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Abstract. The Robonaut project at the NASA Johnson Space Center is 
building a humanoid robot for use in space.  This robot has a control 
architecture designed to support teleoperation and development of advanced 
intelligent control to automate complex tasks.  This architecture is influenced by 
the architecture of human brains that embeds sequencing, safety, and control at 
a low level.  The agent based methodology that allows for a peer to peer 
interaction between independent subelements is also used in this system.  This 
architecture specifies elements called subautonomies that group together 
sequencing, safety, and control functions while allowing the elements to be 
networked similar to agents. This architecture provides a robust and safe 
environment for advanced humanoid intelligence research by providing low 
level functionality with system safety implicit in the design.  The architecture 
has been implemented on the Robonaut using experience gained from another 
humanlike NASA robot project, the Dexterous Anthropomorphic Robotic 
Testbed.  The Robonaut shows the capability of supporting complex orbital, 
planetary, and medical tasks.  

1 Introduction 

Control system development for humanoid robots faces several significant technical 
challenges.  These challenges relate to the complexity of the system and its required 
tasks.  Humanoid robots by design are very high degree of freedom (DOF) systems.  
A dual arm system with dexterous hands has approximately 30 DOF and a full 



humanoid can exceed 60 DOF.  These motions must be coordinated and controlled 
safely and effectively.  To accomplish complex tasks in real environments, the control 
system must be flexible, safe, and have some level of intelligence.  This intelligence 
must plan and sequence autonomous tasks.  It must learn new tasks or adapt existing 
capabilities to meet new requirements.  For non-autonomous tasks, the intelligence 
must assist the human operator in controlling the complex humanoid.   

Different architectures have been discussed for robot control and the Robonaut 
architecture is influenced by several of these architectures.  To maintain reasonable 
computational complexity, most architectures separate the control system into layers 
[1,2].   Layers are usually groups of components designed for similar functionality 
and computational requirements.  Each level builds on the data provided by lower 
levels. 

The human brain also uses a layered control system.  Although not fully 
understood, the basic functionality that the cerebral cortex requires information from 
the other sections is known [3].  The cortex expects low level control, primitive 
sequencing, basic sensor conditioning, involuntary system management, and reactive 
safety systems to be handled by other sections of the brain so it can concentrate on 
higher level task control and learning. 

Another architectural approach is an agent based system.  The agent based 
approach to artificial intelligence distributes intelligence into subsystems which work 
together to solve complex problems [4].  This architecture does not necessarily 
require layering.  The agents are organized as peer elements that exchange 
information as necessary over a shared communication link.  

The design and implementation of an architecture depends on the application.  The 
NASA Johnson Space Center has significant experience developing control systems 
for teleoperated humanlike robots.  The Dexterous Anthropomorphic Robotic Testbed 
(DART), shown in Figure 1, was constructed to determine the feasibility of 
telepresence based control of humanoid robotics [5].  It has successfully shown the 
ability of human operators to work with a semi-autonomous control system to 
perform complex tasks in an intuitive manner. 

  

    
Fig. 1. DART tying a knot and cutting wire 

 



The Robonaut project is using the experience gained from DART to build a 
humanoid robot capable of working outside the laboratory in the space environment. 
The goal of the Robonaut project is to provide a humanoid robot, shown in Figure 2,  
with the dexterity of a suited astronaut to assist astronauts in complex space 
construction, repair, and maintenance tasks.  It contains more degrees of freedom in 
its arms and hands than DART, enabling more complex tasks.  Its mechanical and 
electrical systems are designed for the harsh space environment.  To perform its 
required tasks, Robonaut will need to incorporate more autonomy than DART to 
augment and replace teleoperated functions.  

 

        
Fig. 2.  Robonaut system anatomy 

The control architecture for Robonaut is influenced by the human brain, the 
layered architectures, agent based architectures, and the experience gained with 
DART.  The Robonaut architecture distributes low level control, primitive 
sequencing, and reactive safety systems in a peer based network.  This distribution 
results in a robust, object oriented control design which will support the development 
of artificial intelligence, automated learning, and other high level intelligent control 
functions.  The following details the design elements called subautonomies that form 
the core building blocks of the architecture and gives specifics on the tools and 
techniques used in the implementation of the controller. 

