2014 IEEE International Conference on Automation Science and Engineering

Workshop on Advanced Intelligent Automation Technology

Topic 7

Development of an intellectualized symmetric high-speed dual-spindle grinding machine and study on LED probe speedy grinding

Shun-Tong Chen, Ming-Jenq Twu, Chung-Yen Su, Shuen-De Wu National Taiwan Normal University, Taiwan

2014/7/31
CASE 2014

Background

1. Miniaturization of products is a recent trend.
2. LED (Light Emitting Diode) is one of today's most energy-efficient and rapidly-developing lighting technologies.
3. It has the potential to fundamentally change the future of lighting all over the world.
4. Accordingly, a wear-resistant and conductive LED probe is essential for testing LED during process.

Outline

1. Introduction - background and objective
2. The proposed approach and procedures
3. Development of the gantry grinding system
4. Development of in-situ dressing
5. The present experimental results
6. Previous results - a commercial case study
7. Conclusions

Objective

1. The objective of the research project is to develop an intellectualized symmetric highspeed dual-spindle grinding machine.
2. By applying the developed techniques of the four sub-projects, the LED-probe made of tungsten carbide can be ground efficiently.
3. The current development is focused on the feasibility study of LED-probe fast grinding with less costly way and construction of the autonomous technology.

Design of the intellectualized symmetric high-speed dual-spindle grinding machine

20147/71
CASE 2014

Design of the intellectualized symmetric high-speed dual-spindle grinding machine

This machine is equipped with three translation stages (X-, Y - and Z axis), one rotary stage (as the C-axis) and two high-speed dual-spindle.
2014/7/31 CASE 2014

Finished intellectualized symmetric highspeed dual-spindle grinding machine

The proposed approach -double-grinding

1. To guarantee a high-efficiency and high-precision machining on the LED probe, a double-grinding approach is proposed in this study.
2. This design is helpful in increasing the bilateral symmetry and the grinding efficiency of the LED probe.

2014/7/31
CASE 2014

The grinding-wheel used

The trued surface of the BD-PCD grinding-wheel

The trued surface

- During the discharge process, the temperature in the plasma channel may reach $8,000-12,000^{\circ} \mathrm{C}$.
- Hence, graphitizing of diamond is inevitable

The amount of the vibration on the corresponding spindle

The amount of the vibration on the corresponding spindle

A grain size of 40 micrometers is used.

20147/31

A case study in the past

(A commercial case)

Development of a quantitative cellcounting slide made of PMMA

Characteristics of urine

Composition:

Normally, a human urinary sediments are composed of about 95 percent water and 5 percent solutes.
Normal solutes found in urine include

> Urea

$>$ Creatinine
$>$ Uric acid
$>$ Ketone bodies
> Potassium
$>$ Sodium
$>$ Chloride
A human urinary sediments
2014/7/31 CASE 2014

Design of a quantitative cell-

 counting slide made of PMMA(For detection of a human urinary sediments)

The width for each
microgroove is designe
only at 8-10 micrometers. Second counting portion
A concave platform cell-counting slide mold

201477/31 CASE 2014 22

Design of the high-precision tabletop hybrid CNC machine tool

A tabletop hybrid CNC machine tool
This machine is equipped with three commercial translation stages (X-, Y - and Z - axis) and one rotary stage (as the C-axis).

Thinning of the BD-PCD wheel-too

$B D-P C D$ is capable of electrical conductivity, meaning it can be more easily cut by electrical discharge machining on the developed machine tool.
2014/7/31
CASE 2014

A smoothly cut (broken) in diamond grain

The image demonstrates the BD-PCD can be precisely formed down to an ultrathin level by rotary micro w-EDM.

Thinned grinding-edge

A thinned BD-PCD wheel-tool with an edge-thickness of $5-\mu m$ and a slight draft angle of 5 degree.

