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Background %Y

1. Miniaturization of products is a recent trend.

2. LED (Light Emitting Diode) is one of today's
most energy-efficient and rapidly-developing
lighting technologies.

3. It has the potential to fundamentally change
the future of lighting all over the world.

4. Accordingly, a wear-resistant and conductive
LED probe is essential for testing LED during
process.
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Objective

The objective of the research project is to
develop an intellectualized symmetric high-
speed dual-spindle grinding machine.

By applying the developed techniques of the
four sub-projects, the LED-probe made of
tungsten carbide can be ground efficiently.

The current development is focused on the
feasibility study of LED-probe fast grinding
with less costly way and construction of the
autonomous technology.
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The project team S%g

Sub-project-4 (Prof. Chen Interface e
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In-situ truing and dressing of the
grinding wheel
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Symmetric High-Speed Dual-
spindle Grinding Machine
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The application and 0
design of LED probe

i Probe Length D

Taper Length
R
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T——— T

Sharp tip Radius tip

o

Tungsten carbide
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Design of the intellectualized symmetric
high-speed dual-spindle grinding machine

fr——
Dressing system
(Sub-project-4)

Design and analysis
(Sub-project-1)

\\L\ED probe

Diagnosis system| | ;
el -

(Sub-project-3)

Image system
(Sub-project-2)

Integration 4
(Main project)

2014/7/31 CASE 2014 7

Design of the intellectualized symmetric
high-speed dual-spindle grinding machine

This machine is equipped with three translation stages (X-, Y- and Z-
axis), one rotary stage (as the C-axis) and two high-speed dual-spindle.
2014/7/31 CASE 2014
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Finished intellectualized symmetric high-
speed dual-spindle grinding machine

Air balance 1. Linear motor (stage)

2. Resolution: 1nm

3. Accuracy: +/- 300nm

4. No contact, no wear
and no backlash

5. USD 300,000 totally

A nanometer scale grinding depth can be
provided in the grinding system.
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The proposed approach — ORG,
double-grinding

f"\ 500rpm =
\&/AOL I &T | @

Rad\ai symmetric grinding

1. To guarantee a high-efficiency and high-precision machining on the
LED probe, a double-grinding approach is proposed in this study.

2. This design is helpful in increasing the bilateral symmetry and the
grinding efficiency of the LED probe.
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Single-grinding Y

@

Z-axis

® 9

Workpiece
spindle

High-speed spindle
-~ (61’3,000rpm)V

LED probe
High-speed grinding area

Note, the grinding area is not at the central part of the
grinding-wheel since the speed of this area is zero.
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The grinding-wheel used %ﬁ%

'/ E 9

| 1’ E |
N 9, Boron-doped polycrystalline
p o composite diamond (BD-PCD)

Electron-hole in the diamond lattice, which
can contribute to electric conduction.

The BD-PCD grinding-wheel can be more easily
trued by micro rotary w-EDM.
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Grinding-wheel truing processfggg

Boron-doped polycrystalline
composite diamond (BD-PCD)

In-situ truing

A high co-axial accuracy is achieved
between the grinding-wheel and the

high-speed spindle. The BD-PCD grinding-wheel is formed

by using micro rotary w-EDM.
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a
The trued surface of the S5

BD-PCD grinding-wheel
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Raman spectrum

The trued surface

* During the discharge process, the temperature in the plasma
channel may reach 8,000-12,000 C.

* Hence, graphitizing of diamond is inevitable.
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®
LED-probe grinding test (g

Parameter Condition
Spindle speed | 25,000-60,000(rpm) |
. Workpiece speed 500(rpm)
Workpiece Tungsten carbide
Diameter ®0.7(mm)
Grinding depth 1(um/stroke)
Grain size
Feed-rate 0.2(mm/min)
Coolant DOG 1000(Qil-base)
Grinding time 18(min)
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The amount of the vibration &8

on the corresponding spindle

A grain size of 10 micrometers is used.