2 Robonaut Architecture 

The control architecture for the Robonaut humanoid is being developed around the 
concept of subautonomies.  Subautonomies are independent elements that combine 
controllers, safety systems, low-level intelligence, and sequencing.   The 
subautonomies work with each other as peers similar to agents.   

2.1 Architectural Influences 

The method by which brain elements such as the thalamus, cerebellum, and brain 
stem work with the cortex is a significant part of the brain’s architecture [3]. The 
cerebral cortex interacts with the other elements of the brain by supervising tasks that 



are carried out by the other elements.  Although it is involved in the original learning 
stages of a task, as the task is repeated the cognitive part of the cortex is freed to 
concentrate on higher level tasks such as planning.   

While motion control system for a robot can be a very simple system of controllers 
that follow commands and provide raw information feedback, the brain has evolved a 
significantly different mechanism.  The brain embeds functions such as primitive 
gaits, muscle monitoring, and other tasks at a low level [6].  Some of these functions 
are embedded even deeper in the spinal cord and the nerves themselves.  The cortex 
has the ability to actively control or suppress some of these responses but only with 
significant effort. The training that programs the actions into the proper brain 
elements allows for fluid and precise control without direct intervention by the cortex. 

A brain influenced control design should attempt to emulate this interaction for a 
humanoid robot.  The idea is not to attempt to replicate brain mechanisms but to be 
influenced by the brain anatomy’s breakdown of tasks.  Just as robot arm design can 
be influenced by arm anatomy without building muscles, the control design can be 
influenced by brain anatomy without building neurons.  Neural network or other brain 
inspired control approaches can be a part of the overall system but they are not 
necessary to the architecture. 

This embedding of functionality into independent subsystems is a design element 
the Robonaut architecture seeks to emulate.  This breakdown has several advantages.  
It encapsulates functions complete with internal safety and intelligence that can be 
used by other functions.  No single safety system is responsible for all system safety, 
leading to a more conservative, reliable system.   

This distributed organization is similar to an agent based architecture used in 
artificial intelligence [4].  In an agent based architecture, multiple routines run 
concurrently, each attempting to perform a function such as optimizing a particular 
piece of the system.  Data is passed between agents as needed, usually across a 
common communication link. Systems built around agents have been successfully 
used for robot and humanoid control [7,8]. Distributing the intelligence around the 
system can enable complex actions by allowing for interaction of proven subsystems 
that understand their individual parts of the task. 

The strength of the Robonaut architecture is its specification of agent 
characteristics.  It takes from the brain the embedding of sequencing, control, and 
safety at multiple levels.  The distribution of the intelligence among elements is 
related to the agent based systems.  The structure and functionality of the individual 
agents is more strictly defined in the subautonomy model described in the next 
section.   

2.2 Subautonomy Description 

System subautonomies can be task sequences, Cartesian control, vision processing, 
teleoperator interfaces, joint controllers, and grasping control, among others.  
Subautonomies make decisions as to what services they require from other sub-
autonomies to perform the required tasks.  Each subautonomy handles its own internal 
safety and decision making.  If a failure occurs, a subautonomy can request a 



shutdown or reconfiguration from other subautonomies in addition to performing its 
own internal safety related functions. 

The subautonomies for sensor feedback and motor control in a humanoid robot 
perform functions similar to the brain’s thalamus, cerebellum, and stem.  These brain 
elements take commands from and process data for the cortex.  For the robot 
controller, they form a safe, flexible, and reliable foundation for higher level 
cognition.  These subautonomies can work for software systems of different 
intelligence levels or directly under human teleoperated control.  In the teleoperated 
mode, the intelligence embedded in the subautonomies forms a shared control system 
with the operator allowing for safe and effective operation. 

Making the sensory and motor systems more independent and less reliant on 
external coordination allows the high level controller to concentrate on task level 
goals.  The data provided by these systems is preprocessed to keep the possible 
system states tractable for the intelligent system.  This is essential for a learning 
system that must separate the necessary parts of a task from the unnecessary.  
Lowering the number for states also reduces the computational complexity of the 
sequencing or other cortex related functions.  A generic subautonomy is shown in 
Figure 3.    
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Fig. 3. An example of a generic  subautonomy 

 
Within each subautonomy, sequencing, safety, and controller functions work 

together to form a reliable, independent unit.  Safety and sequencing form the basis of 
the low-level intelligence that configures the controller, protects it from spurious 
commands, and monitors the controller’s states.   The triad of safety, sequencing and 
control allows the subautonomy to operate without reliance upon its peers.   

