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Abstract. We humans often respond effectively when faced with novel
circumstances.  This is because we are able to predict how particular alterations
to the world will play out.  Philosophers, psychologists, and computational
modelers have long favored an account of this process that takes its inspiration
from the truth-preserving powers of formal deduction techniques.  There is,
however, an alternative hypothesis that is better able to account for the human
capacity to predict the consequences worldly alterations.  This alternative takes
its inspiration from the powers of truth preservation exhibited by scale models
and leads to a determinate computational solution to the frame problem.

1. Thinking Ahead

Consider the following setup:

Fig. 1. A choice between two implements (a toothless rake and a T-bar) for removing food (a
banana) from an enclosure.  Problem based on Povinelli (1999).

I you happen to be hungry for a banana, it is obvious which implement you ought to
reach for.  A bit of forethought reveals that the toothless rake would pass over the
banana, while pulling on the T-bar would cause the banana to move within reach.

The proposal that human behavior is frequently informed by forethought is
intuitively quite plausible.  That is, it certainly seems  that we represent to ourselves
the outcomes of possible actions—it certainly seems that we are capable of thinking
ahead.  Aristotle may have been the first to clearly formulate this proposal.  As
Aristotle puts it, "sometimes you calculate on the basis of images or thoughts in the



soul, as if seeing, and plan what is going to happen in relation to present affairs"
(Aristotle, De Anima III , 431b).

Since about the middle of the twentieth century, beginning with the work of
Wolfgang Köhler (1938) and Kenneth Craik (1952), this proposal has been taken to
form the basis for a powerful explanatory hypothesis.  What makes this hypothesis
powerful is that it can explain why human behavior is often so appropriate, even in
the face of even novel environmental conditions.  In Köhler's terms, forethought
gives one insight into a problem, and, he notes, "[w]hen insight refers to practical
situations it seems to us itself a most practical gift, because its decisions tend to do
justice to the nature of such situations . . . " (1938, p. 28-29).

There is still a good deal of controversy surrounding the question of whether or not
chimps or other non-human primates are capable of insight.  At some level, this
controversy reflects the familiar concern that we are being too generous when we
ascribe to lesser creatures the same high-level cognitive abilities that we humans
seem to possess.  Povinelli and colleagues (1999) have recently provided some
compelling demonstrations that we ought to be leery of such ascriptions.  In one
experiment, they present a chimp with a setup very much like the one depicted in Fig.
1.  On seeing footage of a chimp pulling ineffectively and repeatedly on the toothless
rake, one is left with the distinct impression that chimps lack the same well-
developed capacity for forethought that we humans seem to possess.  Indeed, the
marked disparity between chimps and humans in this regard suggests that the
capacity to manipulate representations of the world may be one of the most profound
differences between chimps and ourselves.

Be this as it may, it should at least be clear that the proposed capacity to
manipulate representations is properly viewed as an hypothesis that can explain why
human behavior is often so appropriate in the face of novel conditions.  According to
this hypothesis, we humans are, through the manipulation of representations, capable
of predicting the consequences of alterations to the world.  This model of the
mechanisms underwriting (at least certain forms of) human behavior has several
presuppositions, but it also leaves a great many questions unanswered.

1.1 Representing

One of the central presuppositions of the Köhler-Craik model is that we humans have
a capacity to represent novel situations as they arise.  The name given to this property
of our representational system is 'productivity'.  A representational system is
productive to the extent that it can be used to represent an open-ended number of
circumstances.  For example, we can represent to ourselves the setup in Fig. 1, or, to
take another example, the setup here (consisting of a doorway, a bucket, and a ball):



Fig. 2. A simple physical system: A doorway, a bucket, and a ball.

What is open to debate is the matter of how productivity is achieved by the human
cognitive system.

One very popular proposal is that mental representations have a language-like
structure.  Languages are, of course, productive in the requisite sense.  Natural
language such as English or artificial deductive notations like Predicate Calculus can
be used to represent any of an open-ended number of circumstances.  Perhaps, the
argument goes, the representational productivity exhibited by the human cognitive
system can itself be attributed to a language-like or logic-like medium of
representation.

According to this model, we humans represent the situations confronting us in
working memory as a set of sentences or, more precisely, well-formed formulae.
When presented with a slightly different arrangement of the items in Fig. 2, for
example, the result might be a set of formulae encoded in one's short-term memory
that are notational variants of the following:

There is a bucket, a ball, and a door.
The bucket is resting atop the door.
The ball is inside of the bucket.

1.2 Predicting

Also presupposed by the Köhler-Craik model is a means of using our representations
to generate predictions.  In order to use our representations to determine the effects of
alterations to a given situation, the representations we construct must be amenable to
truth-preserving manipulation.  By 'truth-preserving', I mean that the consequences of
alterations to our mental representations mirror the consequences of the
corresponding alterations to the world.

We know, for example, that if the ball in Fig. 2 is placed inside of the bucket and
the bucket is kept upright, then the location of the ball will henceforth change with
that of the bucket.  We also know what will happen if the ball is inside of the bucket,
the bucket is set atop the door, and the door is subsequently pushed.