2014/7/31
CASE 2014

Microgroove generation by HSFSG

High-Speed \& Fast-Shallow Grinding

$\begin{aligned} \text { Parameters } & \text { Conditions } \\ \text { Spindle speed } & 1,500(\mathrm{~m} / \mathrm{min})\end{aligned}$ Feeding depth 500 (nm/stroke)
Total feeding depth $10(\mathrm{\mu m})$
$\begin{array}{cl}\text { Grinding length } & 3(\mathrm{~mm}) \\ \text { Grinding pass } \\ 20(\text { One way })\end{array}$
Feed-rate $20(\mathrm{~mm} / \mathrm{min})$

SP^{3} bonds

1. By applying a fast grinding feed-rate, we can create considerable metal removals per unit of time.
2. By using a nanometer scale grinding depth, we can keep the diamond lattice in SP^{3} bond during grinding because of cold machining conditions used.
20147/131
CASE 2014

Finished crisscross microgroove ar

A finished microgroove array with extremely high straightness and high orthogonality.

2014/7/31 CASE 2014 33

Proposed deburring process at the intersections of microgrooves

Burrs occur as a result of NAK80 mold steel being ductile, and plowing effect during microgroove grinding.
201417/31
CASE 2014

Mold design of a quantitative cell-counting slide

The width for each microgroove is only 8-10 micrometers.

Finished cell-counting slide made of PMMA and an example of cell counting

1. Note, the two distinct cell-counting portions can be clearly revealed in each chamber
2. It indicates the multiple micro ridge array of the biomedical-slide can be exactly duplicated from the machined biomedical-mold.

2014/7/31
CASE 2014

Conclusions

> In LED probe grinding case:

1. An intellectualized symmetric high-speed dualspindle grinding machine for LED probe grinding has been developed and verified successfully.
2. A pair of BD-PCD grinding-wheel is dressed by the rotary w-EDM and a LED probe made of tungsten carbide has been tentatively grinding in first year

20147/71
CASE 2014

Conclusions(cont.)

> In biomedical-slide mold case:

1. A high-precision tabletop hybrid CNC machine tool for in-situ fabricating a biomedical-slide mold has been developed and verified successfully.
2. The High-Speed \& Fast-Shallow Grinding technique is successfully used to grind microgroove array on NAK80 mold steel.
3. By using nanometer scale grinding depth results in a cold machining and preservation for diamond's SP ${ }^{3}$ bond structure.

Conclusions(cont.)

4. Due to the design of the in-situ machining function, the machined biomedical-slide mold requires no unloading, reloading and calibration.
5. Experimental results prove the convex platform quantitative cell-counting slide is successfully developed.

Thank you so much for your attention!

CASE 2014

2014 IEEE International Conference on Automation Science and Engineering

Workshop on Advanced Intelligent Automation Technology

Topic 7
Development of an intellectualized symmetric highspeed dual-spindle grinding machine and study on LED probe speedy grinding

Sub-project I

Design and analysis of the developed gantry dual-spindle grinding machine

Shun-Tong Chen, Ming-Jenq Twu, Chung-Yen Su, Shuen-De Wu National Taiwan Normal University, Taiwan
20147/731 CASE 2014

Outline

1. Introduction and the objectives.
2. The proposed approach and procedures
3. Static and dynamic analysis of initial design
4. Metamodel and structural optimization
5. Summary and conclusion
6. References

Introduction

One of key issue in mechanical manufacturing is vibration [1]

texture caused by chatter in turning

texture caused by chatter in milling

Source of figures: http://74.220.207.117/~horvathl/m-tool-vib.htm
http://www.hv.se/extra/pod/?action=pod_show\&id=753\&module_instance=11

Introduction

Stiffness is a key parameter of vibration problem.
The equation of 1 DOF mass-spring-damper system

$$
\begin{aligned}
& m \ddot{x}+c \dot{x}+k x=f(t) \\
& \omega_{n}=\sqrt{\frac{k}{m}}, \zeta=\frac{c}{2 \sqrt{k m}}, \omega_{d}=\omega_{n} \sqrt{1-\zeta^{2}}, \zeta<1
\end{aligned}
$$

The stiffness of system is determined by mass distribution of structure.
Structural design is the foundation for the development of high-precision manufacturing system. Analyzing stiffness is an important issue in machine tool design [2].

