

Workshop on Advanced Intelligent **Automation Technology**

Science and Engineering

Topic 7

Development of an intellectualized symmetric high-speed dual-spindle grinding machine and study on LED probe speedy grinding

Shun-Tong Chen, Ming-Jenq Twu, Chung-Yen Su, Shuen-De Wu National Taiwan Normal University, Taiwan

2014/7/31

CASE 2014

2014 IEEE International Conference on Automation Science and Engineering

Workshop on Advanced Intelligent Automation Technology

Topic 7

Development of an intellectualized symmetric highspeed dual-spindle grinding machine and study on LED probe speedy grinding

Sub-project I Design and analysis of the developed gantry dual-spindle grinding machine

Shun-Tong Chen, Ming-Jenq Twu, Chung-Yen Su, Shuen-De Wu National Taiwan Normal University, Taiwan

	Results of analysis	
Defo	ormation at tip < 1 um	
Мах	a. <mark>stress</mark> < 2 N/mm²	
<mark>Natı</mark> 43.1	ural frequency = 11.5, 16.2, 20, 25.1, 26.4, 38.9, , 46.7, 49.3, 50.7…	
The low :	lowest frequency > 10 Hz > the frequency of the speed spindle (500 rpm)	
The 100 ^t	high speed spindle (60000 rpm) is far beyond the ^h natural frequency of the system.	
2014/7/31	CASE 2014	12

The key part and key point of structural design

From the results of finite element analysis, the first modal shape and deformation, we know that headstock and supporting pneumatic cylinder play main role in static and dynamic responses.

Two key factors decide the static and dynamic behavior of the designed structure:

The **stiffness of contact interface** between headstock and column

The coefficients of structural damping

2014/7/31

CASE 2014

Flowchart of optimization

Mathematica: the mathematic software to do the RSM and optimization. MSC.Patran/Nastran: the software to do the finite element analysis.

Response surface

The **response surface** is represented by the polynomial function F(x,y,z).

Quadratic polynomial items for response surface

 $\{1, x, y, z, xy, xz, yz, x^2, y^2, z^2\}$

Cubic polynomial item for response surface

 $\{1, x, y, z, xy, xz, yz, x^2, y^2, z^2, xyz, xy^2, xz^2, x^2y, x^2z, yz^2, y^2z\}$

The process of RSM is to find the **coefficients** of these polynomial items.

2014/7/31

CASE 2014

Creation of response surface

Three factors, xL, yH, and zW, are used for RSM.

Three levels for each of these factors.

Totally there are 3³ designs.

Two kinds of finite element analysis, static and dynamic analysis, are run for each design, which means 54 runs of analysis.

Two results of finite element analysis, displacement and 2nd frequency are used to create the response surface, along with volume of structure.

The stress result is not considered since it is far below the yielding stress.

2014/7/31

CASE 2014

		(xL, yH, zW) (mm)	Change of Volume %	Change of Displacement %	Change of Frequency %
Or D	riginal esign	(200,40,355)	0	0	0
Oj De	otimal esign I	(175,51,389)	-11.34	-0.3	-0.818
Op De	otimal sign II	(184,47,389)	-11.62	-0.32	-0.823
201	4/7/31		CASE 2014	•	2

Summary and conclusion

25

The finite element analysis of initial design is used to decide the key points for subsequent analysis and design.

The optimization for the weight of structure of initial design is completed.

Metamodel with response surface method is used for optimization.

Stiffness of contact interface and structural damping coefficient of the headstock are the key parameters of analysis.

Further experiments to identify system parameters are needed for validation of the design model.

2014/7/31

CASE 2014

[1] G. P. Zhang, Y.M. Huang, W.H. Shi, W.P. Fu, Predicting dynamic behaviours of a whole machine tool structure based on computer-aided engineering, International Journal of Machine Tools & Manufacture 43, p. 699-706, 2003.

[2] D. T. Huang, J.-J. Lee, On obtaining machine tool stiffness by CAE techniques, Intl' J. of Machine Tools & Manufacture 41, p. 1149-1163, 2001.

[3] M. Ramu, V. P. Raja, P. R. Thyla, M. Gunaseelan, Design optimization of complex structures using metamodels, Jordan Journal of Mechanical and industrial Engineering, v.4 no. 5, p. 653-664, 2010.

[4] D. J. Lizotte, R. Greiner, D. Schuurmans, An experimental methodology for response surface optimization methods, Journal of Global Optimization, 53(4), p. 699-736, 2011.

[5] S. Chakraborty, A. Sen, Adaptive response surface based efficient finite element model updating, Finite Elements in Analysis and Design, 80, p. 33-40, 2014.

