
Control Architecture for the Robonaut Space
Humanoid

Hal Aldridge1, William Bluethmann2, Robert Ambrose3, and Myron Diftler4

1 NASA Johnson Space Center, Robotic Systems Technology Branch,
Mail Code ER4, Houston, TX 77058

hal.a.aldridge@jsc.nasa.gov

2 Hernandez Engineering Inc.
16055 Space Center Blvd, Suite 725, Houston, TX 77062

bluethmann@jsc.nasa.gov

3 Metrica, Inc
1012 Hercules Blvd., Houston, TX 77058

robert.o.ambrose@jsc.nasa.gov

4 Lockheed Martin Space Mission Systems and Services
2400 NASA Road 1, C35, Houston, TX 77058

diftler@jsc.nasa.gov

Abstract. The Robonaut project at the NASA Johnson Space Center is
building a humanoid robot for use in space. This robot has a control
architecture designed to support teleoperation and development of advanced
intelligent control to automate complex tasks. This architecture is influenced by
the architecture of human brains that embeds sequencing, safety, and control at
a low level. The agent based methodology that allows for a peer to peer
interaction between independent subelements is also used in this system. This
architecture specifies elements called subautonomies that group together
sequencing, safety, and control functions while allowing the elements to be
networked similar to agents. This architecture provides a robust and safe
environment for advanced humanoid intelligence research by providing low
level functionality with system safety implicit in the design. The architecture
has been implemented on the Robonaut using experience gained from another
humanlike NASA robot project, the Dexterous Anthropomorphic Robotic
Testbed. The Robonaut shows the capability of supporting complex orbital,
planetary, and medical tasks.

1 Introduction

Control system development for humanoid robots faces several significant technical
challenges. These challenges relate to the complexity of the system and its required
tasks. Humanoid robots by design are very high degree of freedom (DOF) systems.
A dual arm system with dexterous hands has approximately 30 DOF and a full

humanoid can exceed 60 DOF. These motions must be coordinated and controlled
safely and effectively. To accomplish complex tasks in real environments, the control
system must be flexible, safe, and have some level of intelligence. This intelligence
must plan and sequence autonomous tasks. It must learn new tasks or adapt existing
capabilities to meet new requirements. For non-autonomous tasks, the intelligence
must assist the human operator in controlling the complex humanoid.

Different architectures have been discussed for robot control and the Robonaut
architecture is influenced by several of these architectures. To maintain reasonable
computational complexity, most architectures separate the control system into layers
[1,2]. Layers are usually groups of components designed for similar functionality
and computational requirements. Each level builds on the data provided by lower
levels.

The human brain also uses a layered control system. Although not fully
understood, the basic functionality that the cerebral cortex requires information from
the other sections is known [3]. The cortex expects low level control, primitive
sequencing, basic sensor conditioning, involuntary system management, and reactive
safety systems to be handled by other sections of the brain so it can concentrate on
higher level task control and learning.

Another architectural approach is an agent based system. The agent based
approach to artificial intelligence distributes intelligence into subsystems which work
together to solve complex problems [4]. This architecture does not necessarily
require layering. The agents are organized as peer elements that exchange
information as necessary over a shared communication link.

The design and implementation of an architecture depends on the application. The
NASA Johnson Space Center has significant experience developing control systems
for teleoperated humanlike robots. The Dexterous Anthropomorphic Robotic Testbed
(DART), shown in Figure 1, was constructed to determine the feasibility of
telepresence based control of humanoid robotics [5]. It has successfully shown the
ability of human operators to work with a semi-autonomous control system to
perform complex tasks in an intuitive manner.

Fig. 1. DART tying a knot and cutting wire

The Robonaut project is using the experience gained from DART to build a
humanoid robot capable of working outside the laboratory in the space environment.
The goal of the Robonaut project is to provide a humanoid robot, shown in Figure 2,
with the dexterity of a suited astronaut to assist astronauts in complex space
construction, repair, and maintenance tasks. It contains more degrees of freedom in
its arms and hands than DART, enabling more complex tasks. Its mechanical and
electrical systems are designed for the harsh space environment. To perform its
required tasks, Robonaut will need to incorporate more autonomy than DART to
augment and replace teleoperated functions.