20147/731
CASE 2014

Objectives of sub-project I

1. To optimize the structural design for the proposed intellectualized symmetric high-speed dual-spindles grinding machine.
2. To propose a dynamic model of grinding chatter for the designed system.
3. To develop the strategy of chatter suppression for the designed system.
```
201477/31
```

CASE 2014

Procedure of the first year research
 Parameters
 Optimizing $\longleftarrow \quad$ Creating Metamode Optimization

Procedure of research

Structural design and analysis (first year)
Static analysis:

deformation
:---:

Structural design optimization

Chatter simulation and suppression (second year) modeling

```
End Chatter suppression
``` Chatter simulation
\(\qquad\)

2014/7/31
CASE 2014

\section*{Results of analysis}

Deformation at tip < 1 um

Max. stress < \(2 \mathrm{~N} / \mathrm{mm}^{2}\)

Natural frequency \(=11.5,16.2,20,25.1,26.4,38.9\), 43.1, 46.7, 49.3, 50.7...

The lowest frequency > \(10 \mathrm{~Hz}>\) the frequency of the low speed spindle (500 rpm)
The high speed spindle (60000 rpm) is far beyond the \(100^{\text {th }}\) natural frequency of the system.

20147/31
CASE 2014
\({ }_{13}\)

\section*{The key part and key point of structural design}

From the results of finite element analysis, the first modal shape and deformation, we know that headstock and supporting pneumatic cylinder play main role in static and dynamic responses.

Two key factors decide the static and dynamic behavior of the designed structure:
The stiffness of contact interface between headstock and column

The coefficients of structural damping

Objective: minimize the weight (or volume)
Design variables: length \((\mathrm{xL})\), height \((\mathrm{yH})\), width \((\mathrm{zW})\)

Constrains: deformation at tip of probe \(<2\) um
stress < yielding stress
\(2^{\text {nd }}\) natural frequency \(>10\)
(since the \(2^{\text {nd }}\) natural frequency is the most sensitive one)

201477/31
CASE 2014

\section*{Flowchart of optimization}

Mathematica: the mathematic software to do the RSM and optimization. MSC.Patran/Nastran: the software to do the finite element analysis.

\section*{Metamodel Response Surface Method}

Metamodel
also known as surrogate model, is an approximate representation [3].
an alternative to costly analysis or experiment [4].
e.g. Genetic algorithms, artificial neural networks,...

Response surface methodology (RSM)
mathematical and statistical techniques to develop functional relationship between input and response [5].
Design optimization is a computation intensive process.
2014/7/31
CASE 2014

\section*{Creation of response surface}

Three factors, \(\mathrm{xL}, \mathrm{yH}\), and zW , are used for RSM.
Three levels for each of these factors.
Totally there are \(3^{3}\) designs.
Two kinds of finite element analysis, static and dynamic analysis, are run for each design, which means 54 runs of analysis.

Two results of finite element analysis, displacement and \(2^{\text {nd }}\) frequency are used to create the response surface, along with volume of structure.

The stress result is not considered since it is far below the yielding stress.
2014/7/31
CASE 2014

\section*{Optimization results}

Mathematica is used to find the optimal point on the response surface. Quadratic and cubic polynomials are used for design I and II respectively.
\begin{tabular}{|c|c|c|c|c|}
\hline & \begin{tabular}{c}
(xL, yH, zW) \\
\((\mathrm{mm})\)
\end{tabular} & \begin{tabular}{c}
Change of \\
Volume \\
\(\%\)
\end{tabular} & \begin{tabular}{c}
Change of \\
Displacement \\
\(\%\)
\end{tabular} & \begin{tabular}{c}
Change of \\
Frequency \\
\(\%\)
\end{tabular} \\
\hline \begin{tabular}{c}
Original \\
Design
\end{tabular} & \((200,40,355)\) & 0 & 0 & 0 \\
\hline \begin{tabular}{c}
Optimal \\
Design I
\end{tabular} & \((175,51,389)\) & -11.34 & -0.3 & -0.818 \\
\hline \begin{tabular}{c}
Optimal \\
Design II
\end{tabular} & \((184,47,389)\) & -11.62 & -0.32 & -0.823 \\
\begin{tabular}{c}
20147/31
\end{tabular} & CASE 2014 \\
\hline
\end{tabular}

\section*{Summary and conclusion}

The finite element analysis of initial design is used to decide the key points for subsequent analysis and design

The optimization for the weight of structure of initial design is completed.