2014/7/31

CASE 2014

Sub-pixel Edge Detection of LED Probes Based on Partial Area Effect and Iterative Curve Fitting

> Advisor : Chung-Yen Su Students : Nai-Kuei Chen, Chen-Chun Wang, Li-An Yu

Introduction (1/2)

- This subproject is focused on measure the angle and radius of a LED probe by computer vision.
- To do that, we need to find edge points.
- Some of the common pixel-level edge detection methods are
 Sobel, Canny, Laplacian of Gaussian (LOG), Scharr
- Sub-pixel edge detection is used to increase the precision of edge detection.
- The common sub-pixel edge detections include
 Curve-fitting method
 - > Moment-based method
 - > Reconstructive method
 - ➤ Partial area effect method

Flow Chart

6

Getting the Input Image

Converting and Smoothing

- Convert a RGB image to a gray image → Gray = 0.299R + 0.587G + 0.114B
- Use a Gaussian filter to smooth the resulting gray image

	1	4	6	4	1
	4	16	24	16	4
$\frac{1}{256} \times$	6	24	36	24	6
	4	16	24	16	4
	1	4	6	4	1

Automatic Threshold (1/2)

 For Sobel • Use Sobel operator to measure the magnitudes of gradient(|dx|+|dy|) over the image and make CDF 100 CDF>=98.5% 90 80 70 CDF(%) 60 50 40 TH 30 20 10 0 $_{300} |dx| + |dy|$ 100 150 200 250

Automatic Threshold (2/2)

For Canny

Object Extraction

Classify edge points into three groups

Xava

Sub-pixel Edge Detection

- After object extraction, we compute Sub-pixel edge detection for every groups respectively. And the Sub-pixel edge detection methods we use are:
 - 1. Curve-fitting method
 - 2. Moment-based method [1]
 - Invariant rotation and orthogonal
 - 3. Reconstructive method [2]
 - > Create a quadratic model with adjacent gray-scale values to the selected points
 - 4. Partial area effect method [3]
 - > Create a new mask from camera acquired images

Iterative Curve Fitting (1/5)

Iterative Curve Fitting (2/5)

Iterative Curve Fitting (3/5) Iterative Curve-Fitting (4/5) Iterative Curve-Fitting (4/5)

Calculate Angle and Radius

• Angle: Use the cosine theorem

$$\theta = \cos^{-1}\left(\frac{slope_1 \times slpoe_2 + 1}{\sqrt{slope_1^2 + 1} \times \sqrt{slpoe_2^2 + 1}}\right)$$

 Radius: According to parameters of circle equation Circular equation:
 x² + y² + dx + ey + f = 0

Radius :

$$R = \frac{1}{2}\sqrt{d^2 + e^2 - 4f}$$

Result

M1: Sobel + curve-fitting M2: Sobel-Zernike moments [1] + curve-fitting

- M3: Canny + curve-fitting
- M4: Canny + partial area effect [3] + curve-fitting
- M5: Canny + reconstructive [2] + curve-fitting

M1': Sobel + iterative curve-fitting

- M2': Sobel-Zernike moments [1] + iterative curve-fitting
- M3': Canny + iterative curve-fitting
- M4': Canny + partial area effect [3] + iterative curve-fitting M5': Canny + reconstructive [2] + iterative curve-fitting

Angle Result (1/2)

	Referred values	N	41	Ν	12	Ν	13	Ν	44	Ν	15
Angle Image	Angle (degree)	Angle (degree)	Error(%)								
Fig. 1	11	18.579	68.9	18.748	70.436	11.111	1.009	11.089	0.809	11.027	0.245
Fig. 2	11.2	11.401	1.795	11.427	2.0267	10.847	3.152	10.824	3.357	10.768	3.857
Fig. 3	9.9	13.696	38.343	13.787	39.263	10.063	1.646	10.045	1.464	10.007	1.08
Fig. 4	13.1	18.865	44.007	18.963	44.756	13.247	1.122	13.24	1.068	13.251	1.153
Fig. 5	10.8	11.411	5.657	11.433	5.861	10.824	0.222	10.816	0.148	10.803	0.027
Fig. 6	13.8	14.545	5.399	14.566	5.551	14.011	1.529	13.992	1.391	14.017	1.572
Average	e error	27.3	50%	27.	982%	1.44	47%	1.3	73%	1.	322%

Angle Result (2/2)

	Referred values	М	1'	М	2'	М	Β'	М	14'	М	5'
Angle Image	Angle (degree)	Angle (degree)	Error(%)								
Fig. 1	11	13.045	18.591	13.124	19.309	11.054	0.491	11.019	0.172	10.859	1.282
Fig. 2	11.2	11.457	2.295	11.486	2.554	10.826	3.339	10.801	3.563	10.749	4.027
Fig. 3	9.9	11.363	14.777	11.409	15.242	10.063	1.646	10.045	1.465	9.993	0.939
Fig. 4	13.1	14.520	10.832	14.567	11.198	13.232	1.008	13.222	0.931	13.218	0.901
Fig. 5	10.8	11.386	5.426	11.388	5.444	10.824	0.222	10.816	0.148	10.803	0.028
Fig. 6	13.8	14.545	5.399	14.566	5.551	14.011	1.529	13.992	1.391	13.982	1.319
Averag	e error	9.55	53%	9.8	383%	1.3	72%	1.2	78%	1.4	416%