Fig. 2. Robonaut system anatomy

The control architecture for Robonaut is influenced by the human brain, the
layered architectures, agent based architectures, and the experience gained with
DART. The Robonaut architecture distributes low level control, primitive
sequencing, and reactive safety systems in a peer based network. This distribution
results in a robust, object oriented control design which will support the development
of artificial intelligence, automated learning, and other high level intelligent control
functions. The following details the design elements called subautonomies that form
the core building blocks of the architecture and gives specifics on the tools and
techniques used in the implementation of the controller.

2 Robonaut Architecture

The control architecture for the Robonaut humanoid is being developed around the
concept of subautonomies. Subautonomies are independent elements that combine
controllers, safety systems, low-level intelligence, and sequencing. The
subautonomies work with each other as peers similar to agents.

2.1 Architectural Influences

The method by which brain elements such as the thalamus, cerebellum, and brain
stem work with the cortex is a significant part of the brain’s architecture [3]. The
cerebral cortex interacts with the other elements of the brain by supervising tasks that

are carried out by the other elements. Although it is involved in the original learning
stages of a task, as the task is repeated the cognitive part of the cortex is freed to
concentrate on higher level tasks such as planning.

While motion control system for a robot can be a very simple system of controllers
that follow commands and provide raw information feedback, the brain has evolved a
significantly different mechanism. The brain embeds functions such as primitive
gaits, muscle monitoring, and other tasks at a low level [6]. Some of these functions
are embedded even deeper in the spinal cord and the nerves themselves. The cortex
has the ability to actively control or suppress some of these responses but only with
significant effort. The training that programs the actions into the proper brain
elements allows for fluid and precise control without direct intervention by the cortex.

A brain influenced control design should attempt to emulate this interaction for a
humanoid robot. The idea is not to attempt to replicate brain mechanisms but to be
influenced by the brain anatomy’s breakdown of tasks. Just as robot arm design can
be influenced by arm anatomy without building muscles, the control design can be
influenced by brain anatomy without building neurons. Neural network or other brain
inspired control approaches can be a part of the overall system but they are not
necessary to the architecture.

This embedding of functionality into independent subsystems is a design element
the Robonaut architecture seeks to emulate. This breakdown has several advantages.
It encapsulates functions complete with internal safety and intelligence that can be
used by other functions. No single safety system is responsible for all system safety,
leading to a more conservative, reliable system.

This distributed organization is similar to an agent based architecture used in
artificial intelligence [4]. In an agent based architecture, multiple routines run
concurrently, each attempting to perform a function such as optimizing a particular
piece of the system. Data is passed between agents as needed, usually across a
common communication link. Systems built around agents have been successfully
used for robot and humanoid control [7,8]. Distributing the intelligence around the
system can enable complex actions by allowing for interaction of proven subsystems
that understand their individual parts of the task.

The strength of the Robonaut architecture is its specification of agent
characteristics. It takes from the brain the embedding of sequencing, control, and
safety at multiple levels. The distribution of the intelligence among elements is
related to the agent based systems. The structure and functionality of the individual
agents is more strictly defined in the subautonomy model described in the next
section.

2.2 Subautonomy Description

System subautonomies can be task sequences, Cartesian control, vision processing,
teleoperator interfaces, joint controllers, and grasping control, among others.
Subautonomies make decisions as to what services they require from other sub-
autonomies to perform the required tasks. Each subautonomy handles its own internal
safety and decision making. If a failure occurs, a subautonomy can request a

shutdown or reconfiguration from other subautonomies in addition to performing its
own internal safety related functions.

