 255 255 0 0

0 255 255 255 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 255 0 0 0

0 0 255 255 255 0 0

0 255 255 255 255 255 0

0 255 255 255 255 0 0

0 255 255 255 0 0 0

0 0 0 0 0 0 0

Target pixel’s left-upper pixel value = 0

0 0 0 0 0 0 0

0 0 0 255 0 0 0

0 0 255 255 0 0 0

0 255 255 0 0 0 0

0 255 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

Array A

No action

& Target pixel’s right-bottom pixel value = 255

CUDA-Based Defect Detection Algorithms – Edge Detection

Detection of Upper Edge

0 0 0 0 0 0 0

0 0 0 255 0 0 0

0 0 255 255 255 0 0

0 255 255 255 255 255 0

0 255 255 255 255 0 0

0 255 255 255 0 0 0

0 0 0 0 0 0 0

Array

0 0 0 0 0 0 0

0 0 0 255 0 0 0

0 0 255 255 255 0 0

0 255 255 255 255 255 0

0 255 255 255 255 0 0

0 255 255 255 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 255 0 0 0

0 0 255 255 255 0 0

0 255 255 255 255 255 0

0 255 255 255 255 0 0

0 255 255 255 0 0 0

0 0 0 0 0 0 0

Target pixel’s upper pixel value = 0

0 0 0 0 0 0 0

0 0 0 255 0 0 0

0 0 255 255 255 0 0

0 255 255 0 0 255 0

0 255 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

No action

0 0 0 0 0 0 0

0 0 0 255 0 0 0

0 0 255 255 0 0 0

0 255 255 0 0 0 0

0 255 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

Array A

Array A

& Target pixel’s bottom pixel value = 255

& Array A’s target pixel value ≠ 255

CUDA-Based Defect Detection Algorithms – Edge Detection

Detection of Upper-Right Edge

0 0 0 0 0 0 0

0 0 0 255 0 0 0

0 0 255 255 255 0 0

0 255 255 255 255 255 0

0 255 255 255 255 0 0

0 255 255 255 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 255 0 0 0

0 0 255 255 255 0 0

0 255 255 255 255 255 0

0 255 255 255 255 0 0

0 255 255 255 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 255 0 0 0

0 0 255 255 255 0 0

0 255 255 255 255 255 0

0 255 255 255 255 0 0

0 255 255 255 0 0 0

0 0 0 0 0 0 0

Target pixel’s right-upper pixel value = 0

0 0 0 0 0 0 0

0 0 0 255 0 0 0

0 0 255 255 255 0 0

0 255 255 0 255 255 0

0 255 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 255 0 0 0

0 0 255 255 255 0 0

0 255 255 0 0 255 0

0 255 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

& Target pixel’s left-bottom pixel value = 255

& Array A’s target pixel value ≠ 255 Array

No action

Array A

Array A

CUDA-Based Defect Detection Algorithms – Edge Detection

Detection of Right Edge

0 0 0 0 0 0 0

0 0 0 255 0 0 0

0 0 255 255 255 0 0

0 255 255 255 255 255 0

0 255 255 255 255 0 0

0 255 255 255 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 255 0 0 0

0 0 255 255 255 0 0

0 255 255 255 255 255 0

0 255 255 255 255 0 0

0 255 255 255 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 255 0 0 0

0 0 255 255 255 0 0

0 255 255 255 255 255 0

0 255 255 255 255 0 0

0 255 255 255 0 0 0

0 0 0 0 0 0 0

Target pixel’s right pixel value = 0

0 0 0 0 0 0 0

0 0 0 255 0 0 0

0 0 255 255 255 0 0

0 255 255 0 255 255 0

0 255 0 0 255 0 0

0 0 0 255 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 255 0 0 0

0 0 255 255 255 0 0

0 255 255 0 255 255 0

0 255 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

& Target pixel’s left pixel value = 255

& Array A’s target pixel value ≠ 255 Array

No action

Array A

Array A

CUDA-Based Defect Detection Algorithms – Edge Detection

Detection of Lower-Right Edge

0 0 0 0 0 0 0

0 0 0 255 0 0 0