[ @) um |

NTNU (1e mm MTNU

0.1 |
. Workpiece spindle
u

Nl | |
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The amount of the vibration
on the corresponding spindle

A grain size of 25 micrometers is used.
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The amount of the vibration %;@
on the corresponding spindle

A grain size of 40 micrometers is used.
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Vibration source

Right grinding-\

wheel structure

Upper

Lower stage B8

80mm

The vibration is occurred from the interface
between the slide and the lower stage.
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A case study in the past %Y

(A commercial case)

Development of a quantitative cell-
counting slide made of PMMA
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Characteristics of urine

Composition:
Normally, a human urinary sediments are composed of

about 95 percent water and 5 percent solutes.
Normal solutes found in urine include:

» Urea

» Creatinine

» Uric acid

> Ketone bodies
> Potassium

» Sodium

» Chloride

A human urinary sediments
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Design of a quantitative cell oL,

counting slide made of PMMA

(For detection of a human urinary sediments)

Cover._ Convex platform.~,
_—PMMA slide

P T
2N

The width for each
microgroove is desig

only at 8-10 micrometers. “~ "“Second counting portion
4 f '(Convex region, Height: 50pm

A concave platform cell-counting slide mold
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The proposed in-situ
fabrication process
—Shaft

p— QJ—m’: Wire )
(7=1/g [CNC- A
N

) -

~~BD-PCD
(1) Taper hole  (2) Wheel-tool (3) Coaxial
formed formed working
4
)
A >
2
(6) Finish (5) Micro (4) On-line
injection deburring

Note, in-situ fabrication enables a microgroove array to
precisely generate on a biomedical-mold.
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Design of the high-precision

tabletop hybrid CNC machine tool

I ——
XY P FoZdh X 2

A tabletop hybrid CNC machine tool

This machine is equipped with three commercial translation

stages (X-, Y- and Z- axis) and one rotary stage (as the C-axis).
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Design of the perpendicular DAY,

dual-spindle

(3

heel4,
0|
‘-‘(Sp'“‘”e :1

= N
'Q : _ BD-PCD wheel-tool

t WEDG mechanism
Hybnd worktable

Designed dual-spindle set-up In-situ machining

To guarantee machining accuracy and reduce tedious readjustment
during process, a set of perpendicular dual-spindle is propose in this
study.
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Analyses of deformation %;\%

and resonance
7\

(1) Gridding

(3) Deformation 1.6 4
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Design for the hybrid 03%
working platform Yl
T —

Brass wire Rotary stage

Finished tabletop hybrid @%\g
CNC machine tool

Close-up view

To generate the accuracy of such a fine microgroove array, a hybrid
working platform to support the in-situ process is designed.
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This machine can provide for microgroove
grinding by nanometer scale grinding depth.
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Thinning of the BD-PCD wheel-tool

BD-PCD is capable of electrical conductivity, meaning it can be
more easily cut by electrical discharge machining on the developed
machine tool.
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5-pum in edge thickness

MNTHU

A thinned BD-PCD wheel-tool with an edge-thickness of 5-um and a
slight draft angle of 5 degree.
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A smoothly cut (broken) 03%%
in diamond grain Yl

PN
L T

MNTHNU

The image demonstrates the BD-PCD can be precisely
formed down to an ultrathin level by rotary micro w-EDM.

2014/7/31 CASE 2014 31

Microgroove generation by(HSFS
High-Speed & Fast-Shallow Grinding

5

Conditions
= d 15 i
Wihessktol{cle) Spindle speed 1,300 (m/min)

Feeding depth 500 (nm/stroke)

v V. Total feeding depth 10 (um)

Py

© = i o 3 (mm)
il ass 20 (One way)

a 20 (mm/min)
Coolant Ol mist

3 mm

‘ Grain
<—L>Vw

- @
©

himax

Workpiece

Path of grain tip

SP3 bonds

1. By applying a fast grinding feed-rate, we can create considerable metal
removals per unit of time.

2. By using a nanometer scale grinding depth, we can keep the diamond lattice
in SP3 bond during grinding because of cold machining conditions used.
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Finished crisscross microgroove ale ,.55\91

MNTHNU

A finished microgroove array with extremely
high straightness and high orthogonality.
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Proposed deburring process at the %U\%
intersections of microgrooves

\ \

MTHNU

Burrs occur as a result of NAK80 mold steel being ductile, and
plowing effect during microgroove grinding.
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Proposed deburring process at the
intersections of microgrooves(cont.)