Metamodel with response surface method is used for optimization.

Stiffness of contact interface and structural damping coefficient of the headstock are the key parameters of analysis.

Further experiments to identify system parameters are needed for validation of the design model.

2014/7/31
CASE 2014

\section*{References}
[1] G. P. Zhang, Y.M. Huang, W.H. Shi, W.P. Fu, Predicting dynamic behaviours of a whole machine tool structure based on computer-aided engineering, International Journal of Machine Tools \& Manufacture 43, p. 699-706, 2003.
[2] D. T. Huang, J.-J. Lee, On obtaining machine tool stiffness by CAE techniques, Intl' J. of Machine Tools \& Manufacture 41, p. 1149-1163, 2001
[3] M. Ramu, V. P. Raja, P. R. Thyla, M. Gunaseelan, Design optimization of complex structures using metamodels, Jordan Journal of Mechanical and industrial Engineering, v. 4 no. 5, p. 653-664, 2010.
[4] D. J. Lizotte, R. Greiner, D. Schuurmans, An experimental methodology for response surface optimization methods, Journal of Global Optimizaation, 53(4), p. 699-736, 2011
[5] S. Chakraborty, A. Sen, Adaptive response surface based efficient finite element model updating, Finite Elements in Analysis and Design, 80, p. 3340, 2014

CASE 2014

Thanks for listening

CASE 2014

\section*{Sub-pixel Edge Detection of LED Probes Based on Partial Area Effect and Iterative Curve Fitting}

Advisor : Chung-Yen Su
Students : Nai-Kuei Chen, Chen-Chun Wang, Li-An Yu

\section*{Introduction (1/2)}
- This subproject is focused on measure the angle and radius of a LED probe by computer vision.
- To do that, we need to find edge points.
- Some of the common pixel-level edge detection methods are > Sobel, Canny, Laplacian of Gaussian (LOG), Scharr
- Sub-pixel edge detection is used to increase the precision of edge detection.
- The common sub-pixel edge detections include \(>\) Curve-fitting method
> Moment-based method
Reconstructive method
> Partial area effect method

Flow Chart

\section*{Getting the Input Image}

\section*{Converting and Smoothing}
- Convert a RGB image to a gray image
\[
>\text { Gray }=0.299 \mathrm{R}+0.587 \mathrm{G}+0.114 \mathrm{~B}
\]
- Use a Gaussian filter to smooth the resulting gray image
\[
\frac{1}{256} \times \begin{array}{|c|c|c|c|c|}
\hline 1 & 4 & 6 & 4 & 1 \\
\hline 4 & 16 & 24 & 16 & 4 \\
\hline 6 & 24 & 36 & 24 & 6 \\
\hline 4 & 16 & 24 & 16 & 4 \\
\hline 1 & 4 & 6 & 4 & 1 \\
\hline
\end{array}
\]

\section*{Automatic Threshold (1/2)}
- For Sobel
- Use Sobel operator to measure the magnitudes of gradient \((|d x|+|d y|)\) over the image and make CDF

\section*{Automatic Threshold (2/2)}
- For Canny
- Multiply the median of gray image by 0.3 as high threshold and 0.1 as low threshold.

\section*{Object Extraction}
- Classify edge points into three groups
1. Distinguish between left and right side:
\[
x_{\text {avg }}=\frac{\sum_{i=0}^{\text {edge point cou nts }} x_{x_{i}}}{\text { edge point cou nts }}
\]
2. Get gradient direction: \(\theta=\tan ^{-1} \frac{d y}{d x}\)
\[
d x=\operatorname{Img} * * \begin{array}{|c|c|c|}
\hline-1 & 0 & 1 \\
\hline-2 & 0 & 2 \\
\hline-1 & 0 & 1 \\
\hline
\end{array} \quad d y=\operatorname{Img} * \begin{array}{|c|c|c|}
\hline-1 & -2 & -1 \\
\hline 0 & 0 & 0 \\
\hline 1 & 2 & 1 \\
\hline
\end{array}
\]
3. Differentiate edge points between line and circle:
1) Line: \(|\theta|<7^{\circ}\), Circle: \(|\theta|>30^{\circ}\).
2) Discard: \(7^{\circ} \leq|\theta| \leq 30^{\circ}\)