Radius Result (1/2)

	Referred values	Ml		M2		M3		M4		M5	
Radius Image	Radius (um)	Radius (um)	Error(%)								
Fig. 1	19.75	128.232	549.276	128.232	549.276	21.132	6.997	21.168	7.179	21.808	10.42
Fig. 2	20.25	70.994	250.588	70.995	250.592	20.512	1.294	20.529	1.378	21.472	6.035
Fig. 3	21.75	90.304	315.190	90.304	315.190	22.320	2.621	22.352	2.768	22.943	5.485
Fig. 4	22.25	134.073	502.575	134.073	502.575	23.165	4.112	23.213	4.328	22.899	2.917
Fig. 5	24.25	102.606	323.117	102.606	323.117	22.417	7.559	22.447	7.435	22.834	5.839
Fig. 6	22.75	194.681	755.741	194.681	755.741	21.976	3.402	22.014	3.235	22.385	1.604
Average	e error	449.4	415%	449.4	416%	4.3	31%	4.3	87%	5.3	83%

Radius Result (2/2)

	Referred values	M	11'	М	12'	Μ	13'	М	14'	N	15'
Radius Image	Radius (um)	Radius (um)	Error(%)								
Fig. 1	19.75	20.038	1.458	20.064	1.590	21.132	6.997	21.135	7.013	21.346	8.081
Fig. 2	20.25	19.621	3.106	19.624	3.091	20.512	1.294	20.496	1.215	20.496	1.215
Fig. 3	21.75	21.330	1.931	21.318	1.986	22.320	2.621	22.335	2.689	22.574	3.788
Fig. 4	22.25	21.821	1.928	21.824	1.914	23.165	4.112	23.141	4.004	23.167	4.121
Fig. 5	24.25	21.605	10.907	21.610	10.886	22.417	7.559	22.439	7.468	22.704	6.375
Fig. 6	22.75	21.149	7.037	21.137	7.090	21.976	3.402	22.007	3.266	21.925	3.626
Average	error	4.3	95%	4.42	26%	4.3	31%	4.2	76%	4.5	34%

Conclusion

- According to the experiment, iterative curve-fitting normally has better results than that without iteration.
- We compare M3' with M4' because they have better results than the others:

	M3'	M4'
Run time (ms)	1473.4	1669.5
Average angle error	1.372%	1.278%
Average radius error	4.331%	4.276%

Platform: Win7 64bit, Intel Xeon E3-1230V2, 8G RAM

M3': Canny + iterative curve-fitting
M4': Canny + partial area effect [3] + iterative curve-fitting

• We use M4' as the algorithm of detecting led probes so far.

22

Reference

 Y. D. Qu, C. S. Cui, S. B. Chen, J. Q. Li, "A fast subpixel edge detection method using Sobel-Zernike moments operator," Image and Vision Computing, 23 (1), pp. 11–17, 2005.

[2] Fabija´nska, A., Sankowski, D. "Edge detection with sub-pixel accuracy in images of molten metals", *IEEE International Conference on Imaging Systems and Techniques*, Thessaloniki, Greece, pp. 186-191, 2010.

[3] A. Trujillo-Pino, K. Krissian, M. Alemán-Flores, D. Santana-Cedrés, "Accurate subpixel edge location based on partial area effect", *Image and Vision Computing*, 31, pp. 72–90, 2013.

[4] N. Q. Chen, J. J. Wang, L. A. Yu, and C. Y. Su, "Sub-pixel Edge Detection of LED Probes Based on Canny Edge Detection and Iterative Curve Fitting", in the Proc. of IEEE International Symposium on Computer, Consumer and Control, pp. 131-134, 2014.

Permutation entropy
• $\mathbf{x} = (4,7,9,10,6,11,3)$ $m = 3$
• $\begin{bmatrix} \mathbf{x}_1^3 \\ \mathbf{x}_2^3 \\ \mathbf{x}_3^3 \\ \mathbf{x}_4^3 \\ \mathbf{x}_5^3 \end{bmatrix} = \begin{bmatrix} 4 & 7 & 9 \\ 7 & 9 & 10 \\ 9 & 10 & 6 \\ 10 & 6 & 11 \\ 6 & 11 & 3 \end{bmatrix} \xleftarrow{-\pi_{012}}_{\leftarrow \pi_{012}} \underset{\pi_{201}}{\leftarrow \pi_{201}}$
• $p(\pi_{012}) = 2/5$, $p(\pi_{102}) = 1/5$, $p(\pi_{201}) = 2/5$ • $PEn(\mathbf{x}, 3) = -2/5\ln(2/5) - 1/5\ln(1/5) - 2/5\ln(2/5) = 1.522$
• Normalize: $nPEn(\mathbf{x}, 3) = \frac{1.522}{\ln(3!)} = 0.8494$
Signal