In terms of its capacity to explain truth-preservation, the logic metaphor for
thought appears quite promising.  According to the logic metaphor for thought, we
represent the state of the world in short-term memory as wff, and inferences
concerning the consequences of alterations to the world are made through the



application of inference rules.  We might, for instance, have in our heads a notational
variant of the following rule:

If
the bucket is resting atop the door, and
the ball is inside of the bucket, and
the door is pushed

then
the bucket and the ball will fall to the floor.

According to the logic metaphor for thought, we humans harbor a (presumably
massive) set of such inference rules, and we draw upon these rules in order to predict
the consequences of alterations to the world.

Because it can account for both representational productivity and truth-
preservation, the logic metaphor for thought enjoys a strong base of support
throughout cognitive science.  In the field of artificial intelligence, for example,
developers of production systems have traditionally adopted this framework in order
to generate computational models of the processes that underwrite forethought.  What
is nice about the production system approach to cognitive modeling is that accords
quite well with the tenets of the Köhler-Craik model.  The latest versions of Soar, for
example, represent the state of the world in terms of wff's held in a working memory,
and inferences concerning the consequences of alterations to the world are effected
by applying rules (called 'operators') to those formulae (Congdon & Laird, 1997).  On
this basis, the general Soar architecture can be used to create systems capable of
thinking before they act.

There are also many cognitive psychologist who view the logic metaphor for
thought as the best way to fill out the details of the Köhler-Craik model.  Philip
Johnson-Laird and Ruth Byrne (1991) have, for instance, proposed that a capacity for
deductive inference is what underwrites the truth-preserving representational
manipulations that give rise to our most basic planned behaviors.  Likewise, Lance
Rips (1990) takes an understanding of deductive competence to be necessary if we
are to give “an account of how the inferences people draw manage to be truth
preserving in a sufficiently large number of cases to make both science and practical
affairs possible” (pp. 293).  Rips, in fact, utilizes production systems in order to
model the cognitive underpinnings of those inferences made by subjects under
controlled conditions.

Amongst philosophers, the contention that mental representation and inference are
effected by the cognitive equivalent of a formal deductive notation is known as the
Language of Thought (LOT) hypothesis.  Like computational modelers and
psychologists, philosophers are attracted to the LOT hypothesis because of its
capacity to explain both representational productivity and the truth-preserving
manipulation of mental representations (Devitt and Sterelny 1987; Fodor 1975;
Pylyshyn 1984).

1.3 Acting

A third presupposition of the Köhler-Craik model is that there is a means of selecting,
amongst the many possible alterations to the world, a course of action that will lead
to the fulfillment of one's desires.  For example, for one who has the desire to move
the ball from one side of the wall to the other, it is apparent that throwing the ball
over the wall or using the bucket to roll it through the door will have the desired
effect.  There are also many alterations that will fail to bring one closer to this goal.
Somehow we are able to determine which alterations to the world, of the many that
are open to us, will lead to the fulfillment of our desires, and after selecting an
appropriate alteration we are able to act upon it.

In contemporary production systems, operators embody knowledge of the
consequences of particular alterations and the task of selecting and executing the
appropriate operators is relegated to a set of productions.  Operator-proposal
productions determine which operators can be applied in a given situation.  There are



obviously a great number of alterations that can be made to even a simple setup like
the door, bucket, ball setup, so a production system designed for reasoning about this
setup might incorporate a huge number of operators.  One of the nice features of
contemporary production systems is that they are able to learn which operators or
sequence of operators led to a desired result under similar conditions in the past.  This
knowledge is incorporated into operator-comparison productions that determine
which of the many operators that can be applied in a given situation will be likely to
lead to the desired result.  Finally, there are operator application productions that
execute the appropriate alterations following the decision process.  Execution of
operators can be carried out either 'in the head' of the production system or with
respect to the world itself.

1.4 The GOFAI–Mental Logic–LOT Model

What the present discussion suggests is that any viable theory concerning the nature
of mental representation will have to account, minimally, for representational
productivity and truth-preservation.  To early AI researchers, and many since, the
mental logic model of knowledge representation and inference has seemed quite
promising.  Again, formal notations like predicate calculus are highly productive and,
through the application of the appropriate inference rules, they can be used to carry
out the kind of truth-preserving representational manipulations that seem to inform
our actions.

As a result of the early work in artificial intelligence (which philosophers often
refer to as Good Old Fashioned Artificial Intelligence, or GOFAI)1, many
philosophers and psychologists have come to endorse the proposal that mental
representation and inference are effected by the cognitive equivalent of a formal
deductive notation.  There are problems with this model, however.  There is,
moreover, an alternative model that does not suffer from these same problems.

2. Problems with the GOFAI–Mental Logic–LOT Model

Although the promise of being able to account for productivity and truth-preservation
has been the main impetus behind the widespread acceptance of the logic metaphor
for thought, it turns out that, at least where truth-preservation is concerned, the
superficial promise of the logic metaphor is just that, superficial.  Although early AI
researchers were enticed by the productivity and inference powers of formal
deductive notations, it did not take them long to realize that there is a serious problem
with this approach.  The problem with the logic metaphor for mental representation
and inference has come to be known as the frame problem (McCarthy and Hayes
1969).