To communicate with its peers, each subautonomy has the ability to send and 
receive commands and requests/status reports.  A command is a synchronous signal 
while a request/status report is an asynchronous signal.  In an arm control system, the 
output command of a Cartesian control subautonomy would be the input command of 
a joint control subautonomy.  Upon reaching joint control subautonomy, the safety 
and sequencing aspects would review the incoming command and modify or reject it 
if necessary.  Subautonomies also communicate through the use of data.  Data is 



synchronous information, but differs from commands because it is used internally by 
a subautonomy to make decisions, plans, and to execute the control laws. 

 A request made by a subautonomy is a direct message from a subautonomy to one 
or more peers.  For example, a request comes from a task sequencer subautonomy to a 
Cartesian control subautonomy asking to transition from an idle state to an active 
state, permitting the system to enter a Cartesian control mode.   As with any message 
coming into a subautonomy, the safety and sequencing functions review the request 
and act upon it based on their internal state.   

A status report differs from a request in that it is broadcast to all subautonomies in 
the system.  It may be in response to an unexpected event or an announcement of a 
change in subautonomy’s mode.  Often a peer will ignore a status report; for example, 
the sequencer with a teleoperation subautonomy determines that the status report of 
the completion of the first step of a vision driven grasp of a tool may be ignored.   
Requests and status reports are grouped together as the primary methods for 
asynchronous interaction between peer subautonomies. 

2.3 Subautonomy Elements 

The sequencer function configures the subautonomy for the commanded mode and 
executes the primitive actions.  As required, the sequencer will communicate with 
other subautonomy sequencers to request mode changes to support the required 
actions.  A hierarchy among subautonomies exist which determines which can request 
a mode change from others.  The system design must make conflicts in requests for 
services either impossible or allow for arbitration by system level autonomies.  This is 
usually not a problem unless the system is required to satisfy competing goals.  For 
example, the force control subautonomy should not make a torque mode request to 
the joint controller subautonomy while the trajectory subautonomy is making a 
position mode request. 

The controller function of the subautonomy is designed to meet performance and 
stability requirements using the appropriate control theory.  Humanoid robots must 
perform a wide variety of tasks.  As a result, one gain set and/or controller 
implementation may not be adequate for all regimes.  The controller design must be 
able to transition between configurations as required by the sequencer. 

The safety system is an integral part of the subautonomy.   The sequencer sets the 
safety limits when it configures the subautonomy.  The safety system monitors the 
controller’s actions and determines when an action is outside of the operational range.  
At this point, the safety system informs the sequencer and the sequencer takes 
appropriate action.  This action could range from a warning status message, to a new 
command limit, to a shutdown request.  Although the safety system will act without 
consent from other systems, it is essential for the subautonomy to inform other 
subautonomies through status messages of the actions it took.  This status information 
allows other subautonomies to reconfigure as required and helps a learning system 
understand what it can and cannot do.   

Embedding the safety systems in a redundant fashion at the lowest possible level 
makes system safety independent of the commands.  An example of this function in 
humans is the burn reflex that reacts to prevent harm before informing the cortex.  



This functionality enables one of the most powerful methods in learning, the ability to 
make mistakes with limited damage.  Although the redundant safety systems can 
conflict, causing unnecessary actions, this interaction serves to make the overall 
system safety more conservative. 

The command, data, status, and request variables which are passed between the 
subautonomies are acted upon as required to perform the functions.  The system is 
organized such that each subautonomy receives the information it needs to make its 
own internal decisions.  Safety related actions are carried out locally in 
subautonomies with direct access to the appropriate variables or requests are sent to 
the controlling subautonomy to perform the required action.    

The grouping of elements into subautonomies leads to an object oriented design.  A 
subautonomy is a self-contained unit that can be tested individually for functionality 
and performance.  Subautonomies can start off with only basic functionality and 
evolve at differing rates in the overall system.      