\section*{Sub-pixel Edge Detection}
- After object extraction, we compute Sub-pixel edge detection for every groups respectively. And the Sub-pixel edge detection methods we use are:
1. Curve-fitting method
2. Moment-based method [1]
> Invariant rotation and orthogonal
3. Reconstructive method [2]
> Create a quadratic model with adjacent gray-scale values to the selected points
4. Partial area effect method [3]
\(>\) Create a new mask from camera acquired images

\section*{Iterative Curve Fitting (1/5)}

\section*{Iterative Curve Fitting (2/5)}

\section*{Iterative Curve Fitting (3/5)}

\section*{Iterative Curve-Fitting (4/5)}

Iterative Curve Fitting (5/5)

\section*{Calculate Angle and Radius}
- Angle: Use the cosine theorem
\[
\theta=\cos ^{-1}\left(\left|\frac{\text { slope }_{1} \times \text { slpoe }_{2}+1}{\sqrt{\text { slope }_{1}{ }^{2}+1} \times \sqrt{\text { slpoe }_{2}^{2}+1}}\right|\right)
\]
- Radius: According to parameters of circle equation Circular equation:
\[
x^{2}+y^{2}+d x+e y+f=0
\]

Radius :
\[
R=\frac{1}{2} \sqrt{d^{2}+e^{2}-4 f}
\]

\section*{Result}

M1: Sobel + curve-fitting
M2: Sobel-Zernike moments [1] + curve-fitting
M3: Canny + curve-fitting
M4: Canny + partial area effect [3] + curve-fitting M5: Canny + reconstructive [2] + curve-fitting

M1': Sobel + iterative curve-fitting
M2': Sobel-Zernike moments [1] + iterative curve-fitting M3': Canny + iterative curve-fitting M4': Canny + partial area effect [3] + iterative curve-fitting M5': Canny + reconstructive [2] + iterative curve-fitting

\section*{Angle Result (1/2)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Referred & & & & & & & & & & \\
\hline Angle & \[
\begin{aligned}
& \text { Angle } \\
& \text { (degree) }
\end{aligned}
\] & Angle (degree) & Error(\%) & \[
\begin{gathered}
\text { Angle } \\
\text { (degree) }
\end{gathered}
\] & Error(\%) \\
\hline Fig. 1 & 11 & 18.579 & 68.9 & 18.748 & 70.436 & 11.111 & 1.009 & 11.089 & 0.809 & 11.027 & 0.245 \\
\hline Fig. 2 & 11.2 & 11.401 & 1.795 & 11.427 & 2.0267 & 10.847 & 3.152 & 10.824 & 3.357 & 10.768 & 3.857 \\
\hline Fig. 3 & 9.9 & 13.696 & 38.343 & 13.787 & 39.263 & 10.063 & 1.646 & 10.045 & 1.464 & 10.007 & 1.08 \\
\hline Fig. 4 & 13.1 & 18.865 & 44.007 & 18.963 & 44.756 & 13.247 & 1.122 & 13.24 & 1.068 & 13.251 & 1.153 \\
\hline Fig. 5 & 10.8 & 11.411 & 5.657 & 11.433 & 5.861 & 10.824 & 0.222 & 10.816 & 0.148 & 10.803 & 0.027 \\
\hline Fig. 6 & 13.8 & 14.545 & 5.399 & 14.566 & 5.551 & 14.011 & 1.529 & 13.992 & 1.391 & 14.017 & 1.572 \\
\hline \multicolumn{2}{|l|}{Average error} & \multicolumn{2}{|r|}{27.350\%} & \multicolumn{2}{|r|}{27.982\%} & \multicolumn{2}{|r|}{1.447\%} & \multicolumn{2}{|r|}{1.373\%} & \multicolumn{2}{|r|}{1.322\%} \\
\hline
\end{tabular}