In order to guide behavior effectively, a representational system needs to be
capable of tracking what will change and what will stay the same in light of particular
alterations.  If a logic-driven system like a production system is to accomplish this, a
great deal of domain-specific knowledge will have to be encoded in the form of
inference rules (e.g., production-system operators).  One of the problems with this
approach, the original 'frame problem' pointed out by McCarthy and Hayes, is that
due to the huge number of non-changes that will need to be deduced, "the system will
simply get lost in performing irrelevant deductions" (Haselager unpublished
manuscript, pp. 5).

As it is conceived of today, the frame problem is actually comprised of a
collection of problems.  The general worry, and the reason for unifying these
problems under a single heading, is that the kind of knowledge that we humans have
concerning the consequences of alterations to the world cannot be formalized in the
manner that many had initially hoped it could.  Two of what I take to be the most

                                                                
1 I believe Haugeland (1985) can be credited with coining the phrase.



important of these problems are the qualification problem (McCarthy 1986) and the
prediction problem (Janlert 1996).

2.1 The Qualification Problem

Let me start with the qualification problem.  If you will recall, one of the key virtues
of the logic metaphor for thought is that the consequences of alterations to a given
physical system can be captured with the help of rules like this one:

If
the bucket is resting atop the door, and
the ball is inside of the bucket, and
the door is pushed

then
the bucket and the ball will fall to the floor.

Yet, as any philosopher of science will tell you, this rule does not adequately
express what we know about the consequences of this particular alteration.  In order
to express what we know about the consequences of this alteration, the antecedent of
this rule would need to be qualified in an open-ended number of ways.  The rule
would have to state that:

If
the bucket is resting atop the door, and
the ball is inside of the bucket, and
the door is pushed, and
it is not the case that the bucket is bolted to the
top of the door, and
it is not the case that there is a string
connecting the bucket to the ceiling, and
it is not the case that an atomic bomb will explode
when the door is pushed, and
so on . . .

then
the bucket and the ball will fall to the floor.

Again, in order to capture what we know about the consequences of this alteration,
the antecedent of this rule would need to be qualified in an open-ended number of
ways.  This is the qualification problem.  The problem, more generally, is that our
knowledge of the consequences of such alterations cannot be formalized in the
manner that many had initially hoped it could.  The same can be said in the case of
the prediction problem.

2.2 The Prediction Problem

In order to understand the prediction problem, consider how many distinct rules
would be needed in order to express what we know about the consequences of
alterations to the door, bucket, ball setup (Fig. 2).  For starters, there would need to be
a rule specifying that if the ball is placed inside of the bucket and the bucket is kept
upright, then the location of the ball will henceforth change with that of the bucket.
In addition, there would need to be rules specifying what happens when the bucket is
set atop the door and the ball is rolled through the door, what happens when the
bucket with the ball in it is tipped over, what happens when the bucket is used to
throw the ball at the door, and so on indefinitely.  In order to embody what we know
about the consequences of such alterations, there would have to be an open-ended
number of rules.  As with the qualification problem, the general problem is that our
knowledge of the consequences of alterations to even a simple setup like the door,
bucket, ball setup, cannot be formalized in the manner that many had initially hoped
it could.



As if either problem were not worrisome enough by itself, keep in mind that the
qualification problem actually compounds the prediction problem.  In order to
express what we know about the consequences of alterations to a given domain, not
only would there have to be an open-ended number of rules, but the antecedents of
each of these rules would need to be qualified in an open-ended number of ways.
The frame problem is, as you can see, quite serious, and it is not surprising that books
continue to be written about it.

So the point is this: The superficial promise of the logic metaphor for thought is
just that, superficial.  Although formal deduction techniques embody means of
effecting truth-preserving representational manipulations, this is not, by itself,
sufficient to account for our open-ended knowledge of the consequences of various
alterations.

3. The Model Model

What might be considered an unfortunate consequence of the early work in AI is that
it eclipsed another promising hypothesis about the nature of mental representation
and inference.  This hypothesis was given its first clear formulation by Kenneth
Craik.

3.1 Craik's 'Hypothesis on the Nature of Human Thought'

In 1943, well before GOFAI had taken root, Kenneth Craik was struck by the powers
of truth preservation embodied by devices like scale models.  As Craik explains:

If the organism carries a 'small-scale model' of external reality and of its own
possible actions within its head, it is able to try out various alternatives, conclude
which is the best of them, react to future situations before they arise … and in
every way to react in a much fuller, safer, and more competent manner to the
emergencies which face it (Craik 1952, p. 61).

That is, rather than a logic metaphor for thought, Craik favored a scale-model
metaphor.  It seems clear that scale models provide an effective means of evaluating
the outcome of alterations to a given system.  For instance, with a scale model of the
door, bucket, ball setup, one can predict what will happen when the ball is placed
inside of the bucket and the bucket is set atop the door and the door is subsequently
pushed.