The subautonomies for sensor feedback and motor control in a humanoid robot
perform functions similar to the brain’s thalamus, cerebellum, and stem. These brain
elements take commands from and process data for the cortex. For the robot
controller, they form a safe, flexible, and reliable foundation for higher level
cognition. These subautonomies can work for software systems of different
intelligence levels or directly under human teleoperated control. In the teleoperated
mode, the intelligence embedded in the subautonomies forms a shared control system
with the operator allowing for safe and effective operation.

Making the sensory and motor systems more independent and less reliant on
external coordination allows the high level controller to concentrate on task level
goals. The data provided by these systems is preprocessed to keep the possible
system states tractable for the intelligent system. This is essential for a learning
system that must separate the necessary parts of a task from the unnecessary.
Lowering the number for states also reduces the computational complexity of the
sequencing or other cortex related functions. A generic subautonomy is shown in
Figure 3.

Command Input Command Output

Outgoing Request/Status Incoming Request/Status

 Safety

Sequencer

Controller

Incoming Data Outgoing Data

Fig. 3. An example of a generic subautonomy

Within each subautonomy, sequencing, safety, and controller functions work

together to form a reliable, independent unit. Safety and sequencing form the basis of
the low-level intelligence that configures the controller, protects it from spurious
commands, and monitors the controller’s states. The triad of safety, sequencing and
control allows the subautonomy to operate without reliance upon its peers.

To communicate with its peers, each subautonomy has the ability to send and
receive commands and requests/status reports. A command is a synchronous signal
while a request/status report is an asynchronous signal. In an arm control system, the
output command of a Cartesian control subautonomy would be the input command of
a joint control subautonomy. Upon reaching joint control subautonomy, the safety
and sequencing aspects would review the incoming command and modify or reject it
if necessary. Subautonomies also communicate through the use of data. Data is

synchronous information, but differs from commands because it is used internally by
a subautonomy to make decisions, plans, and to execute the control laws.

 A request made by a subautonomy is a direct message from a subautonomy to one
or more peers. For example, a request comes from a task sequencer subautonomy to a
Cartesian control subautonomy asking to transition from an idle state to an active
state, permitting the system to enter a Cartesian control mode. As with any message
coming into a subautonomy, the safety and sequencing functions review the request
and act upon it based on their internal state.

A status report differs from a request in that it is broadcast to all subautonomies in
the system. It may be in response to an unexpected event or an announcement of a
change in subautonomy’s mode. Often a peer will ignore a status report; for example,
the sequencer with a teleoperation subautonomy determines that the status report of
the completion of the first step of a vision driven grasp of a tool may be ignored.
Requests and status reports are grouped together as the primary methods for
asynchronous interaction between peer subautonomies.

2.3 Subautonomy Elements

The sequencer function configures the subautonomy for the commanded mode and
executes the primitive actions. As required, the sequencer will communicate with
other subautonomy sequencers to request mode changes to support the required
actions. A hierarchy among subautonomies exist which determines which can request
a mode change from others. The system design must make conflicts in requests for
services either impossible or allow for arbitration by system level autonomies. This is
usually not a problem unless the system is required to satisfy competing goals. For
example, the force control subautonomy should not make a torque mode request to
the joint controller subautonomy while the trajectory subautonomy is making a
position mode request.

The controller function of the subautonomy is designed to meet performance and
stability requirements using the appropriate control theory. Humanoid robots must
perform a wide variety of tasks. As a result, one gain set and/or controller
implementation may not be adequate for all regimes. The controller design must be
able to transition between configurations as required by the sequencer.

The safety system is an integral part of the subautonomy. The sequencer sets the
safety limits when it configures the subautonomy. The safety system monitors the
controller’s actions and determines when an action is outside of the operational range.
At this point, the safety system informs the sequencer and the sequencer takes
appropriate action. This action could range from a warning status message, to a new
command limit, to a shutdown request. Although the safety system will act without
consent from other systems, it is essential for the subautonomy to inform other
subautonomies through status messages of the actions it took. This status information
allows other subautonomies to reconfigure as required and helps a learning system
understand what it can and cannot do.