0 0 255 255 255 0 0

0 255 255 255 255 255 0

0 255 255 255 255 0 0

0 255 255 255 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 255 0 0 0

0 0 255 255 255 0 0

0 255 255 255 255 255 0

0 255 255 255 255 0 0

0 255 255 255 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 255 0 0 0

0 0 255 255 255 0 0

0 255 255 255 255 255 0

0 255 255 255 255 0 0

0 255 255 255 0 0 0

0 0 0 0 0 0 0

Target pixel’s right-bottom pixel value = 0

0 0 0 0 0 0 0

0 0 0 255 0 0 0

0 0 255 255 255 0 0

0 255 255 0 255 255 0

0 255 0 255 255 0 0

0 0 255 255 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 255 0 0 0

0 0 255 255 255 0 0

0 255 255 0 255 255 0

0 255 0 0 255 0 0

0 0 0 255 0 0 0

0 0 0 0 0 0 0

& Target pixel’s left-upper pixel value = 255

& Array A’s target pixel value ≠ 255 Array

No action

Array A

Array A

CUDA-Based Defect Detection Algorithms – Edge Detection

Detection of Lower Edge

0 0 0 0 0 0 0

0 0 0 255 0 0 0

0 0 255 255 255 0 0

0 255 255 255 255 255 0

0 255 255 255 255 0 0

0 255 255 255 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 255 0 0 0

0 0 255 255 255 0 0

0 255 255 255 255 255 0

0 255 255 255 255 0 0

0 255 255 255 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 255 0 0 0

0 0 255 255 255 0 0

0 255 255 255 255 255 0

0 255 255 255 255 0 0

0 255 255 255 0 0 0

0 0 0 0 0 0 0

Target pixel’s bottom pixel value = 0

0 0 0 0 0 0 0

0 0 0 255 0 0 0

0 0 255 255 255 0 0

0 255 255 0 255 255 0

0 255 0 255 255 0 0

0 255 255 255 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 255 0 0 0

0 0 255 255 255 0 0

0 255 255 0 255 255 0

0 255 0 255 255 0 0

0 0 255 255 0 0 0

0 0 0 0 0 0 0

& Target pixel’s upper pixel value = 255

& Array A’s target pixel value ≠ 255 Array

No action

Array A

Array A

CUDA-Based Defect Detection Algorithms – Edge Detection

Detection of Lower-Left Edge

0 0 0 0 0 0 0

0 0 0 255 0 0 0

0 0 255 255 255 0 0

0 255 255 255 255 255 0

0 255 255 255 255 0 0

0 255 255 255 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 255 0 0 0

0 0 255 255 255 0 0

0 255 255 255 255 255 0

0 255 255 255 255 0 0

0 255 255 255 0 0 0

0 0 0 0 0 0 0

Target pixel’s left-bottom pixel value = 0

0 0 0 0 0 0 0

0 0 0 255 0 0 0

0 0 255 255 255 0 0

0 255 255 0 255 255 0

0 255 0 255 255 0 0

0 255 255 255 0 0 0

0 0 0 0 0 0 0

& Target pixel’s right-upper pixel value = 255

& Array A’s target pixel value ≠ 255 Array

No action

Array A

CUDA-Based Defect Detection Algorithms – Edge Detection

Detection of Left Edge

0 0 0 0 0 0 0

0 0 0 255 0 0 0

0 0 255 255 255 0 0

0 255 255 255 255 255 0

0 255 255 255 255 0 0

0 255 255 255 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 255 0 0 0

0 0 255 255 255 0 0

0 255 255 255 255 255 0

0 255 255 255 255 0 0

0 255 255 255 0 0 0

0 0 0 0 0 0 0

Target pixel’s left pixel value = 0

0 0 0 0 0 0 0

0 0 0 255 0 0 0

0 0 255 255 255 0 0

0 255 255 0 255 255 0

0 255 0 255 255 0 0

0 255 255 255 0 0 0

0 0 0 0 0 0 0

& Target pixel’s right pixel value = 255

& Array A’s target pixel value ≠ 255 Array

No action

Array A

CUDA-Based Defect Detection Algorithms - Redundancy Detection

0 0 0 0 0

255 255 0 0 0

255 255 0 0 0

255 255 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 255 255

0 0 0 255 255

0 0 0 255 0

0 0 0 0 0

Test object’s right part Test object’s left part

0 0 0 0 0

255 255 0 0 0