3.2 The Productivity of Modeling Media

In order to understand how the scale model metaphor accounts for representational
productivity, we need to turn our attention from models themselves to the modeling
media from which they are constructed.  When we do, we see clearly that there are
productive (or at least quasi-productive) media for the creation of scale models.
Notice, for instance, that a finite supply of Lego blocks can be utilized in order to
model virtually any possible edifice:



Fig. 3. A scale model of New York City constructed with Lego blocks.  Image from:
http://www.legolandca.com/images/postcards/thumb/kidsny.jpg

There are, of course, many other modeling media that exhibit productivity.  For
example, matchsticks and glue, clay, and papier-mâché can all be used productively
in the service of creating representations.  So, like the logic metaphor for thought, the
scale model metaphor has the virtue of being able to account for both productivity
and the truth-preserving manipulation of representations.

3.3 Avoiding the Prediction Problem with Spatial Images

Although the scale model metaphor for thought has been largely overlooked since the
early successes in AI research, it's somewhat less impressive forerunner (i.e., the
picture metaphor) has recently begun to regain the attention of philosophers,
psychologists, and computational modelers.  Specifically, researchers have begun to
realize that spatial representations, such as pictures and maps, can be used to generate
predictions in a manner that obviates the need for rules specifying the consequences
of various alterations (see Haugeland 1987, Johnson-Laird 1988, Lindsay 1988,
Janlert 1996).  Because they do not owe their inference powers to such rules, pictures
and maps can be used to predict the consequences of an open-ended number of
alterations to the systems they represent.  In other words, such representations do not
suffer from the prediction problem.

Notice, for instance, that one can use a two-dimensional matrix like this one in
order to represent the relative positions of two or more people and to predict how
these relative positions will be affected when a person (or persons) changes locations:

Alice Betty

Carol



Fig. 4. Use of a spatial matrix to represent the relative positions of objects.

If a person moves from one location to another, this change can be tracked with our
simple matrix and all of the relative positions will be updated automatically.  For
example, if Betty moves from her original location to a new one, we can keep track
of this change by deleting our Betty representation from its old location and inserting
it into the new one.  Regardless of where we reinsert the Betty representation, the
relative positions of all of the individuals will be automatically updated as a by-
product—and without the need for rules specifying how the change in location will
affect their relative positions.

This holds, moreover, for any number of individuals (provided, of course, that the
matrix is comprised of enough cells to represent all of the individuals).  It is worth
noting that this is a property that Lars Erik Janlert has identified as an indicator of
whether or not a representational system suffers from the frame problem.  Janlert
(1996, pp. 40) explains, “A sign that the frame problem is under proper control is that
the representation can be incrementally extended: A conservative addition to the
furniture of the world would involve only a conservative addition to the
representation."

Not only can matrices be used to represent relative positions, but they can also be
used to construct simple depictions of objects.  For instance, the matrix here is being
used to depict (albeit crudely) a rocket:

x

x x x

x x

x x

x x

x x

x x

x x

x x
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x x
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x x x
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Fig. 5. Use of a spatial matrix to depict an object.

Once such a depiction has been constructed, it becomes possible to predict the
consequences of further kinds of spatial alteration.  For instance, this rocket
representation can be turned around and the result will be that the nozzle is over the
body of the rocket, rather than visa versa.  This inference can be effected without the
need for a rule specifying, for example, that if a rocket is upright and is rotated 180
degrees around a horizontal axis then the nozzle will be over the body.



Because the need for such rules is obviated, spatial matrix representations can be
used to predict the consequences of an open-ended number of alterations to the
systems they represent.  In other words, spatial matrix representations do not suffer
from the prediction problem, at least when it comes to predicting the consequences of
two-dimensional spatial alterations.

The benefits of matrix representations are not restricted to two spatial dimensions,
however.  Recognizing this, some artificial intelligence researchers (e.g., Janlert,
1996) have begun to speculate that human thought might be effected with the help of
a kind of 'mental clay'.

3.4 Avoiding the Frame Problem with Scale Models

Of course, if a theory of mental representation is to account for the truth-
preserving powers that underwrite our ability to deal effectively with novel
circumstances, such a theory will have to handle a full range of three-dimensional
spatial and causal inferences.  It would be nice, in addition, to know that the theory
was not susceptible to either the prediction problem or the qualification problem.

Returning to the full-blown scale-model metaphor for thought, we see that these
demands are easily met.  One can, for instance, use a reasonably faithful scale model
of the door, bucket, ball setup to predict the consequences of an open-ended number
alterations to the actual system.  One can use such a model to predict what happens
when the bucket with the ball in it is set atop the door and the door is pushed, what
happens when the bucket with the ball in it is tipped over, what happens when the
bucket is used to throw the ball at the door, and so on indefinitely.  The side effects of
alterations to the representation will mirror the side effects of alterations to the
represented system automatically and without the need for a prior and explicit
specification of such side effects—as, for example, would be required if we were
relying upon a logic in order to make such determinations.  So scale models do not
suffer from the prediction problem.  Nor, for that matter, do they suffer from the
qualification problem.