£ /T

>
(1) Grinding (2)Turin99(TI(3)Grinding B
1 T

£

A

-
(4) Polishing 5) Turning 90° (8) Polishing
re-grinding
Proposed deburring process Before and after deburring
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. o e \%7
Mold design of a quantitative %8%
cell-counting slide
Concave region
(Step-difference: 50um)

Second counting portion
First counting portion

Close fitting
——

/An embedded mold design approach is proposed.
The width for each microgroove is only 8-10 micrometers.
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A

Finished cell-counting slide made of SRy

PMMA and an example of cell counting

Note, the two distinct cell-counting portions can be clearly
revealed in each chamber.

. Itindicates the multiple micro ridge array of the biomedical-slide
can be exactly duplicated from the machined biomedical-mold.
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Conclusions ORY,

» In LED probe grinding case:

1. An intellectualized symmetric high-speed dual-
spindle grinding machine for LED probe grinding has
been developed and verified successfully.

2. A pair of BD-PCD grinding-wheel is dressed by the

rotary w-EDM and a LED probe made of tungsten
carbide has been tentatively grinding in first year.
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Conclusions(cont.) Y

> In biomedical-slide mold case:

1. A high-precision tabletop hybrid CNC machine tool
for in-situ fabricating a biomedical-slide mold has
been developed and verified successfully.

2. The High-Speed & Fast-Shallow Grinding technique
is successfully used to grind microgroove array on
NAK80 mold steel.

3. By using nanometer scale grinding depth results in a
cold machining and preservation for diamond’s SP3
bond structure.
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DY

Conclusions(cont.) Y

4. Due to the design of the in-situ machining function,
the machined biomedical-slide mold requires no
unloading, reloading and calibration.

5. Experimental results prove the convex platform
quantitative cell-counting slide is successfully
developed.

Thank you so much
for your attention!
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Introduction

One of key issue in mechanical manufacturing is vibration [1] .

texture caused by chatter in turning texture caused by chatter in milling
Source of figures: http://74.220.207.117/~horvathl/m-tool-vib.htm

http://www.hv.se/extra/pod/?action=pod_show&id=753&module_instance=11
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B
Outline Y
1. Introduction and the objectives.
2. The proposed approach and procedures
3. Static and dynamic analysis of initial design
4. Metamodel and structural optimization
5. Summary and conclusion
6. References
B
Introduction N

Stiffness is a key parameter of vibration problem.
The equation of 1 DOF mass-spring-damper system

mi+cx+kx= f(¢t)

k c 2
1) =,/—, =——,0,=0,J1-¢",{ <1
n m é/ 2 (km d é/ é/

The stiffness of system is determined by mass
distribution of structure.

Structural design is the foundation for the
development of high-precision manufacturing system.
Analyzing stiffness is an important issue in machine tool
design [2].
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Objectives of sub-project | %W

1. To optimize the structural design for the proposed
intellectualized symmetric high-speed dual-spindles
grinding machine.

2. To propose a dynamic model of grinding chatter for
the designed system.

3. To develop the strategy of chatter suppression for the
designed system.
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Procedure of research

Structural design and analysis
(first year)

Static analysis:

Dynamic analysis?
stiffness & modall&trequenc

\

End )«—|Chatter suppressionj«—{ Chatter simulation |«—| Chatter ana.lys1s &
modeling

2014/7/31

Chatter simulation and suppression
(second year)

CASE 2014

Procedure of the first year

research

S d
Dynanic

eometric

Modeling

Parameter:

R Optimizing, Teating Prob
Endl J«—— Validatin; = =
< = Metamodel Metamodel Optimizatiol