2.4 System of Subautonomies 

The organization of the subautonomies in a system is similar to an agent based 
approach [4].  Through data, command, request, and status variables the 
subautonomies can interact as required.  The layering inherent to some architectures is 
not strictly enforced.   Although layering takes place as in many classical systems, the 
layers are more flexible. Elements that require mode changes of numerous other 
subautonomies are “higher” task level subautonomies while subautonomies that 
provide data to or perform actions for numerous subautonomies without requiring 
many mode changes can be considered “lower” functional level subautonomies.  
Depending on the situation, the “lower” level systems can overrule the “higher” level 
systems.  This is possible due to the embedding of system specific intelligence into 
the “lower” levels. 

Figure 4 shows the subautonomy system implementation for a single Robonaut 
arm (without the hand) with a teleoperator interface, a simple task planner, input from 
a console operator, and impedance force control.   

The following example shows the interaction of several subautonomies during a 
force controlled insertion task. 

 
1. To perform an insertion task, the task sequencing subautonomy sends a mode 

request to the force control subautonomy to configure force control for an 
insertion along the Z axis of the manipulator. 

2. The force control subautonomy sequencer sets the controller and safety systems 
to the required states and requests the Cartesian subautonomy accept Cartesian 
command deltas from the force control subautonomy. 

3. The Cartesian subautonomy was not active.  The request from the force control 
subautonomy causes the Cartesian sequencer to enable its systems and send a 
request for the status of the joint control subautonomy. 

4. The joint control subautonomy is active in position control mode and reports its 
status to the Cartesian subautonomy. 
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Fig. 4 Robonaut arm subautonomy layout 

5. The Cartesian subautonomy accepts the joint control status and completes its 
initialization. It begins sending joint position commands to the joint controller.  It 
sends out a status message that it is ready and is accepting Cartesian command 
deltas from the force control subautonomy. 

6. With the Cartesian status message, the force control subautonomy completes its 
initialization and reports its status as compliant in the Z axis. 

7. The task sequencer accepts the force control status and continues to the next step. 
8. During that step, the manipulator makes contact with the environment and the 

Cartesian subautonomy reports that the servo error along the Y axis is exceeding 
tolerance but does not yet exceed the safety limit. 

9. The force control subautonomy notes this status and checks the force level on the 
Y axis.  It is high, confirming an unwanted tip contact along that axis.  It 
reconfigures the controller to allow compliance in the Y axis in addition to the Z 
axis.  It reports unwanted contact in the Y axis and its status as compliant in the 
Y and Z axes. 

10. The task sequencing subautonomy notes the force control status and decides that 
something is wrong with the task.  It starts a task shutdown sequence that moves 
the manipulator away from the contact area. 

11. The task shutdown sequence finishes properly.  The task sequencing 
subautonomy sends a request to the force control subautonomy to configure for Z 
axis compliance only to set up for the next attempt. 

12. The force control subautonomy receives the request and checks the force in the Y 
direction.  It is very low so the force control sequencer accepts the request and 
reconfigures its controller and safety system.  It reports its status as compliant 
along the Z axis. 

   
This example points out some of the features of the architecture.  The task 

sequencing subautonomy only knew that it needed compliance along the Z axis for an 
insertion.  It informed the force control subautonomy what it needed and allowed the 
force control subautonomy to send the proper requests to configure the system.  These 
requests were acted upon and these actions generated new requests to other 



subautonomies not directly involved with the force control subautonomy.  The status 
messages confirming proper initialization were received, concluding with the force 
controller status that the Z axis is compliant.  When the force control subautonomy 
concluded it had excessive contact in the Y axis through its own data and status of 
other subautonomies, it acted to correct the situation unilaterally and reported what it 
did to the system.  The subautonomies worked together to satisfy the task sequencing 
requirements. 

2.5 Intelligence 

The intelligence embedded in a subautonomy is not restricted to simple sequencing.  
Any intelligence specific to the subautonomy can be included at this level.  For 
example, the dexterous hand grasping subautonomy could modify its baseline grasps 
to adapt to new objects.  This level of intelligent learning is similar to the cerebellum 
learning capability [6]. 

Depending on the level and types of intelligence embedded in the subautonomies, 
interesting emergent behaviors should be possible.   The behaviors will result from 
the peer to peer interaction between elements as in agent based theory.  These abilities 
may not need to learn or evolve to play a significant role in the overall system 
intelligence.  The actions of a force control subautonomy selectively making axes less 
rigid while accepting commands from a computer vision based controller could allow 
for robust manipulation of complex objects without significant artificial intelligence. 