To see why, notice that much of what is true of a modeled domain will be true of a
scale model of that domain.  With regard to the door, bucket, ball setup, for instance,
the following is true:

If
the bucket is resting atop the door, and
the ball is inside of the bucket, and
the door is pushed, and
it is not the case that the bucket is bolted to the
top of the door, and
it is not the case that there is a string
connecting the bucket to the ceiling, and
it is not the case that an atomic bomb will explode
when the door is pushed, and
so on . . .

then
the bucket and the ball will fall to the floor.

The same is true of a scale model of this setup.  That is, if both the scale model of the
door is pushed and it is not the case that the scale model of the bucket is bolted to the
top of the scale model of the door (and so on), then the scale models of the bucket
and ball will fall to the floor.  Just like our own predictions, the predictions generated
through the use of scale models are implicitly qualified in an open-ended number of
ways.



4. The Computational Solution to the Frame Problem

Because scale modeling media exhibit representational productivity, and because the
scale models constructed from such media do not suffer from either the prediction
problem or the qualification problem; the scale model metaphor looks quite
promising in terms of its capacity to explain forethought in humans.  While this
finding should be of great interest to philosophers and psychologists, it does not, in
and of itself, supply any serviceable tools to those who are attempting to design full-
scale autonomous humanoids.  As it turns out, however, the benefits of the scale
model metaphor are inherited by certain computational systems that operate
according to similar principles.

4.1 Avoiding the Prediction Problem with Computational Matrices

To see why this is so, it will help to start small.  If you will recall, actual spatial
matrices avoid the prediction problem with regard to predicting the consequences of
changes in the spatial location of one or more represented items.  The working
memory comp onent of Stephen Kosslyn's (1980) computational model of mental
imagery functions in manner not unlike how an actual spatial matrix functions, and it
enjoys many of the same benefits.2

In Kosslyn's model, representations are constructed by filling in the cells of a
computational matrix.  In order to implement a computational matrix, a computer's
memory registers are ordered, either numerically or with the help of pointers, such
that they functionally mimic the topology of an (x, y) co-ordinate system.  There is,
of course, nothing about memory registers per se mandating that they be used in this
way.  It is, rather, a primitive and (in some ways) arbitrary constraint imposed on
processing.  However, by constraining the use of memory registers in this way, one
effectively creates a productive representational medium—one that, much like an
actual spatial matrix, can be used to construct any of a wide variety of representations
by filling in the appropriate cells.  Also like a spatial matrix, the productivity of a
computational matrix varies with the number of basic modeling elements—that is,
with the number of cells.

In terms of the manner in which they support spatial inferences, computational
matrix representations offer an alternative to the kind of high-level rules (i.e.,
operators) characterizing the production-system approach.  As such, the use of
computational matrix representations brings with it some definite advantages.  As
Zenon Pylyshyn explains,

a matrix data structure seems to make available certain consequences with no
apparent need for certain deductive steps involving reference to a knowledge of
geometry . . . Further, when a particular object is moved to a new place, its spatial
relationship to other places need not be recomputed (Pylyshyn 1984, p. 103).

In other words, when it comes to predicting the consequences of changes in relative
spatial location, computational matrix representations are like actual spatial matrix
representations in that they avoid the prediction problem.  Kosslyn capitalizes on this
fact with his model of visual imagery.

Glasgow and Papadias' (1992) have also modeled mental imagery with the help of
computational matrix representations.  Their model actually seems to mark a
significant advance over Kosslyn's in that it incorporates the functional equivalent of
what and where visual processing streams (Mishkin, Ungerleider, and Macko 1983)
and can represent objects in three spatial dimensions.  The what system of Glasgow
and Papadias' model encodes the shapes of objects in terms of "patterns of filled cells
isomorphic in surface area to the objects” (1992, pp. 370).  The where system omits
the details of object structure and instead represents the relative positions of objects.

                                                                
2 Kosslyn refers to this component as the 'visual buffer'.



Glasgow and Papadias' were clearly cognizant of the benefits of computational
matrix representations.  They explain:

Consider, for example, changing the position of a country in [a] map of Europe.
In a propositional representation we would have to consider all of the effects that
this would have on the current state.   Using the [computational matrix] to store
the map, we need only delete the country from its previous position and insert it in
the new one (Glasgow and Papadias 1992, pp. 376).

As with an actual spatial matrix, no matter where an object moves and no matter how
many objects are represented, the relative positions of all of the objects will be
updated automatically—and without the need for rules specifying how the change in
location will affect their relative positions.

The capacity to predict the effects of changes in spatial location results from the
imposition of primitive constraints on the use of memory registers.  In order to
support inferences concerning such spatial alterations as object rotation, it is
necessary to impose even further primitive constraints on processing (Pylyshyn 1984,
p. 204).  By imposing such constraints at the level of the representational medium,
however, one is able to avoid the need for rules framed with respect to the properties
of specific objects.  When the medium is itself constrained in the appropriate ways,
there will be no need, for example, for a rule specifying that if a rocket is upright and
is rotated 180 degrees around a horizontal axis then the nozzle will be over the body.
The consequences of alterations to a particular representation are determined as a
natural by-product of the primitive constraints governing the representational system.