\section*{Angle Result (2/2)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Referred & & 1' & & \({ }^{\prime}\) & & & & \(4^{\prime}\) & & \({ }^{\prime}\) \\
\hline Image & \[
\begin{gathered}
\text { Angle } \\
\text { (degree) }
\end{gathered}
\] & \[
\begin{array}{|c}
\hline \begin{array}{c}
\text { Angle } \\
\text { (degree) }
\end{array}
\end{array}
\] & Error(\%) & \[
\begin{aligned}
& \text { Agle } \\
& \text { (degree) }
\end{aligned}
\] & Error(\%) & \[
\begin{gathered}
\text { Angle } \\
\text { (degree) }
\end{gathered}
\] & Error(\%) & \[
\begin{gathered}
\text { Angle } \\
\text { (degree) }
\end{gathered}
\] & Error(\%) & \[
\begin{array}{|c}
\text { Angle } \\
\text { (degree) }
\end{array}
\] & Error(\%) \\
\hline Fig. 1 & 11 & 13.045 & 18.591 & 13.124 & 19.309 & 11.054 & 0.491 & 11.019 & 0.172 & 10.859 & 1.282 \\
\hline Fig. 2 & 11.2 & 11.457 & 2.295 & 11.486 & 2.554 & 10.826 & 3.339 & 10.801 & 3.563 & 10.749 & 4.027 \\
\hline Fig. 3 & 9.9 & 11.363 & 14.777 & 11.409 & 15.242 & 10.063 & 1.646 & 10.045 & 1.465 & 9.993 & 0.939 \\
\hline Fig. 4 & 13.1 & 14.520 & 10.832 & 14.567 & 11.198 & 13.232 & 1.008 & 13.222 & 0.931 & 13.218 & 0.901 \\
\hline Fig. 5 & 10.8 & 11.386 & 5.426 & 11.388 & 5.444 & 10.824 & 0.222 & 10.816 & 0.148 & 10.803 & 0.028 \\
\hline Fig. 6 & 13.8 & 14.545 & 5.399 & 14.566 & 5.551 & 14.011 & 1.529 & 13.992 & 1.391 & 13.982 & 1.319 \\
\hline \multicolumn{2}{|l|}{Average error} & \multicolumn{2}{|r|}{9.553\%} & \multicolumn{2}{|r|}{9.883\%} & \multicolumn{2}{|r|}{1.372\%} & \multicolumn{2}{|r|}{1.278\%} & \multicolumn{2}{|r|}{1.416\%} \\
\hline
\end{tabular}

\section*{Radius Result (1/2)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Radius } \\
& \hline
\end{aligned}
\]} & \multirow[t]{2}{*}{\begin{tabular}{c|}
\begin{tabular}{c}
Referred \\
values
\end{tabular} \\
\hline \begin{tabular}{c}
Radius \\
(um)
\end{tabular} \\
\hline
\end{tabular}} & \multicolumn{2}{|r|}{M1} & \multicolumn{2}{|r|}{M2} & \multicolumn{2}{|r|}{M3} & \multicolumn{2}{|r|}{M4} & \multicolumn{2}{|r|}{M5} \\
\hline & & Radius (um) & Error(\%) & \[
\begin{gathered}
\text { Radius } \\
(\mathrm{um})
\end{gathered}
\] & Error(\%) & Radius (um) & Error(\%) & \[
\begin{gathered}
\text { Radius } \\
\text { (um) }
\end{gathered}
\] & Error(\%) & \[
\begin{aligned}
& \text { Radius } \\
& \text { (um) }
\end{aligned}
\] & Error(\%) \\
\hline Fig. 1 & 19.75 & 128.232 & 549.276 & 128.232 & 549.276 & 21.132 & 6.997 & 21.168 & 7.179 & 21.808 & 10.42 \\
\hline Fig. 2 & 20.25 & 70.994 & 250.588 & 70.995 & 250.592 & 20.512 & 1.294 & 20.529 & 1.378 & 21.472 & 6.035 \\
\hline Fig. 3 & 21.75 & 90.304 & 315.190 & 90.304 & 315.190 & 22.320 & 2.621 & 22.352 & 2.768 & 22.943 & 5.485 \\
\hline Fig. 4 & 22.25 & 134.073 & 502.575 & 134.073 & 502.575 & 23.165 & 4.112 & 23.213 & 4.328 & 22.899 & 2.917 \\
\hline Fig. 5 & 24.25 & 102.606 & 323.117 & 102.606 & 323.117 & 22.417 & 7.559 & 22.447 & 7.435 & 22.834 & 5.839 \\
\hline Fig. 6 & 22.75 & 194.681 & 755.741 & 194.681 & 755.741 & 21.976 & 3.402 & 22.014 & 3.235 & 22.385 & 1.604 \\
\hline \multicolumn{2}{|l|}{Average error} & \multicolumn{2}{|l|}{449.415\%} & \multicolumn{2}{|l|}{449.416\%} & \multicolumn{2}{|r|}{4.331\%} & \multicolumn{2}{|r|}{4.387\%} & \multicolumn{2}{|r|}{5.383\%} \\
\hline
\end{tabular}