The Robonaut architecture is designed to provide support for teleoperation and 
advanced automation development.  It has the capability to build in intelligence at 
several levels.  However, it is recognized that there are other techniques for intelligent 
control that should be evaluated for use on Robonaut.  These techniques do not 
necessarily need to follow the described architecture.   

The Robonaut control system provides data and command paths to other control 
software through an application programmer’s interface (API).  The embedded 
control system built around the described architecture provides intelligent 
functionality and system safety for the external controller.  This breakdown will allow 
the external intelligence, software or human, to concentrate on task level functions.  
The Robonaut control system protects itself as required from improper commands 
while providing intelligent functionality to the external system.   

3 Implementation 

The Robonaut project presents one of the most interesting humanoid control 
challenges available today.  Robonaut must work safely around multi-billion dollar 
equipment and humans wearing space suits in a hostile environment.  It must perform 
its tasks reliably to maintain critical systems.  These complex tasks require high 
bandwidth system performance.  These tasks also require varying levels of control 
from fully teleoperated to fully autonomous.  

To accomplish these tasks, the control system must provide safe, reliable control 
for 47+ degrees of freedom.  It must maintain performance in a harsh thermal 



environment.  It must execute at the required rate on reasonable computing hardware.  
These challenges cannot be met by using only classical robot control methods.  
Advanced control theory in the areas of grasping, force control, intelligent control, 
and shared control must be developed to the point where the control is suitable for 
critical applications to fully realize the capability of Robonaut. 

Robonaut is required to perform diverse tasks.  Robonaut must use the same tools 
that astronauts use, in order to reduce the launch weight and development effort 
required for robot specific tooling.  The manipulation and use of these tools is the key 
to the ability of Robonaut to accomplish the tasks for which it is designed.  Figure 5 
shows the basic capability of Robonaut to perform tool handling tasks under 
teleoperation.  Robonaut has the capability to handle orbital, planetary, and medical 
tool types among others.  Some of these tasks will become more automated as more 
advanced control techniques are implemented.   

The subautonomy based architecture described here is the basis for the control 
design.  The next sections cover some of the implementation details, design 
techniques, describe experiences from the DART project that influenced Robonaut, 
and other issues involved in the Robonaut control design. 

 

      

 
Fig. 5.  Robonaut performing space, planetary, and medical tasks. 

3.1 Robonaut Computing environment 

The computing environment chosen for the Robonaut project includes several state-
of-the-art technologies.  The PowerPC processor was chosen as the real-time 



computing platform for its performance and its continued development for space 
applications.  The computers and their required I/O are connected via a VME 
backplane.  The processors run the VxWorks™ real-time operating system.  This 
combination of flexible computing hardware and operating system supports varied 
development activities. 

The software for Robonaut is written in C and C++.  ControlShell™, a software 
development environment for object oriented, real-time software development, is used 
extensively to aid in the development process.  ControlShell provides a graphical 
development environment that enhances the understanding of the system and code 
reusability.    

Due to the requirements of the space mission, Robonaut can only carry a limited 
amount of computing capability.  As a result, the controller designs chosen for 
implementation must be tractable with reasonable computing resources in real-time.  
This is one of the reasons behind the teleoperation used in current development.  The 
amount of computation realistically carried using current computers limits system 
development to subautonomies that will enhance sensor feedback and motor control.  
In the near future, these functions will be ported to faster computers that can be 
successfully embedded in the Robonaut system.  Initial proof of concept development 
for advanced intelligent control systems will be done utilizing external computing 
resources and the API. 

3.2 DART Experience 

The DART system with the Full Immersion Telepresence Testbed (FITT), shown in 
Figure 6, provided the starting point for the telepresence aspects of the control 
architecture currently used by Robonaut.  DART and FITT use a distributed 
architecture with all subsystems receiving and sending commands via a router. The 
subsystems are distributed over a number of CPUs all connected via Ethernet. These 
subsystems are an earlier version of the subautonomies noted above. They contain the 
basic features of a subautonomy but are not object oriented in design. 