The what component of Glasgow and Papadias' model, which is able to predict the
consequences alterations such as rotation in three dimensions, actually brings to mind
Janlert's proposed solution to the frame problem.  Janlert's suggests, specifically, that
in order to avoid the frame problem, “[o]ne possible approach is mental clay: a mass
of small, uniform cells with modest capabilities of computation, interconnected to
form the topology of granular space” (Janlert 1996, pp. 47).

Speaking in very general terms, it seems that the solution to the prediction problem
is to exploit the constraints characterizing a given modeling medium.  In the realm of
non-computational modeling media, we typically take advantage of the constraints
that a given medium inherently obeys, so there is no need to impose them.  For
example, clay is a representational medium that inherently respects the fact that two
objects or two parts of the same object cannot occupy the same space.  Any
representations constructed with clay will likewise respect this constraint.

In the computational realm, however, the constraints that govern a modeling
medium are the ones that we impose.  It matters not, however, whether the constraints
governing the medium are inherent or enforced.  In either case, one has the guarantee
that anything constructed from the materials supplied by that medium will obey the
constraints of that medium.  One is thus able to avoid the need for rules that are
framed with respect to specific objects or properties thereof.3

4.2 The Limitations of Imagery Models

Much like an actual spatial matrix, Kosslyn's (1980) computational matrices can
be used to represent a wide variety of two-dimensional spatial properties and
relationships, and the representational productivity of a given matrix is a function of
the number of basic modeling elements (i.e., the number of cells).  Also like actual

                                                                
3 As computational systems, models like those of Kosslyn (1980) and Glasgow and Papadias

(1992) ultimately effect whatever processing they do on the basis of the Turing-computable
functions of some formalism or other.  Many philosophers argue that this provides a
sufficient basis for denying that such models harbor non-propositional representations
(Block 1990; Devitt and Sterelny 1987; Pylyshyn 1984; Sterelny 1990).  Because the point
of the present conference is to highlight those state-of-the-art advances that might further the
goal of creating autonomous humanoids, this point can be bracketed for the time being
(though I know of at least one persuasive argument to the contrary (see Waskan 1999)).



spatial matrix representations, Kosslyn's computational matrix representations do not,
with regard to the domain of two-dimensional spatial properties and relationships,
suffer from the prediction problem.  Glasgow and Papadias' (1992) computational
matrix representations take matters a step further.  They too are free from the
prediction problem, but they are able to support inferences with regard to alterations
over three spatial dimensions.

Although these constrained computational matrix representations do a very nice
job of predicting the effects of changes in an object's location or orientation, they are
not yet sufficient to account for the entire range of inferences that underwrite planned
behavior in humans.  What we should like to find is that the solution to the prediction
problem outlined above can be scaled up in order to handle not only spatial
inferences but causal inferences as well.  Moreover, it will need to be demonstrated
that the relevant computational representations are not susceptible to either the
prediction problem or the qualification problem.  Thus, in order to truly solve the
frame problem, what seems to be required is nothing short of a computational
implementation of the full-blown scale model metaphor for thought.

4.3 Virtual Forethought

This might seem a tall order.  Given that books continue to be written about the frame
problem, it seems fair to say that computational systems of this kind have not yet
emerged onto the scene of cognitive science.  Be this as it may, they do exist—and
they can be purchased from upwards of $350 retail.4  They are found in a sector of
computer science that is, as yet, somewhat far removed from cognitive science.
Specifically, researchers interested in Computer Generated Images and Virtual
Reality (VR) Models have unwittingly made great strides toward supplying what
might be viewed as a computational model of human forethought.  This model
preserves the precise virtues that make the scale model metaphor for thought so
attractive.

4.3.1 Productive Polymesh
Much like computational matrix representations, VR models generally involve
coordinate specifications (in this case, in an (x,y,z) co-ordinate system) for primitive
modeling elements.  Rather than the filled and empty cells of a matrix, however, the
coins of the realm in VR modeling are two-dimensional polygons.  Co-ordinate
specifications are given for the vertices of polygons, and the surfaces of objects are
represented in terms of the collective arrangement of (usually) many polygons—
forming what is known as 'polymesh' (Watt 1993, p. 24).  As an illustration, here we
see some polymesh spheres that were constructed out of 32, 48, and 192 polygons,
respectively:

Fig. 6. Representing a sphere with 32, 49, and 192 polygons.

Also like computational matrix representations, the productivity of the polymesh
medium varies with the number of modeling elements—in this case, with the number
of polygons.  The more polygons you have, the more different things you can
represent.  Representational productivity is, of course, a property of thought that any

                                                                
4 I am happy to report that academic discounts are available through JourneyEd.com



viable model will have to explain, and, as anyone who has seen 'The Phantom
Menace' is aware, the polymesh medium is highly productive.

4.3.2 Ray Dream Studio 5.02: A computational model of forethought.
The forte of VR modeling is actually the interaction of surface features and lighting.
In addition to modeling the effects of lighting, however, computational modeling
media have also been created that support the representation of causal interactions.
As I will demonstrate presently, the pay-off is a determinate computational solution
to the frame problem.  To show this, I have created a set of models using an off-the-
shelf program called Ray Dream Studio 5.02.