2014/7/31 CASE 2014 7

2014/7/31

Finite element model
of initial design
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Static analysis results AR

X

of initial design - displacement

Patran 2012 64-Bit 18-May-14 11:57:54
Fringe: statics, A1:Static Subcase, Displacements, Translational, Magnitude, (NON-LAYERED)

Deform: statics, A1:Static Subcase, Displacements, Translational,

default_Fringe :
Max 1.56-003 @Nd 2463
Min 0. @Nd 31115
default_Deformation :
Max 1.56-003 @
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Static analysis results AR

X

of initial design - stress

Patran 2012 64-Bit 18-May-14 20:47:06
Fringe: statics, A1:Static Subcase, St nvariants, Von Mises, , (NON-LAYERED)

Deform: statics, A1:Static Subcase. 5 0 Translational,

default_Fringe :
Max 1.25+000 @Nd 124050
Min 1.75-012 @Nd 158142
default_Deformation :
Max 1.56-003 @Nd 123961
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Dynamic analysis results &%

X

of initial design — 15t mode

Patran 2012 64-Bit 18-May-14 10:51:02 1.31400
Fringe: modal, A1:Mode 7 : Freq. = 15.773, Eigenvectors, Translational, Magnitude, (NON-LAYERED) 1 22+00g

Deform: modal, A1:Mode 7 : Freq. = 157% wectors, Translational,

default_Fringe :
Max 1.41+000 @Nd 2760
Min 1.80-002 @Nd 31242
default_Deformation :
Max 1.41+000 @Nd 2760
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Dynamic analysis results &%

X

of initial design — 2"9 mode

Patran 2012 64-Bit 18-May-14 10:51:35
Fringe: modal, A1:Mode 8 : Freq. = 16.205, Eigenvectors, Translational, Magnitude, (NON-LAYERED)

Deform: modal, A1:Mode 8 : Freq. = 1&‘29?&& s, Translational,

Max 1.03+000 @Nd 55490
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i
Results of analysis @%‘%

Deformation at tip <1 um

Max. stress < 2 N/mm?2

Natural frequency = 11.5, 16.2, 20, 25.1, 26.4, 38.9,
43.1, 46.7, 49.3, 50.7...

The lowest frequency > 10 Hz > the frequency of the
low speed spindle (500 rpm)

The high speed spindle (60000 rpm) is far beyond the
100t natural frequency of the system.

2014/7/31 CASE 2014 13

The key part and key point A%
Yp Yp ey

of structural design

From the results of finite element analysis, the first
modal shape and deformation, we know that
headstock and supporting pneumatic cylinder play
main role in static and dynamic responses.

Two key factors decide the static and dynamic
behavior of the designed structure:

The stiffness of contact interface between headstock
and column

The coefficients of structural damping

2014/7/31 CASE 2014

=
Optimization problem

Objective: minimize the weight (or volume)
Design variables: length (xL), height (yH), width (zZW)

Constrains: deformation at tip of probe <2 um
stress < yielding stress
27 natural frequency > 10
(since the 2nd natural frequency is the

most sensitive one)

2014/7/31 CASE 2014 15

Design Variables

Dressing system Design and analysis
(Sub-project-4) < (Sub-project-1)

g, LED probe

Diagnosis system T~
(Sub-project-3)
Image system
(Sub-project-2)

Integration
(Main project)
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Flowchart of optimization ‘%Y

Mathematica: the mathematic software to do the RSM and optimization.

MSC.Patran/Nastran: the software to do the finite element analysis.

Mathematica
Initialize variables

o Optimization Mathematica
« | < L
d results RSM & optimization
¥/\
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Metamodel A%
Response Surface Method

Metamodel

also known as surrogate model, is an approximate
representation [3].

an alternative to costly analysis or experiment [4].

e.g. Genetic algorithms, artificial neural networks,...
Response surface methodology (RSM)
mathematical and statistical techniques to develop
functional relationship between input and response [5].

Design optimization is a computation intensive process.
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Response surface

The response surface is represented by the
polynomial function F(x,y,z).