Embedding the safety systems in a redundant fashion at the lowest possible level
makes system safety independent of the commands. An example of this function in
humans is the burn reflex that reacts to prevent harm before informing the cortex.

This functionality enables one of the most powerful methods in learning, the ability to
make mistakes with limited damage. Although the redundant safety systems can
conflict, causing unnecessary actions, this interaction serves to make the overall
system safety more conservative.

The command, data, status, and request variables which are passed between the
subautonomies are acted upon as required to perform the functions. The system is
organized such that each subautonomy receives the information it needs to make its
own internal decisions. Safety related actions are carried out locally in
subautonomies with direct access to the appropriate variables or requests are sent to
the controlling subautonomy to perform the required action.

The grouping of elements into subautonomies leads to an object oriented design. A
subautonomy is a self-contained unit that can be tested individually for functionality
and performance. Subautonomies can start off with only basic functionality and
evolve at differing rates in the overall system.

2.4 System of Subautonomies

The organization of the subautonomies in a system is similar to an agent based
approach [4]. Through data, command, request, and status variables the
subautonomies can interact as required. The layering inherent to some architectures is
not strictly enforced. Although layering takes place as in many classical systems, the
layers are more flexible. Elements that require mode changes of numerous other
subautonomies are “higher” task level subautonomies while subautonomies that
provide data to or perform actions for numerous subautonomies without requiring
many mode changes can be considered “lower” functional level subautonomies.
Depending on the situation, the “lower” level systems can overrule the “higher” level
systems. This is possible due to the embedding of system specific intelligence into
the “lower” levels.

Figure 4 shows the subautonomy system implementation for a single Robonaut
arm (without the hand) with a teleoperator interface, a simple task planner, input from
a console operator, and impedance force control.

The following example shows the interaction of several subautonomies during a
force controlled insertion task.

1. To perform an insertion task, the task sequencing subautonomy sends a mode

request to the force control subautonomy to configure force control for an
insertion along the Z axis of the manipulator.

2. The force control subautonomy sequencer sets the controller and safety systems
to the required states and requests the Cartesian subautonomy accept Cartesian
command deltas from the force control subautonomy.

3. The Cartesian subautonomy was not active. The request from the force control
subautonomy causes the Cartesian sequencer to enable its systems and send a
request for the status of the joint control subautonomy.

4. The joint control subautonomy is active in position control mode and reports its
status to the Cartesian subautonomy.

Status/requests

Command

Requests
Console Operator

Subautonomy

Status/requests

Pose command

Requests
Teleoperator
Subautonomy

Incoming data

Seq status/requests

Action request

Requests
Task Sequencing

Subautonomy

Data/feedback

Force status/requests

Command

Requests

Force cmd

Force Control
Subautonomy

Processed forceIncoming data

Cart status/requests

Command

Requests

Position cmd

Cartesian Control
Subautonomy

Outgoing dataIncoming data

Kinematics status/requestsRequests
Kinematics

Subautonomy

Kinematics dataIncoming data

Joint status/requests

Motor command

Requests

Command

Joint Control
Subautonomy

θ, θdotJoint data

Incoming data

Type of Control

Task Functional

Fig. 4 Robonaut arm subautonomy layout

5. The Cartesian subautonomy accepts the joint control status and completes its
initialization. It begins sending joint position commands to the joint controller. It
sends out a status message that it is ready and is accepting Cartesian command
deltas from the force control subautonomy.

6. With the Cartesian status message, the force control subautonomy completes its
initialization and reports its status as compliant in the Z axis.

7. The task sequencer accepts the force control status and continues to the next step.
8. During that step, the manipulator makes contact with the environment and the

Cartesian subautonomy reports that the servo error along the Y axis is exceeding
tolerance but does not yet exceed the safety limit.

9. The force control subautonomy notes this status and checks the force level on the
Y axis. It is high, confirming an unwanted tip contact along that axis. It
reconfigures the controller to allow compliance in the Y axis in addition to the Z
axis. It reports unwanted contact in the Y axis and its status as compliant in the
Y and Z axes.