If you will recall from the beginning of my talk, I showed you a problem that most
intact humans would have little trouble solving.  The goal was to pick the implement
that, when pulled, would bring the banana within reach.  If the scale model metaphor
for thought is correct, humans construct the cognitive equivalent of a scale model of
the problem and use their model to predict the consequences of pulling on each of the
implements.  That is, according to this account, our mental representations are
amenable to the same kind of truth-preserving manipulation that scale models are.
To show that VR models also exhibit these basic powers of truth preservation, I
created a model of the problem in Fig. 1.

Having created the model, first one and then the other rake was moved from the
back of the enclosure to the front.  If the system has the truth-preserving powers that
we should like to see in a model of human forethought, then the outcomes of this
manipulation should be that (a) the motion of the toothless rake does not alter the
location of the leftmost banana, and (b) the motion of the T-bar results in the
rightmost banana being moved closer to the opening.  That is, we should like to find
that the difference between moving the toothless rake and moving the T-bar is that in
the latter case the banana comes along for the ride.  As you can see, this is exactly
what took place (see 'waskan-wayne1a.avi').  The outcome of this alteration to the
representation mirrored what would happen in light of the corresponding alteration to
the represented system—and without requiring any high-level rules or operators.

If you will recall from the discussion of the frame problem, the qualification
problem raised some serious worries about the viability of logic-metaphoric accounts
of forethought.  It was shown that our knowledge of the consequences of alterations
to even simple physical systems could not be formalized in the manner that many had
hoped it could.  For instance, with regard to the banana problem, my pulling on the T-
bar will cause the banana to slide within reach, provided that, among other things,
there is not a hole in the table that the banana will fall through.  This, and countless
other qualifications, would need to be added to the antecedent of the corresponding
rule.

Scale models do not suffer from this limitation because they admit of the same
qualifications as the domains they represent.  For instance, pulling on a scale model
of the T-bar will cause a scale model of the banana to move within reach, provided
that, among other things, there is not a hole in the scale model of the table.  If the
models constructed with Ray Dream Studio 5.02 work in a similar manner, one of the
great virtues of the scale model metaphor for thought will have been carried over into
the computational realm.

In order to examine this possibility, the model that I just showed you was altered
in one simple respect—that is, a hole was put in the table between the T-bar and the
opening to the enclosure.  Once again, the results (shown in 'waskan-wayne1b.avi')
were highly promising.  Instead of the banana being carried along to the edge of the
container, it fell through the hole.  Hence, another advantage of the scale model
metaphor for thought has been shown to carry over into the computational realm.
Like our own predictions, and the predictions generated through the use of scale
models, predictions generated on the basis of virtual reality models are implicitly
qualified in an open-ended number of ways.

The other major problem that I discussed was the prediction problem.  I illustrated
the prediction problem with the help of the door, bucket, and ball setup.  If you will
recall, we would need countless distinct rules or operators if we wanted to formalize



what we know about the consequences of various alterations to this system.  Like the
qualification problem, the prediction problem results from the fact that our
knowledge of the consequence of alterations to simple physical systems cannot be
formalized in the manner that many had hoped it could.

Scale models, on the other hand, do not suffer from the prediction problem.  We
saw that the same is true, at least within the limited domain of updating spatial
relationships, of computational matrix representations.  VR models, however, avoid
the prediction problem with regard to both 3D-spatial and causal relationships.  To
show this, I constructed a model of the door, bucket, ball setup and carried out a
series of alterations.

The starting condition for the first alteration has the bucket resting atop the door
and the ball over the bucket (see 'waskan-wayne2a.avi').  The only direct
manipulation to the ensuing chain of events is that the door is opened rather abruptly.
The best result that could be hoped for in this case would be that the bucket and the
ball would to fall to the floor.  This, as you can see, is exactly what occurred.  Once
again, the only direct manipulation to the chain of events was the opening of the door.
The side effects followed automatically, and without the need for a rule framed with
respect to the properties of doors, buckets, and balls.

In a completely new scenario, the bucket is turned upside-down and placed over
the ball.  The bucket is then moved through the doorway, and it is subsequently
raised.  Were this alteration carried out with respect to either the actual door, bucket,
ball system or a scale model of this system, we should expect to find the ball (or the
scale model of the ball) underneath the bucket.  This, as you can see, is also what
happens in the virtual reality model (see 'waskan-wayne2b.avi').  We could continue
using the same model in this way to generate any number of predictions.

Finally, you might recall Janlert's suggestion that a system not beset by the frame
problem should admit of incremental additions.  For systems that rely upon rules
framed with respect to particular objects and properties thereof, simple additions to
the represented domain give rise to a profusion of new relations and consequences
that need to be captured in terms of further rules.  With scale models, on the other
hand, simple additions to a represented domain pose no such problems.  For instance,
if a board were added to the door, bucket, ball setup, one could take this into account
simply by adding a board to one's scale model of that setup.

As we saw, computational matrix representations also deal with additions to the
represented domain quite gracefully.  The same is true of VR models.  To show this, I
simply added a board to the door, bucket, ball model.  This time, the board was
placed broadside across the doorway (on the same side of the wall as the ball and
bucket) and the bucket was used to throw the ball through the doorway.  One again,
what we would expect to happen in the world (and in a scale model thereof) took
place in the VR model (see 'waskan-wayne2c.avi').  That is, the ball bounced off of
the board instead of rolling through the door.