255 255 0 0 0

255 255 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 255 255

0 0 0 255 255

0 0 0 255 0

0 0 0 0 0

Test object’s right part Test object’s left part

0

255

255

255

0

0

255

255

0

0

Array B Array C

CUDA-Based Defect Detection Algorithms - Redundancy Detection

0

255

255

255

0

0

255

255

0

0

Array C

Array B’s

target pixel

value = 255

0

2

2

255

0

Array B

Array C’s

target pixel

value = 255

0

255

255

0

0

Array C

0

2

2

0

0

Array B

Array C’s

target pixel

value = 0

0

2

2

0

0

Array B

0

2

2

0

0

Arrat B

Target pixel’s

Upper pixel

value = 0

0

2

2

0

0

Array B

Target pixel’s

Upper pixel

value ≠ 0

0

1

2

0

0

Array B

0

1

0

0

0

Array B

0

1

0

0

0

Array B

Array B’s

target pixel

value = 2

Array B’s

target pixel

value = 0

Array B’s

target pixel

value = 1

Array B’s

target pixel

value = 0

Array B

Complete Process Flow of 2D Defect Inspection

Experimental Results of DISCS

 The hardware configuration of the experiment includes a test object

and two CUDA workstations, which controls a line scan camera.

 In the experiment, CUDA C program and MPI functions were used

on the CUDA workstation.

 The test object’s width and length are 8.6 cm and 28 cm,

respectively.

 The precision requirement specifies that each image pixel represents

a 3.5 μm x 3.5 μm area.

 Each time window needs to be calculated within 250 ms.

 In each time window, the CUDA workstation needs to finish the

defect detection in an image of 12288 x 5000 pixels.

 Totally 16 image strips are to be inspected within 4 s (70 mm/s).

Experimental Results of DISCS

 Dark-field image of a part of one back-coated

mirror piece

Experimental Results of Simulated Defect Patterns (1)

Time

Size

12288 × 5000 pixels

CPU to GPU(ms) 59.296

CUDA kernel

function(ms)
47.3

GPU to CPU(ms) 57.39

Total time(ms) 163.986

Defect number 4

Time Time

Time
Size

Experimental Results of Simulated Defect Patterns (2)

Time
CCD

(Left) (Right)

12288 × 5000

pixels (left)

12288 × 5000

pixels (right)

CPU to GPU(ms) 61.0682 62.6171

CUDA kernel

function(ms)
51.1604 51.2616

GPU to CPU(ms) 59.8082 59.6373

Redundant defect

in CPU(ms)
0.1662 0

Total time(ms) 172.203 173.516

Defect number 3 2

New defect number 4

Time

Size

Experimental Results of Simulated Defect Patterns (3)

(a) (b) (c) (d)

Experimental Results of Simulated Defect Patterns (3)

(a) (b) (c) (d)

CPU to GPU(ms) 60.9912 58.3117 62.0705 61.5419

CUDA kernel function(ms) 51.4951 51.9195 52.8371 51.2708

GPU to CPU(ms) 60.5924 59.701 59.1734 60.3451

Redundant defect in

CPU(ms)
0.1703 0.1847 0.1791 0

Total time(ms) 173.249 170.117 174.26 173.158

Defect number 2 5 4 2

New defect number 9

Time

Experimental Results of Simulated Defect Patterns (4)

(a) (b) (c) (d)

Experimental Results of Simulated Defect Patterns (4)

(a) (b) (c) (d)

CPU to GPU(ms) 61.0697 61.4254 61.9181 60.9409

CUDA kernel function(ms) 51.8225 50.9516 50.1037 52.3008

GPU to CPU(ms) 59.6589 58.9214 59.3474 59.5655

Redundant defect in

CPU(ms)
0.03382 0.3402 0.1719 0

Total time(ms) 172.5849 171.6186 171.5411 172.8072

Defect number 3 3 1 3

New defect number 7

Time

Experimental Results of Simulated Defect Patterns (5)

(a) (b) (c) (d)

Experimental Results of Simulated Defect Patterns (5)

(a) (b) (c) (d)