Quadratic polynomial items for response surface
{Lx,y,z,xy,x2,yz,x°,y*,2°}

Cubic polynomial item for response surface
{Lx,v,z,xy,x2, y2,x*, >, 2° , xyz,xy" , x2°, X’ y, Xz, yz°, y*z}

The process of RSM is to find the coefficients of these
polynomial items.

2014/7/31 CASE 2014

: LN
Creation of response surface g,y

Three factors, xL, yH, and zW, are used for RSM.
Three levels for each of these factors.
Totally there are 32 designs.

Two kinds of finite element analysis, static and dynamic
analysis, are run for each design, which means 54 runs
of analysis.

Two results of finite element analysis, displacement
and 2" frequency are used to create the response
surface, along with volume of structure.

The stress result is not considered since it is far below
the yielding stress.
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LN
Response surface of volume 95y
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Response surface of
24 frequency

15 S
. 7,
2 e .-~
:‘A e
A=
2 77
{7

A%
Yy

10

23

Response surface of A%
displacement N

22
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Optimization results

Mathematica is used to find the optimal point on the
response surface. Quadratic and cubic polynomials are
used for design | and Il respectively.

(xL, yH, zZW) | Change of | Change of | Change of
(mm) Volume | Displacement | Frequency
% % %
Original | (200,40,355) 0 0 0
Design
Optimal | (175,51,389) -11.34 -0.3 -0.818
Design I
Optimal | (184,47,389) -11.62 -0.32 -0.823
Design 11
2014/7/31 CASE 2014 24
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Summary and conclusion %V

The finite element analysis of initial design is used to
decide the key points for subsequent analysis and design.

The optimization for the weight of structure of initial design
is completed.

Metamodel with response surface method is used for
optimization.

Stiffness of contact interface and structural damping
coefficient of the headstock are the key parameters of
analysis.

Further experiments to identify system parameters are
needed for validation of the design model.
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Sub-pixel Edge Detection of LED
Probes Based on Partial Area Effect
and Iterative Curve Fitting

Advisor : Chung-Yen Su
Students : Nai-Kuei Chen, Chen-Chun Wang, Li-An Yu

Introduction (2/2)
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Introduction (1/2)

This subproject is focused on measure the angle and radius of a
LED probe by computer vision.

* To do that, we need to find edge points.

* Some of the common pixel-level edge detection methods are
» Sobel, Canny, Laplacian of Gaussian (LOG), Scharr

* Sub-pixel edge detection is used to increase the precision of edge
detection.

* The common sub-pixel edge detections include
» Curve-fitting method
» Moment-based method
» Reconstructive method
» Partial area effect method

Flow Chart

plxel edge point

Sub-pixel edge point

Ideal image

Captured image

First derivative

. Gray and Pixel
' _> ' | edge detection

j . Angle and radius
eglz:tcif)n ed S::;‘:iion —>| cakulation
S (Curve fitting)




Getting the Input Image

Converting and Smoothing

2014/7/31

* Yellow arrow is coaxial light from lens.
- .

-

» Gray = 0.299R + 0.587G + 0.114B

X
256

* Convert a RGB image to a gray image

1

4

6

4

1

4 16 24 16 4
6 24 36 24 6
4 16 24 16 4

4

6

4

» Use a Gaussian filter to smooth the resulting gray image

CDF(%)

¢ For Sobel

Use Sobel operator to measure the magnitudes of gradient( |dx|+|dy| ) over the image
and make CDF

CDF>=98.5%

=

7
0 50 100 150 200 250 300 | dx | + | dyl

CDF(%)

* For Canny
* Multiply the median of gray image by 0.3 as high threshold and 0.1 as low threshold.