10. The task sequencing subautonomy notes the force control status and decides that
something is wrong with the task. It starts a task shutdown sequence that moves
the manipulator away from the contact area.

11. The task shutdown sequence finishes properly. The task sequencing
subautonomy sends a request to the force control subautonomy to configure for Z
axis compliance only to set up for the next attempt.

12. The force control subautonomy receives the request and checks the force in the Y
direction. It is very low so the force control sequencer accepts the request and
reconfigures its controller and safety system. It reports its status as compliant
along the Z axis.

This example points out some of the features of the architecture. The task

sequencing subautonomy only knew that it needed compliance along the Z axis for an
insertion. It informed the force control subautonomy what it needed and allowed the
force control subautonomy to send the proper requests to configure the system. These
requests were acted upon and these actions generated new requests to other

subautonomies not directly involved with the force control subautonomy. The status
messages confirming proper initialization were received, concluding with the force
controller status that the Z axis is compliant. When the force control subautonomy
concluded it had excessive contact in the Y axis through its own data and status of
other subautonomies, it acted to correct the situation unilaterally and reported what it
did to the system. The subautonomies worked together to satisfy the task sequencing
requirements.

2.5 Intelligence

The intelligence embedded in a subautonomy is not restricted to simple sequencing.
Any intelligence specific to the subautonomy can be included at this level. For
example, the dexterous hand grasping subautonomy could modify its baseline grasps
to adapt to new objects. This level of intelligent learning is similar to the cerebellum
learning capability [6].

Depending on the level and types of intelligence embedded in the subautonomies,
interesting emergent behaviors should be possible. The behaviors will result from
the peer to peer interaction between elements as in agent based theory. These abilities
may not need to learn or evolve to play a significant role in the overall system
intelligence. The actions of a force control subautonomy selectively making axes less
rigid while accepting commands from a computer vision based controller could allow
for robust manipulation of complex objects without significant artificial intelligence.

The Robonaut architecture is designed to provide support for teleoperation and
advanced automation development. It has the capability to build in intelligence at
several levels. However, it is recognized that there are other techniques for intelligent
control that should be evaluated for use on Robonaut. These techniques do not
necessarily need to follow the described architecture.

The Robonaut control system provides data and command paths to other control
software through an application programmer’s interface (API). The embedded
control system built around the described architecture provides intelligent
functionality and system safety for the external controller. This breakdown will allow
the external intelligence, software or human, to concentrate on task level functions.
The Robonaut control system protects itself as required from improper commands
while providing intelligent functionality to the external system.

3 Implementation

The Robonaut project presents one of the most interesting humanoid control
challenges available today. Robonaut must work safely around multi-billion dollar
equipment and humans wearing space suits in a hostile environment. It must perform
its tasks reliably to maintain critical systems. These complex tasks require high
bandwidth system performance. These tasks also require varying levels of control
from fully teleoperated to fully autonomous.

To accomplish these tasks, the control system must provide safe, reliable control
for 47+ degrees of freedom. It must maintain performance in a harsh thermal

environment. It must execute at the required rate on reasonable computing hardware.
These challenges cannot be met by using only classical robot control methods.
Advanced control theory in the areas of grasping, force control, intelligent control,
and shared control must be developed to the point where the control is suitable for
critical applications to fully realize the capability of Robonaut.

Robonaut is required to perform diverse tasks. Robonaut must use the same tools
that astronauts use, in order to reduce the launch weight and development effort
required for robot specific tooling. The manipulation and use of these tools is the key
to the ability of Robonaut to accomplish the tasks for which it is designed. Figure 5
shows the basic capability of Robonaut to perform tool handling tasks under
teleoperation. Robonaut has the capability to handle orbital, planetary, and medical
tool types among others. Some of these tasks will become more automated as more
advanced control techniques are implemented.