CPU to GPU(ms) 57.8416 61.0743 61.8852 61.4629

CUDA kernel function(ms) 52.1556 55.1779 50.9634 49.6541

GPU to CPU(ms) 56.3132 59.8729 60.3045 61.6009

Redundant defect in

CPU(ms)
0.178 0.1914 0.1601 0

Total time(ms) 166.4884 176.3165 173.3132 172.7179

Defect number 3 5 4 3

New defect number 11

Time

Experimental Results of Simulated Defect Patterns (6)

(a) (b) (c) (d)

Experimental Results of Simulated Defect Patterns (6)

(a) (b) (c) (d)

CPU to GPU(ms) 62.457 62.1429 62.2435 62.3949

CUDA kernel function(ms) 49.9108 48.172 51.9457 50.0745

GPU to CPU(ms) 97.956 95.8898 85.225 79.3337

Redundant defect in

CPU(ms)
0.1765 0.1652 0.1693 0

Total time(ms) 210.5 206.3699 199.5835 191.8031

Defect number 3 2 3 3

New defect number 8

Time

Experimental Results of Simulated Defect Patterns (7)

 Total amount of time is calculated as

239.3 milliseconds and 209.91

milliseconds, which is within the time

window, 250 milliseconds.

3D Inspection of Defect in

Transparent Surface

Determination of 3D Profiles

 Projection fringe technique applies a straight-line grating

onto an object to study the surface topography by

recording the grating deformation due to topography

variation.

 Shadow moiré topography positions the grating close to

the object and the contour lines of the shadows at the

object surface under the grating are observed.

Projection fringes Shadow moiré topography

Scanning Moiré Topography

 Scanning moiré technique, which is adapted from the traditional

projection fringe technique, records contour images at the object

surface using a linear CCD camera and a motorized transition stage.

 Similar to the conventional shadow moiré, the surface height

distribution of the object is mathematically described as follows:

h x, y() =
f x, y()

2p

é

ë

ê
ê

ù

û

ú
ú
P

0
cota = N x, y() P

n

ϕ(x, y) : The phase difference distribution between object

 surface and reference plane for each point (x, y)

N(x, y) : The fringe order of the surface contour at

 each point (x, y)

h(x, y) : The object height at an arbitrary point (x, y)

 relative to the virtual reference plane

Po & Pn : Respectively the grating pitch in the direction

 parallel and perpendicular to the reference plane

 : The grating projection angle inclined to the

 optical axis of the CCD

Scanning Moiré Topography

 Scanning moiré technique, which is adapted from the traditional

projection fringe technique, records contour images at the object

surface using a linear CCD camera and a motorized transition stage.

 Similar to the conventional shadow moiré, the surface height

distribution of the object is mathematically described as follows:

h x, y() =
f x, y()

2p

é

ë

ê
ê

ù

û

ú
ú
P

0
cota = N x, y() P

n

 The surface contour is directly related :

1. The phase distribution of the
interferogram

2. The measurement sensitivity of the object
height is dependent on the projected
grating pitch

3. Grating incidence angle

The fringe order at any point is determined by the phase at that point so that the surface
topography of the specimen can be extracted from its phase distribution. With an appropriate
phase measuring technique, contour maps can be used to generate surface topography
quantitatively.

Phase Measuring Technique

 Since the sets of contour maps will be obtained

separately from the RGB channels, the inherent phase

shift between each two of the three intergerograms

provides sufficient information for Phase Shifting

Interferometry (PSI) on the fringe pattern.

 Three frames of intensity data were simultaneously

recorded with a 120o phase change between any two

adjacent readouts and are presented by

 The phase distribution of the contour map is obtained:

A continuous phase shift
equivalent to 1200 exists for the
three sets of interferogram. For
the red, green, and blue contour
fringes, these correspond to 00,
+1200 and +2400, respectively.

P =

3S

1+3n
, n = 0,1,2...

P : The grating image on the CCD S : The pitches of the three RGB lines

]2404),(cos[),(

]1202),(cos[),(

)],(cos[),(

0

3

0

2

1

nyxIIyxI

nyxIIyxI

yxIIyxI

BA

BA

BA

f(x, y) = tan-1 3(I
1
- I

3
)

2I
2
- (I

1
+ I

3
)éë ùû

Scanning Projection Fringe System

 System Specifications

 Resolution 4096 pixels

 CCD Pixel Size 10 μm x 10 µm

The current

magnification

0.5x

1200 phase shift
between each color
channel , the
projected pitch of
the grating on the
CCD should be 22.5
μm for n = 1

The projected pitch of the grating on the

CCD : 45 μm

P =

3S

1+3n

RGB Calibration

 Each channel has different photosensitivity.