CDF>=50%

100

150

200

TH, =tx0.3

TH,=tx0.1

300_Intensity
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Sub-pixel Edge Detection

Object Extraction

* Classify edge points into three groups Xavg » After object extraction, we compute Sub-pixel edge detection for every groups
respectively. And the Sub-pixel edge detection methods we use are:

1. Curve-fitting method

2. Moment-based method [1]

1. Distinguish between left and right side:
edge point cou ntsx_
L

_Zizo

X Zi=o 0000
&g edge point cou nts

2. Get gradient direction: 6 = tan™" % > Invariant rotation and orthogonal
1.1, 12l 3. Reconstructive method [2]
> Create a quadratic model with adjacent gray-scale values to the selected points
dx=1Img* 2o |2 dy=Img* ° °|° 4. Partial area effect method [3]
ot e »  Create a new mask from camera acquired images

3. Differentiate edge points between line and circle:
1)  Line: |0 |< 7°,Circle: |0 |>30".
2) Discard: 7°< 16| <30 9

10

Iterative Curve Fitting (2/5)

Start

Line case: | Circle case:

iterative
times : 0 Get points which
should be calculated
iterative and two line-equations
times : 1
Remain points
iterative % Impossible for between two equation

i circle point |

T H Get equation by
i Curve-fitting Eliminate points

above center

times : 5

Impossible for % i __Impossible for
Dt < o ot Al points under
circle poin circle poin center of circle

Y

Output equation
Blue line: circle points

Black line: line points G 12

11
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Circle case:

Iterative Curve Fitting (3/5) Iterative Curve-Fitting (4/5)

Curve-fitting

Calculate Angle and Radius

* Angle: Use the cosine theorem

6 = cos( slope X slpog + 1 |

)

slop@2 +1 X\/slpogz +1

* Radius: According to parameters of circle equation
Circular equation:
x> +y2+dx+ey+f=0
Radius :

. N 1
iterative ‘ R=1/dZ+e?—4f

curve-fitting




Result

Angle Result (1/2)
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MI: Sobel + curve-fitting
M2: Sobel-Zernike moments [1] + curve-fitting
M3: Canny + curve-fitting
M4: Canny + partial area effect [3] + curve-fitting
MS5: Canny + reconstructive [2] + curve-fitting

MI1’: Sobel + iterative curve-fitting

M2’: Sobel-Zernike moments [1] + iterative curve-fitting

: Canny + iterative curve-fitting

: Canny + partial area effect [3] + iterative curve-fitting
: Canny + reconstructive [2] + iterative curve-fitting

M3’
M4’
M5’

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6
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Referred Mi M2 M3 M4 M5
values
Imagngle ((?e‘éii) (:e‘;ii) Error(%) (:e‘;%:) Error(%) (:e‘;%:) Error(%) (:e‘;%:) Error(%) (:e‘;%:) Error(%)

Fig. 1 11 18.579 68.9 18.748 | 70.436 11111 1.009 11.089 0.809 11.027 0.245
Fig.2 11.2 11.401 1.795 11.427 2.0267 10.847 3.152 10.824 3.357 10.768 3.857
Fig. 3 9.9 13.696 | 38343 13.787 | 39.263 10.063 1.646 10.045 1.464 10.007 1.08
Fig. 4 13.1 18.865 44.007 18.963 44.756 13.247 1.122 13.24 1.068 13.251 1.153
Fig. 5 10.8 11.411 5.657 11.433 5.861 10.824 0.222 10.816 0.148 10.803 0.027
Fig. 6 13.8 14.545 5.399 14.566 5.551 14.011 1.529 13.992 1.391 14.017 1.572
Average error 27.350% 27.982% 1.447% 1.373% 1.322%

Angle Result (2/2)

Radius Result (1/2)

Referred M1 M2 M3’ M4 M5*
values
Imagngle (:e‘;f::) (:e‘;f:::) Error(%) ((;Ae‘;%::) Error(%) ((;Ae‘;%::) Error(%) (:e‘;f::) Error(%) ((;Ae‘;%::) Error(%)