4.3.3 Problem Solved
The remarkable fact is that these VR models, which were constructed with an off-the-
shelf animation program, do not suffer from the frame problem.  Considering that
Ray Dream Studio 5.02 was, I presume, never meant to be considered a
computational model of mental representation and predictive inference, its successes
in this regard are extraordinary.  Like scale models, and for what look to be the very
same reasons, VR models do not suffer from the frame problem.  That is, because the
relevant constraints characterize the representational medium itself, anything
constructed from the materials constituting that medium will obey those same
constraints.

4.3.4 Psychological Plausibility of Virtual Forethought
There are, admittedly, some disanalogies between scale models and VR models.  For
starters, because the constraints governing scale models are inherent; if one wishes to
know how an object would behave were it made from a different material, one will
(generally) need to construct an entirely new model using that other material.  With



VR models, on the other hand, the constraints characterizing the medium are
primitive but not inherent.  For this reason, one can, in effect, change what an object
is made of without having to construct that object anew.  I leave it to my readers to
decide whether this is, from a psychological-modeling standpoint, a strength or a
weakness.

Another disanalogy between scale models and VR models is that only the former
are constrained by the actual laws of physics.  The primitive constraints
characterizing VR modeling media need not, and often do not, accurately reflect
those principles operative in the world.  In Ray Dream 5.02, for example, the
outcomes of collisions are not determined by such factors as mass, momentum, or the
storage and release of energy due to compression.  The simple bouncing behavior of
the ball in the second model was the result of a primitive rebound variable that
governs how bouncy objects are.  Although this may seem like a shortcoming, there
is, somewhat surprisingly, a case to be made that this is not unlike how physics-naïve
individuals represent the outcomes of collisions.5

In a seminal study conducted by Chi, Glaser, and Rees' (1982), for instance,
novices and experts were asked to categorize a set of physics problems.  Chi et al.
found that novices categorized problems on the basis of their surface features, while
experts categorized problems on the basis of the underlying physical principles they
exemplified.  Andrea DiSessa (1983) later examined the manner in which physics-
naïve individuals understand the nature of bouncing behavior in particular, and the
results were similar.  DiSessa discovered that one physics-naïve individual, called
'M.', lacked an accurate understanding of the underlying basis for bouncing behavior.
This property seemed, for M., to be a primitive that she discovered through
experience and in terms of which she subsequently explained and predicted the
behavior of the world.

This is not unlike how the Ray Dream modeling medium supports predictions
regarding physical interactions.  Objects in the model do not undergo compression,
though the primitive constraints of the medium guarantee that they behave in many
ways as if they did.  As a result (and not unlike physics-naïve individuals), these
models do a reasonable job of generating the kinds of predictions required in order to
respond appropriately in the face of various environmental contingencies—for
example, those that include T-bars and bananas, buckets, doors and balls, and so on.6

A look at the existing literature reveals that there are, in fact, other interesting
parallels between the inference powers of physics-naïve individuals and those
exhibited by VR models (see Chi, Glaser, and Rees 1982; De Kleer and Brown 1983;
DiSessa 1983; Larkin 1983; Norman 1983).  Many naïve-physics researchers have
even proposed that individuals create mental models of the world and 'run' their
models in order to predict the behavior of the physical contingencies they encounter.

5. VR Models and Autonomous Humanoids

The implications of these finding for the possibility of constructing an autonomous
humanoid are straightforward.  The techniques of VR modeling provide a solution to
a problem that has long been a stumbling-block for AI research.  Unlike operators (or
frame axioms, meaning postulates, or what have you) VR models can be used to
support predictions regarding the consequences of an open-ended number of
alterations to systems they represent—and without the need for endless qualifications.
In other words, all indications are that VR models do not suffer from the frame
problem.
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happen to be physics-naïve.  More likely, however, they are physics-savvy and recognize a
computation-sparing shortcut when they see one.

6 Although Hayes (1995) has famously suggested that AI researchers incorporate the principles
of naïve-physics in their models, the present approach seems at rather at odds with his
prescription of an expert-systems style axiomatization.



A truth-preserving representational medium is, of course, only one of many
systems that figure into full-blown, goal-directed reasoning.  Also implicated are
mechanisms responsible for weighing options and implementing those actions that
bring one closer to ones goals.  It seems worth considering whether or not such goal-
directed reasoning can be modeled using a hybrid of GOFAI and VR techniques.  It
may be, in fact, that developers of the latest versions of SOAR (i.e., SOAR 7.3 and
higher) have already laid substantial groundwork for this endeavor by devising ways
of interfacing SOAR with 'external' inference mechanisms.7

Of course, the problems related to goal-directed reasoning themselves only
comprise a subset of the ones that will need to be dealt with before we can realize the
dream of creating an autonomous humanoid.  At the very least, problems related to
memory, attention, pattern recognition, and motor control will all have to be dealt
with.  I do, however, think that by solving the frame problem we have moved one
sizable step closer to our ultimate goal.
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