 The RGB inputs to the CCD were calibrated by adjusting the output

RGB lines of the DLP.

The projected grating image
on a white screen from the DLP
illumination

The initial intensity levels of the
RGB channels in a color line CCD

The adjusted intensity levels of
the RGB channels

Evaluation of System Performance

 Sample Area：10mm x 25mm

 Measurements were repeated 10 times and the

measurement repeatability were respectively 0.34

μm and 0.24 μm.

Step Height 10 μm 20 μm

The measured average step

heights

10.54 μm 20.78 μm

Steep surfaces combined with gauge block
(heights of 1.12 mm, 1.14 mm, and 1.15 mm)

Sub-micrometer measuring accuracy and
high repeatability have been achieved !

* The primary limitation arises from the camera
occlusion or shadow caused by steep profile just like

the traditional projection fringe method.

48

3D Profile: Sapphire Substrate

 4-inch diameter

 The flatness of the substrate based on the minimum

zone evaluation of surfaces is 2.33 μm.

 By comparison with 3.25 μm peak to valley value

obtained from a white light interferometer at 1 nm

resolution, the measurement uncertainty was found to be

roughly 1 μm.

It can be controlled to speeds of up to 100 mm/s

thus making it possible to inspect a 4-inch

substrate to within a test duration of 1 second.

Reconstructed surface profile after PSI algorithm

The standard deviation after five trials is ~0.25 μm

which shows possible accuracy in micrometer order

and high precision in the sub-micrometer scale.

Co-planarity of a BGA Substrate

 The measured results of co-planarity of
3.4 μm with a measurement
repeatability of 0.32 μm were obtained.

Wide-field image of a BGA substrate 3D surface profile of the BGA substrate

 Sample Area：35 mm x 35 mm

 1750 line images

Cloud-Based Analysis System

Why Cloud?

 Collaborations via Cloud

Reference: activeco.com

Reference: accellian.com

Reference: claranet.de

 Safely synchronize

design activities

via Cloud

Next-Generation Collaborations via Cloud

Controlled

Light

Source

Controlled

CCD

Modules

Automated Inspection

Computing

Array

Parallel

Image

Processing

Parallel

Analysis

Automated

Optimization

and Control

Coordination

Management via Cloud

Hierarchical structure

Distributed structure

Comparison of Various Collaboration Models

 A multidisciplinary design optimization problem has

been solved by same amount of computing nodes on

Cloud but using two different collaboration models.

 Hierarchical model

 10 iterations

 432 function evaluations

 30 units of working time

 Distributed model

 14 iterations

 168 function evaluations

 42 units of working time

Hierarchical structure

Distributed structure

Conclusion and Discussion

 Numerous methods have been developed for surface defect

detection; however, little has addressed a situation where both

speed and precision requirements are satisfied

simultaneously.

 In our research, the requested inspection requirement is

measurement area of 28 cm x 23 cm within 4 seconds with the

resolution of 3.5 μm x 3.5 μm.

 An expandable Distributed Image Sensor Computing System

(DISCS) has been developed to achieve in-line surface defect

detection.

 The hardware architecture consists of independent machines that form a

master-slave parallel computing model

 The software architecture consists of MPI processes that run in CPUs

and CUDA threads that run in GPUs.

Conclusion and Discussion (Continued)

 Measurement of 3D profile topography has been developed using

moiré techniques.

 Straight-line grating was projected on the object surface using digital light

processing (DLP) illumination.

 Tri-linear colored CCD grabbed the successive line images with 120o phase

difference between each intergerogram.

 The measurement range of the proposed grating projection module

and image capture module is flexible from few millimeters to

hundreds of millimeters.

 The measurement speed up to 100 mm/s is possible.

 Automated optical inspection of moving substrates on a motorized

transition stage has been demonstrated and is suitable for in-line or

in-process inspection of conveyed products.

 The proposed method is a very good choice for non-contact

profilometry because the inspection process can be handled

remotely using simple instruments operating at high speed, yet

providing good accuracy, high resolution, and insensitivity to

environmental noise.