Fig. 1 11 13.045 18.591 13.124 19.309 11.054 0.491 11.019 0.172 10.859 1.282
Fig. 2 112 11.457 2.295 11.486 2.554 10.826 3.339 10.801 3.563 10.749 4.027
Fig. 3 9.9 11.363 14.777 11.409 15.242 10.063 1.646 10.045 1.465 9.993 0.939
Fig. 4 13.1 14.520 10.832 14.567 11.198 13.232 1.008 13.222 0.931 13.218 0.901
Fig. 5 10.8 11.386 5.426 11.388 5.444 10.824 0.222 10.816 0.148 10.803 0.028
Fig. 6 13.8 14.545 5.399 14.566 5.551 14.011 1.529 13.992 1.391 13.982 1319
Average error 9.553% 9.883% 1.372% 1.278% 1.416%

Referred Mi M2 M3 M4 M5
values
Imaadius l?ziiu)g lzzillu; Error(%) lzzillu; Error(%) lzzillu; Error(%) lzzillu; Error(%) lzzillu; Error(%)

Fig. 1 19.75 128232 | 549.276 | 128232 | 549.276 | 21.132 6.997 21.168 7.179 21.808 10.42
Fig. 2 20.25 70.994 | 250.588 | 70.995 | 250.592 | 20.512 1.294 20.529 1.378 21.472 6.035
Fig. 3 21.75 90.304 | 315.190 | 90.304 | 315.190 | 22.320 2.621 22.352 2.768 22,943 5.485
Fig. 4 2225 134.073 | 502.575 | 134.073 | 502.575 | 23.165 4.112 23213 4.328 22.899 2917
Fig. 5 24.25 102.606 | 323.117 | 102.606 | 323.117 | 22.417 7.559 22.447 7.435 22.834 5.839
Fig. 6 22.75 194.681 | 755.741 | 194.681 | 755.741 21.976 3.402 22.014 3.235 22385 1.604
Average error 449.415% 449.416% 4.331% 4.387% 5.383%
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Radius Result (2/2) Conclusion

Referred MDY 2 M3 M NS ¢ According to the experiment, iterative curve-fitting normally has better results than that without
values iteration.
i ) ) ) ) ) ) .
| Radius | Radius | g o | Radius g | Radius g oy | RS oo | RS prorg) * We compare M3’ with M4’ because they have better results than the others:
ma @m) | (um) (um) (um) (um) (um)
- M3’ M4’
Fig.1 | 1975 | 20038 | 1458 | 20064 | 1590 | 21132 | 6997 | 21135 | 7.013 | 21.346 | 8.081 . .
— 4734 16695 Platform: Win7 64bit,
un time (ms . .
Fig.2 | 2025 | 19.621 | 3.106 | 19.624 | 3.091 | 20512 | 1.294 | 2049 | 1215 | 2049 | 1215 (ms) Intel Xeon E3-1230V2,
Average angle error 1.372% 1.278% 8G RAM
Fig.3 | 2175 | 21330 | 1931 | 21318 | 1986 | 22320 | 2621 | 22335 | 2689 | 22574 | 3.788
Average radius error 4.331% 4.276%
Fig.4 | 2225 | 21821 | 1928 | 21824 | 1914 | 23165 | 4112 | 23141 | 4004 | 23167 | 4121
e MB3’: Canny + iterative curve-fitting
Fig.5 | 2425 | 21605 | 10907 | 21.610 | 10886 | 22417 | 7559 | 22439 | 7468 | 22704 | 6375 « M4’ Canny + partial area effect [3] + iterative curve-fitting
Fig6 | 2275 | 21149 | 7.037 | 21137 | 7.000 | 21976 | 3.402 | 22007 | 3266 | 21.925 | 3.626 * We use M4’ as the algorithm of detecting led probes so far.
Average error 4.395% 4.426% 4.331% 4276% 4.534% 22
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/ Introduction \

® Rolling bearing failure represents a high percentage of the
breakdowns in rotating machinery and may result in
catastrophic failures.

@ Failure prognosis in long-term predictions are important topics
when trying to ensure safety of the operation of machine tool.

® The main issue in prognosis is the ability to detect anomaly of
bearing as early as possible.