The subautonomy based architecture described here is the basis for the control
design. The next sections cover some of the implementation details, design
techniques, describe experiences from the DART project that influenced Robonaut,
and other issues involved in the Robonaut control design.

Fig. 5. Robonaut performing space, planetary, and medical tasks.

3.1 Robonaut Computing environment

The computing environment chosen for the Robonaut project includes several state-
of-the-art technologies. The PowerPC processor was chosen as the real-time

computing platform for its performance and its continued development for space
applications. The computers and their required I/O are connected via a VME
backplane. The processors run the VxWorks™ real-time operating system. This
combination of flexible computing hardware and operating system supports varied
development activities.

The software for Robonaut is written in C and C++. ControlShell™, a software
development environment for object oriented, real-time software development, is used
extensively to aid in the development process. ControlShell provides a graphical
development environment that enhances the understanding of the system and code
reusability.

Due to the requirements of the space mission, Robonaut can only carry a limited
amount of computing capability. As a result, the controller designs chosen for
implementation must be tractable with reasonable computing resources in real-time.
This is one of the reasons behind the teleoperation used in current development. The
amount of computation realistically carried using current computers limits system
development to subautonomies that will enhance sensor feedback and motor control.
In the near future, these functions will be ported to faster computers that can be
successfully embedded in the Robonaut system. Initial proof of concept development
for advanced intelligent control systems will be done utilizing external computing
resources and the API.

3.2 DART Experience

The DART system with the Full Immersion Telepresence Testbed (FITT), shown in
Figure 6, provided the starting point for the telepresence aspects of the control
architecture currently used by Robonaut. DART and FITT use a distributed
architecture with all subsystems receiving and sending commands via a router. The
subsystems are distributed over a number of CPUs all connected via Ethernet. These
subsystems are an earlier version of the subautonomies noted above. They contain the
basic features of a subautonomy but are not object oriented in design.

This router based DART/FITT system works well for low bandwidth teleoperator
commands such as position control and simple mode changes. Higher bandwidth
responses such as impedance control are performed locally on individual processors
using high speed I/O. In a general sense, Robonaut adheres to this same philosophy,
but eliminates the router based system in favor of a VME based shared memory
supplemented with Ethernet based communication. Several important lessons learned
from DART/FITT [5] are incorporated in the subautonomies used by Robonaut.

This router based DART/FITT system works well for low bandwidth teleoperator
commands such as position control and simple mode changes. Higher bandwidth
responses such as impedance control are performed locally on individual processors
using high speed I/O. In a general sense, Robonaut adheres to this same philosophy,
but eliminates the router based system in favor of a VME based shared memory
supplemented with Ethernet based communication. Several important lessons learned
from DART/FITT [5] are incorporated in the subautonomies used by Robonaut.

Fig. 6. DART/FITT system

The DART arm subsystem can receive position commands from either a
teleoperator based client or an automated client. One of the early enhancements to this
subsystem came out of initial teleoperator testing which revealed the need for relative
motion control for several reasons. While DART is anthropomorphic, its arms are
longer than a typical operator’s arm and it has greater than human travel in all joints.
In addition, the operator needs the ability to have the robot work at full extension,
while keeping his own arms in a relatively comfortable pose. To take advantage of
the robots capabilities and accommodate the operator, the arm subsystem provides, on
request, current position information to client processes. Teleoperator commands are
easily combined with this data, allowing the operator to re-index the relative motion
at any point in time.

Additional arm features that are useful building blocks when developing high level
controllers include: coordinated dual arm motion, compliance control, and kinematic
solution selection capability. In dual arm mode, the arm subsystem accepts position
commands for a point of resolution (POR) centered between the two arms and then
resolves them back into commands at the individual arm PORs. Compliance control
utilizes two force/torque sensors and is available with all other arm operating modes.
Given the mounting of the PUMA arms shown in Figure 6, four solutions are
available for any kinematic pose and orientation of each arm. Flipping the elbow
yields two solution and flipping the wrist yields two more. The arm subsystem
accepts commands to move between these four solutions in a controlled manner for
obstacle avoidance or to enhance operator viewing.

