

Reconfigurable Intelligent Precision Robotic Machining Machine

Jenq-Shyong Chen, Professor Department of Mechanical Engineering National Chung Hsing University

Conventional deburring and polishing processes: human hand processing

Fabrications of 3C electronic devices (such as smart phone, ultra-book and iPad) require a lot of human hand deburring and polishing of metal parts.

Medical Implants

Investment Casting

Human offhand Grinding/Polishing/Buffing

Gate removal grinding

al Contour grinding Profile grinding

Interior surface grinding

High-gloss surfaces with Ra values below 50nm on the running surfaces of the knee joints

For the manufacturing of tools $12 \sim 15\%$ of the manufacturing cost and $30 \sim 50\%$ of the manufacturing time are allocated to polishing. Robot polishing offer potential to strengthen the European Tooling Industry by significant decrease of polishing costs (75%) and time (90%). [1]

Polishing

Buffing

[1] Automated polishing for the European tooling industry, Project reference-246001, European Seventh Framework Program (FP7-NMP), www.automated-polishing.eu

Polishing/deburring of complex geometric and free form surface parts

There is an increasing demand for production machines for the manufacture of

- workpieces with a large volume (e.g. 3C electronic devices) made within a short delievery time
- with a comparatively small amount of material to be removed (e.g. deburring and polishing)

Robotic light machining system (deburring, polishing, grinding, and light milling)

VersaFinish ACT-390 Axially-Compliant Finishing Tool

Integration of Grinding/Milling/Polishing and AOI/CT in a dynamic 5-axis CNC Machining System

COMPLETE PRODUCTION IN A SINGLE CLAMP

The Schütte WU 305 linear universal CNC cutter grinder performs milling, grinding, belt sanding and polishing all in one operation

Polishing

Robotic Grinding/Polishing System (USA)

The key benefit of robotic technology is increased productivity: it can take around 45-90 min to hand-polish and buff a femoral implant but a robot can achieve this, with perfect results, in 7-8 min. One implant manufacturer maintains that a single robot can typically do the work of around 10-15 people in this application. [1]

1. Robert Bogue, "Finishing robots: a review of technologies and applications," Industrial Robot: An International Journal 36/1 (2009) 6–12

Comparisons of the conventional 5-axis machine tool and robotic machining process

Industrial robots will become the major workforces of future factory

Operator assisted loading/unloading machining machine machining system

machining machine)

Modular mechatronic power joint of robots of DLR light weight robots

Source: DLR- Institute of Robotics and Mechatronics,

Soft robotics

Recorded piano sound signal demonstrating the ability to play at varying loudness

More than 40,000 transmissions have been produced to date!

Comparisons of light weight robot and conventional industrial robot

No. of axes: 7 Total weight: 14kg Max. Payload: 14kg Maximum reach: 936 mm Torque sensor: yes

No. of axes: 6 Total weight: 29kg Max. Payload: 5kg Maximum reach: 892 mm Torque sensor: no

NCHU Reconfigurable intelligent precision robotic machining machine

Task 1 Fast calibration and measurement technology of the spatial positioning errors and path contouring errors

> Task 2 High speed 3D objects recognition and positioning

Task 3 Modular and reconfigurable robotic light machining system

Task 4 Path planning and impedance control of vision guided light weight robot

Thanks for your attention!