® In this study, we propose a prognosis algorithm for rolling
bearings based on multiscale entropy, permutation entropy and
support vector data description.
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/ Frequency Response of Bearing at \
_____ Different Stages
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/ Anomaly Detection \

Stage 2
Normal \ ~ anomaly Failure
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Proposed Algorithm \

Training

Prediction

Vibration Data
(Normal Stage)

Vibration Data
(Unknown Stage)

Feature Extraction

Feature Extraction

l

Sample Entropy \

m=2
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Sample Entropy
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/ Sample Entropy
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/ Multiscale analysis \

Scale 2 coarse graining

p— Scale 2 coarse graining

X X Xy X X5 Xg e X

i
A B &R R R B 0B N

o e
%@ 7, 3@ .. Y ” ="

- Scale2

Coarse grained signal
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Multiscale Entropy Index

—_—

Scale 2 Sample Entropy | MSE,

Coarse Grain ~

_ Scale 3 Sample Entropy | MSE,
Signal (Coarse Grain

Scale 100 Sample Entropy MSE, )
(Coarse Grain
J
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/ Permutation entropy \

® x=(4,79,10,6,11,3) m=3

3 0 1 2

: 4 7 97

X2 7 9 10|« To1z
® Xg =|9 10 6 |« T01

xz 10 6 11— 7102

3 6 11 3l1<—T301

X5

® p(mo12) = 2/5, p(Tt192) = 1/5, p(Tt201) = 2/5
e PEn(x, 3) = -2/5In(2/5) -1/5In(1/5) -2/5In(2/5) = 1.522

o Normalize: nPEn(x, 3) = —22 = 0.8494

In(3!)
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min R?

Training data
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SVDD Model
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gupport Vector Data Descripti

min R?

Testing Data

l

SVDD Model

Y

1: Normal i
-1: Anomaly
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gupport Vector Data Descripti(h

min R2[+|C Z &
;
25
Training data

l

SVDD Model
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Abnormal (-1)
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min R?

Testing Data

l

SVDD Model

Y

1: Normal
-1: Anomaly
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@pport Vector Data Descripti

Anomaly may be classified as normal by SVDD
when R is too large

o\

C=05
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ﬁupport Vector Data Descripti

f— x. —x. 2
Kernel function: kg (X;,X;) = exp( (o %)) )
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Experimental Data

® [MS bearing Data
Motor speed : 2000 rpm
Load : 60001b

Record : 1 sec /10 min

A\

Sampling rate : 20k Hz
Time : 164 hr
bearing 1 was damaged

YV V V V V

Radial Load

Accelerometers ‘Thermocouples

Bearing ] Bearing2  Bearing3

Bearing 4
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Past Approach

D. Fernandez-Francos, D. Martinez-Rego, O. Fontenla-Romero, and A. Alonso-
Betanzos, “Automatic bearing fault diagnosis based on one-class v-SVM,” Computers
& Industrial Engineering, vol. 64, pp. 357-365,Jan 2013.
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SVM Output
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Past Approach

® Spectrum analysis of vibration data

004 004 004
003 003 003
001 001 001
072000 4000 6000 8000 10000 072000 4000 6000 8000 10000 %07 2000 4000 6000 8000 10000
frequency (i) frequency (i) frequency (i)
(a)Normal state(40h) (b)Minor damage(89h) (c)Serious damage(120h)
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Algorithm 2

training

(0h~33h)
200 captures of
Normal state.

Vibration signal

RMS
Kurtosis
RMS + Kurtosis

Feature extraction

PE

Optimal C and
are found by grid search

SVDD Model

algorithm.
Target Rejection Rate are set to be 98%

testing
All captures Vibration signal
RMS l
KurtOSis Feature extraction
RMS + Kurtosis
PE l

SVDD Model

|

6 consecutive output | Moving Average

of SVDD model.

|

Health Index
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Algorithm 2
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Conclusion

® Permutation entropy and Multiscale entropy seems to be a
good index for the assessment of bearing performance
degradation.

® Anomaly of bearing can be detected as early as possible by
combing permutation entropy and support vector data
description.
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