This router based DART/FITT system works well for low bandwidth teleoperator 
commands such as position control and simple mode changes. Higher bandwidth 
responses such as impedance control are performed locally on individual processors 
using high speed I/O. In a general sense, Robonaut adheres to this same philosophy, 
but eliminates the router based system in favor of a VME based shared memory 
supplemented with Ethernet based communication.  Several important lessons learned 
from DART/FITT [5] are incorporated in the subautonomies used by Robonaut. 

This router based DART/FITT system works well for low bandwidth teleoperator 
commands such as position control and simple mode changes. Higher bandwidth 
responses such as impedance control are performed locally on individual processors 
using high speed I/O. In a general sense, Robonaut adheres to this same philosophy, 
but eliminates the router based system in favor of a VME based shared memory 
supplemented with Ethernet based communication.  Several important lessons learned 
from DART/FITT [5] are incorporated in the subautonomies used by Robonaut. 



 
Fig. 6. DART/FITT system 

The DART arm subsystem can receive position commands from either a 
teleoperator based client or an automated client. One of the early enhancements to this 
subsystem came out of initial teleoperator testing which revealed the need for relative 
motion control for several reasons. While DART is anthropomorphic, its arms are 
longer than a typical operator’s arm and it has greater than human travel in all joints.  
In addition, the operator needs the ability to have the robot work at full extension, 
while keeping his own arms in a relatively comfortable pose.  To take advantage of 
the robots capabilities and accommodate the operator, the arm subsystem provides, on 
request, current position information to client processes.  Teleoperator commands are 
easily combined with this data, allowing the operator to re-index the relative motion 
at any point in time. 

Additional arm features that are useful building blocks when developing high level 
controllers include: coordinated dual arm motion, compliance control, and kinematic 
solution selection capability.  In dual arm mode, the arm subsystem accepts position 
commands for a point of resolution (POR) centered between the two arms and then 
resolves them back into commands at the individual arm PORs.   Compliance control 
utilizes two force/torque sensors and is available with all other arm operating modes.  
Given the mounting of the PUMA arms shown in Figure 6, four solutions are 
available for any kinematic pose and orientation of each arm. Flipping the elbow 
yields two solution and flipping the wrist yields two more. The arm subsystem 
accepts commands to move between these four solutions in a controlled manner for 
obstacle avoidance or to enhance operator viewing. 

The DART end effectors are Stanford/JPL hands, and while dexterous, these hands 
are not anthropomorphic. Each finger has three joints, and the thumb directly opposes 
the other two fingers that are kinematically dissimilar to a human finger. This makes 
simple joint or Cartesian teleoperator control of the Stanford/JPL hand difficult. If the 
human operator is trying to perform highly dexterous tasks, his intentions may not be 
mapped properly to the robot.  The DART/FITT solution to this problem is to map not 
only hand position, but hand functionality as well. 



Venkataraman and Iberall [9] identify a partial taxonomy of grasps used by 
machinists when working with metal parts and hand tools. From this partial 
taxonomy, a useful set of voice-invoked grasp primitives are made available for 
control of the DART robotic hands. These grasp primitives consist of pinch grasp, key 
grasp, hook grasp, spherical grasp, and cylindrical grasp. The spatial configuration of 
the fingers is modulated by the human operator and mapped into one of the primitive 
grasp geometries available within the hand subsystem. This primitive approach to 
shared control provides for the mapping of finger positions as well as mapping the 
functional intention of the human operator. With this method of control, the 
DART/FITT system is able to perform a larger variety of tasks more efficiently and 
productively. 

Health monitoring is an important part of a subautonomy.  The DART subsystems 
include self monitoring that prevents damage and also sends out messages to other 
subsystems when limits are being approached.  The arms track limits and singularities 
and when either is approached, a message is sent to the voice subsystem that provides 
an audio command alerting the teleoperator to the situation. Similarly the fingers on 
the Stanford/JPL hand can use the friction in their cable drive train to their advantage 
and actually resist more force than they can actively apply.  In certain instances this is 
useful, but the overall cable tension still must be limited. The hand subsystem 
monitors the tension and initiates similar commands to the voice subsystem when 
then tension approaches excessive levels.  At sufficiently high tension levels the hand 
will shut itself down to prevent damage.   