The DART end effectors are Stanford/JPL hands, and while dexterous, these hands
are not anthropomorphic. Each finger has three joints, and the thumb directly opposes
the other two fingers that are kinematically dissimilar to a human finger. This makes
simple joint or Cartesian teleoperator control of the Stanford/JPL hand difficult. If the
human operator is trying to perform highly dexterous tasks, his intentions may not be
mapped properly to the robot. The DART/FITT solution to this problem is to map not
only hand position, but hand functionality as well.

Venkataraman and Iberall [9] identify a partial taxonomy of grasps used by
machinists when working with metal parts and hand tools. From this partial
taxonomy, a useful set of voice-invoked grasp primitives are made available for
control of the DART robotic hands. These grasp primitives consist of pinch grasp, key
grasp, hook grasp, spherical grasp, and cylindrical grasp. The spatial configuration of
the fingers is modulated by the human operator and mapped into one of the primitive
grasp geometries available within the hand subsystem. This primitive approach to
shared control provides for the mapping of finger positions as well as mapping the
functional intention of the human operator. With this method of control, the
DART/FITT system is able to perform a larger variety of tasks more efficiently and
productively.

Health monitoring is an important part of a subautonomy. The DART subsystems
include self monitoring that prevents damage and also sends out messages to other
subsystems when limits are being approached. The arms track limits and singularities
and when either is approached, a message is sent to the voice subsystem that provides
an audio command alerting the teleoperator to the situation. Similarly the fingers on
the Stanford/JPL hand can use the friction in their cable drive train to their advantage
and actually resist more force than they can actively apply. In certain instances this is
useful, but the overall cable tension still must be limited. The hand subsystem
monitors the tension and initiates similar commands to the voice subsystem when
then tension approaches excessive levels. At sufficiently high tension levels the hand
will shut itself down to prevent damage.

3.3 Control System Prototyping

The Robonaut program also uses the Cooperative Manipulation Testbed (CMT)
facility shown in Figure 7 to develop and test software and control strategies. The
CMT is made up of three manipulators and their tooling. All three manipulators are
seven DOF devices. Two manipulators are identical while the third is a larger, scaled
version of the others. This similar/dissimilar arrangement allows for testing of
homogenous and heterogeneous tasks. The smaller manipulators have three fingered
hands for tooling. This flexible tooling allows the manipulators to handle a wide
variety of tasks. The larger manipulator has a quick-change mechanism allowing it to
autonomously change special purpose end-effectors. All manipulators have six axis
end-effector force/torque sensors and joint torque sensors for high bandwidth force
control. The computing and development environment for CMT is identical to the
Robonaut system for rapid software transfer.
The use of CMT to augment software development for Robonaut has been successful.
Subautonomies such as Cartesian control and force control have been prototyped and
tested using CMT and quickly ported to Robonaut. Although the mechanical
hardware is dissimilar, the physical capabilities, with the exception of grasping, are
similar. The identical computing environment and the object oriented design of the
architecture allows rapid software exchange between the two systems. The capability
to develop software using a system that is more available for test than Robonaut and
incorporates future features of Robonaut that are still in development reduces the
overall software development cycle.

Fig. 7. Cooperative Manipulation Testbed (CMT)

3.4 Primitive Based Automated Grasping

The initial development of primitives is required for teleoperator assistance. These
primitives use both force and position data as required by the task they are
automating. When using primitives, the operator is not required to directly control
all the hand axes. The primitives interpret the operator’s glove commands and map
them to multiple hand axes making the required decisions based on hand sensor data.

The first finger primitives being tested are similar to the ones implemented with
DART. On Robonaut the impetus for the primitives is a little different. The
Robonaut hand is a more anthropomorphic design than the Stanford/JPL hands on
DART. This design makes operator to humanoid finger mapping less of an issue.
However, the operator will not be holding the same object as the robot. In this case
ease of use and workload become issues. If Robonaut needs to spread its fingers to
grasp a spherical object, the human will very quickly become uncomfortable palming
the virtual object. A spherical primitive will allow the operator to maintain a
comfortable finger separation while Robonaut maintains the required spread.
Similarly, when only two fingers are required to grasp, for example tweezers, a
primitive that automatically moves all other fingers out of the way is very useful.