\section*{Radius Result (2/2)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Referred & & & & & & & & & & \\
\hline \[
\begin{aligned}
& \text { Radius } \\
& \text { Image }
\end{aligned}
\] & \[
\begin{gathered}
\text { Radius } \\
\text { (um) }
\end{gathered}
\] & \[
\begin{gathered}
\text { Radius } \\
\text { (um) }
\end{gathered}
\] & Error(\%) & \[
\begin{gathered}
\text { Radius } \\
\text { (um) }
\end{gathered}
\] & Error(\%) & \[
\begin{gathered}
\text { Radius } \\
(\mathrm{um})
\end{gathered}
\] & Error(\%) & \[
\begin{aligned}
& \text { Radius } \\
& \text { (um) }
\end{aligned}
\] & Error(\%) & \[
\begin{gathered}
\text { Radius } \\
\text { (um })
\end{gathered}
\] & Error(\%) \\
\hline Fig. 1 & 19.75 & 20.038 & 1.458 & 20.064 & 1.590 & 21.132 & 6.997 & 21.135 & 7.013 & 21.346 & 8.081 \\
\hline Fig. 2 & 20.25 & 19.621 & 3.106 & 19.624 & 3.091 & 20.512 & 1.294 & 20.496 & 1.215 & 20.496 & 1.215 \\
\hline Fig. 3 & 21.75 & 21.330 & 1.931 & 21.318 & 1.986 & 22.320 & 2.621 & 22.335 & 2.689 & 22.574 & 3.788 \\
\hline Fig. 4 & 22.25 & 21.821 & 1.928 & 21.824 & 1.914 & 23.165 & 4.112 & 23.141 & 4.004 & 23.167 & 4.121 \\
\hline Fig. 5 & 24.25 & 21.605 & 10.907 & 21.610 & 10.886 & 22.417 & 7.559 & 22.439 & 7.468 & 22.704 & 6.375 \\
\hline Fig. 6 & 22.75 & 21.149 & 7.037 & 21.137 & 7.090 & 21.976 & 3.402 & 22.007 & 3.266 & 21.925 & 3.626 \\
\hline \multicolumn{2}{|l|}{Average error} & \multicolumn{2}{|r|}{4.395\%} & \multicolumn{2}{|c|}{4.426\%} & \multicolumn{2}{|r|}{4.331\%} & \multicolumn{2}{|c|}{4.276\%} & \multicolumn{2}{|r|}{4.534\%} \\
\hline
\end{tabular}