3.3 Control System Prototyping 

The Robonaut program also uses the Cooperative Manipulation Testbed (CMT) 
facility shown in Figure 7 to develop and test software and control strategies.  The 
CMT is made up of three manipulators and their tooling.  All three manipulators are 
seven DOF devices.  Two manipulators are identical while the third is a larger, scaled 
version of the others.  This similar/dissimilar arrangement allows for testing of 
homogenous and heterogeneous tasks.  The smaller manipulators have three fingered 
hands for tooling.   This flexible tooling allows the manipulators to handle a wide 
variety of tasks.  The larger manipulator has a quick-change mechanism allowing it to 
autonomously change special purpose end-effectors.  All manipulators have six axis 
end-effector force/torque sensors and joint torque sensors for high bandwidth force 
control.   The computing and development environment for CMT is identical to the 
Robonaut system for rapid software transfer.  
The use of CMT to augment software development for Robonaut has been successful.  
Subautonomies such as Cartesian control and force control have been prototyped and 
tested using CMT and quickly ported to Robonaut.  Although the mechanical 
hardware is dissimilar, the physical capabilities, with the exception of grasping, are 
similar.  The identical computing environment and the object oriented design of the 
architecture allows rapid software exchange between the two systems.  The capability 
to develop software using a system that is more available for test than Robonaut and 
incorporates future features of Robonaut that are still in development reduces the 
overall software development cycle. 



  

 
Fig. 7. Cooperative Manipulation Testbed (CMT) 

3.4 Primitive Based Automated Grasping 

The initial development of primitives is required for teleoperator assistance.  These 
primitives use both force and position data as required by the task they are 
automating.   When using primitives, the operator is not required to directly control 
all the hand axes.  The primitives interpret the operator’s glove commands and map 
them to multiple hand axes making the required decisions based on hand sensor data. 

The first finger primitives being tested are similar to the ones implemented with 
DART.  On Robonaut the impetus for the primitives is a little different.  The 
Robonaut hand is a more anthropomorphic design than the Stanford/JPL hands on 
DART.  This design makes operator to humanoid finger mapping less of an issue.  
However, the operator will not be holding the same object as the robot. In this case 
ease of use and workload become issues.  If Robonaut needs to spread its fingers to 
grasp a spherical object, the human will very quickly become uncomfortable palming 
the virtual object.  A spherical primitive will allow the operator to maintain a 
comfortable finger separation while Robonaut maintains the required spread.  
Similarly, when only two fingers are required to grasp, for example tweezers, a 
primitive that automatically moves all other fingers out of the way is very useful. 

Primitives are also useful in repetitive tasks and fine motion operations. A good 
example of a repetitive task is manual bolt tightening or dial spinning. Robonaut has a 
primitive that commands 6 degrees of freedom in the hands using only two joint 
inputs from the operator.  The operator lines up the Robonaut hand with the bolt and 
then simple steps through the primitive using relatively coarse inputs.  The Robonaut 
fingers reposition themselves precisely throughout the cycle and the operator’s work 
load is significantly decreased. Primitives can also be used to readjust the gain 
between the human and the robot.  When precision motion is required, 50 degrees of 



human finger motion can be converted into 5 degrees of robot finger motion. 
Robonaut has the capability to exceed nominal anthropomorphic mapping in many 
instances. 

The use of primitives is the first step leading to an automated grasping 
subautonomy for Robonaut.  The general grasping problem for dexterous hands using 
enveloping grasps is currently too computationally complex for the Robonaut control 
system.  Instead of solving the general problem, discrete grasp primitives will be 
defined and studied.  Metrics used to evaluate the progress of the primitives in 
accomplishing a task will be tested experimentally.  These primitives and metrics can 
be sequenced to perform complex operations.  The safety system that determines 
when a grasp is about to fail, or when fingers are colliding among other things, will be 
embedded at the subautonomy level. 

4 Conclusions  

The Robonaut control architecture has been designed to build a robust and safe 
foundation that supports teleoperation and will enable development of intelligent 
control.  The subautonomy based architecture embeds safety, sequencing, and control 
at all levels.  The distribution of intelligence and safety through the system enhances 
safety and improves functionality.  The self-contained design of the subautonomy 
leads to an object oriented system whose elements can be tested independently.  The 
Robonaut embedded system supports advanced development in humanoid intelligence 
by providing system safety and intelligent functionality to other types of intelligent 
control systems. The architecture has shown benefits in teleoperated control that 
should translate into enabling capabilities in advanced automation. 
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