Primitives are also useful in repetitive tasks and fine motion operations. A good
example of a repetitive task is manual bolt tightening or dial spinning. Robonaut has a
primitive that commands 6 degrees of freedom in the hands using only two joint
inputs from the operator. The operator lines up the Robonaut hand with the bolt and
then simple steps through the primitive using relatively coarse inputs. The Robonaut
fingers reposition themselves precisely throughout the cycle and the operator’s work
load is significantly decreased. Primitives can also be used to readjust the gain
between the human and the robot. When precision motion is required, 50 degrees of

human finger motion can be converted into 5 degrees of robot finger motion.
Robonaut has the capability to exceed nominal anthropomorphic mapping in many
instances.

The use of primitives is the first step leading to an automated grasping
subautonomy for Robonaut. The general grasping problem for dexterous hands using
enveloping grasps is currently too computationally complex for the Robonaut control
system. Instead of solving the general problem, discrete grasp primitives will be
defined and studied. Metrics used to evaluate the progress of the primitives in
accomplishing a task will be tested experimentally. These primitives and metrics can
be sequenced to perform complex operations. The safety system that determines
when a grasp is about to fail, or when fingers are colliding among other things, will be
embedded at the subautonomy level.

4 Conclusions

The Robonaut control architecture has been designed to build a robust and safe
foundation that supports teleoperation and will enable development of intelligent
control. The subautonomy based architecture embeds safety, sequencing, and control
at all levels. The distribution of intelligence and safety through the system enhances
safety and improves functionality. The self-contained design of the subautonomy
leads to an object oriented system whose elements can be tested independently. The
Robonaut embedded system supports advanced development in humanoid intelligence
by providing system safety and intelligent functionality to other types of intelligent
control systems. The architecture has shown benefits in teleoperated control that
should translate into enabling capabilities in advanced automation.

References

1. Albus, J., McMcain, H., and Lumia, R.: NASA/NBS Standard Reference Model for
Telerobot Control System Architecture (NASREM). NBS TechNote 1235, National
Bureau of Standards, Gaithersburg, Maryland, (1987)

2. Bonasso, P., Firby, R., Gat, E., Kortenkamp D., Miller, D., and Slack, M.: Experiences
with an Architecture for Intelligent, Reactive Agents. Journal of Experimental and
Theoretical Artificial Intelligence, vol 9, no 2 (1997)

3. Molavi, D.: Neuroscience Tutorial. The University of Washington School of Medicine,
(1997)

4. Wooldridge, M., and Jennings, N.: Intelligent Agents: Theory and Practice. Knowledge
Engineering Review, vol 2, no. 2 (1995)

5. Li, L., Cox, B., Diftler, M., Shelton, S., Rogers, B.: Development of a Telepresence
Controlled Ambidextrous Robot for Space Applications. Proceedings of the IEEE
International Conference on Robotics and Automation, Minneapolis, MN (1996) 58-63

6. Albus, J.: A Theory of Cerebellar Function. Mathematical Biosciences, 10 (1971) 25-61
7. Mori, A., Naya, F., Osato, N., and Kawaoka, T.: Multiagent-based Distributed

Manipulator Control. IEEE International Conference on Multisensor Fusion and
Integration for Intelligent Systems (1996)

8. Peters, R., D. M. Wilkes, D. M. Gaines, and K. Kawamura: A Software Agent Based
Control System for Human-Robot Interfaction. Second International Symposium on
Humanoid Robots, Waseda University, Tokyo, Japan (1999)

9. Venkataraman, S.T. and Iberall, T.: Dexterous Robotic Hands. Springer-Verlag, New
York, (1990)