\section*{Reference}
[1] Y. D. Qu, C. S. Cui, S. B. Chen, J. Q. Li, "A fast subpixel edge detection method using Sobel-Zernike moments operator," [1] Y. D. Qu, C. S. Cui, S. B. Chen, J. Q. Li, "A fast sub
Imageand Vision Computing, 23 (1), pp. 11-17, 2005.
[2] Fabija nska, A., Sankowski, D. "Edge detection with sub-pixel accuracy in images of molten metals", IEEE International [2] Fabija nska, A., Sankowski, D. "Edge detection with sub-pixel accuracy in images of m.
Conference on Imaging Systems and Techniques, Thessaloniki, Greece, pp. 186-191, 2010 .
[3] A. Trujillo-Pino, K. Krissian, M. Alemán-Flores, D. Santana-Cedrés, "Accurate subpixel edge location based on partial area effect", Image and Vision Computing, ,11, pp. 72-90, 2013 .
[4] N. Q. Chen, J. J. Wang, L. A. Yu, and C. Y. Su, "Sub-pixel Edge Detection of LED Probes Based on Canny Edge Detection and Iterative Curve Fitting", in the Proc of IEEE International Symposium on Computer Consumer and Control pp. 131-134, 2014.

\section*{Conclusion}
- According to the experiment, iterative curve-fitting normally has better results than that without According
iteration.
- We compare M3' with M4' because they have better results than the others:
\begin{tabular}{|c|c|c|}
\hline & M3' & M4' \\
\hline Run time (ms) & 1473.4 & 1669.5 \\
\hline Average angle error & \(1.372 \%\) & \(1.278 \%\) \\
\hline Average radius error & \(4.331 \%\) & \(4.276 \%\) \\
\hline
\end{tabular}

Platform: Win7 64bit, Intel Xeon E3-1230V2, 8G RAM
- M3': Canny + iterative curve-fitting
- M4: Canny + partial area effect [3] + iterative curve-fitting
- We use M4' as the algorithm of detecting led probes so far.

\section*{Introduction}
- Rolling bearing failure represents a high percentage of the breakdowns in rotating machinery and may result in catastrophic failures.
- Failure prognosis in long-term predictions are important topics when trying to ensure safety of the operation of machine tool.
- The main issue in prognosis is the ability to detect anomaly of bearing as early as possible.
- In this study, we propose a prognosis algorithm for rolling bearings based on multiscale entropy, permutation entropy and support vector data description.

\section*{Permutation entropy}
- \(\mathbf{x}=(4,7,9,10,6,11,3) \quad m=3\)
\(\bullet\left[\begin{array}{l}\mathbf{x}_{1}^{3} \\ \mathbf{x}_{2}^{3} \\ \mathbf{x}_{3}^{3} \\ \mathbf{x}_{4}^{3} \\ \mathbf{x}_{5}^{3}\end{array}\right]=\left[\begin{array}{ccc}0 & 1 & 2 \\ 4 & 7 & 9 \\ 7 & 9 & 10 \\ 9 & 10 & 6 \\ 10 & 6 & 11 \\ 6 & 11 & 3\end{array}\right] \leftarrow \pi_{012} \leftarrow \pi_{201}\)
- \(p\left(\pi_{012}\right)=2 / 5, p\left(\pi_{102}\right)=1 / 5, p\left(\pi_{201}\right)=2 / 5\)
- \(\operatorname{PEn}(\mathbf{x}, 3)=-2 / 5 \ln (2 / 5)-1 / 5 \ln (1 / 5)-2 / 5 \ln (2 / 5)=1.522\)
- Normalize: \(n P E n(\mathbf{x}, 3)=\frac{1.522}{\ln (3!)}=0.8494\)

\section*{Experimental Data}
- IMS bearing Data

Motor speed : 2000 rpm
> Load: 60001b
- Record: \(1 \mathrm{sec} / 10 \mathrm{~min}\)
- Sampling rate : 20 k Hz
> Time: 164 hr
\(>\) bearing 1 was damaged

Signal -
ceessing Lab.

\section*{Past Approach}
D. Fernandez-Francos, D. Martinez-Rego, O. Fontenla-Romero, and A. Alonso
D. Fernandez-Francos, D. Martinez-Rego, O. Fontenla-Romero, and A. Alonso\& Industrial Engineering, vol. 64, pp. 357-365, Jan 2013 . Industrial Engineering, vol. 64, pp. 357-365, Jan 2013.

.

- Spectrum analysis of vibration data

\section*{Conclusion}
- Permutation entropy and Multiscale entropy seems to be a good index for the assessment of bearing performance degradation.
- Anomaly of bearing can be detected as early as possible by combing permutation entropy and support vector data description.
```

