

Mobile Manipulation:

Why Are Humans So Much Better? And How Can We Change That?

Oliver Brock Robotics and Biology Laboratory

Technische Universität Berlin

Intelligence

Organ Donations

Bremermann's Limit

1.36×10^{50} bits/(s kg)

Grasping

berlin

Julia Child (1912 – 2004)

A Scene From

The French Chef - Julia Child

The Potato Show

Season 1, Episde 22, 1963

A Scene From

The French Chef - Julia Child

The Potato Show

Season 1, Episde 22, 1963

Two Experimental Conditions

Impaired

Human Grasping Strategies

CO.

RB

Marianne Maertens Modelling of Cognitive Processes

Traces of Support Contacts

RBO Anthropomorphic Hand

PneuFlex Actuators

Amazon Picking Challenge: Results

They let the body solve the problem!

They are optimized for <u>behavior</u>! (as are all biological systems)

James J. Gibson (1904–1979) Eleanor J. Gibson (1910–2002)

The Senses Considered as Perceptual Systems

James J. Gibson | Cornell University

"Learning to See (Sense)"

Learning to See With Distractions

Moving With Distractions (Robot's View)

Robot's perspective:

Reward:

Observation:

Did the Robot "Learn to See"?

Five Robotic Priors

Simplicity Only a small number of world properties are relevant.

$$L_{\text{temporal coherence}}(D, \hat{\phi}) = \mathbf{E} \Big[\|\Delta \hat{s}_t\|^2 \Big]$$

Task-relevant properties of the world change gradually.

$$L_{\text{causality}}(D, \hat{\phi}) = \mathbf{E} \Big[e^{-\|\hat{s}_{t_2} - \hat{s}_{t_1}\|} \Big| a_{t_1} = a_{t_2}, r_{t_1} \neq r_{t_2} \Big]$$

The task-relevant properties together with the action determine the reward.

CO

$$L_{\text{proportionality}}(D,\hat{\phi}) = \mathbf{E}\left[(\|\Delta \hat{s}_{t_2}\| - \|\Delta \hat{s}_{t_1}\|)^2 \mid a_{t_1} = a_{t_2}\right]$$

The amount of change in task-relevant properties resulting from an action is proportional to the magnitude of the action.

$$L_{\text{repeat.}}(D,\hat{\phi}) = \mathbf{E} \left[e^{-\|\hat{s}_{t_2} - \hat{s}_{t_1}\|} \|\Delta \hat{s}_{t_2} - \Delta \hat{s}_{t_1}\|^2 \ \middle| \ a_{t_1} = a_{t_2} \right]$$

The task-relevant properties and the action together determine the resulting change in these properties.

They had evolution program task-relevant dimensionality reduction into the nervous system!

Online IP: Three Recursive Estimation Problems

measurement input

RBO

input to process model

Layers of the Cortex / Connectivity of Visual Cortex

RB

They interpret **multiple** sensor streams at once, **hierarchically**, taking into account what they "know" about the world at each step!

Understanding Regularities in the World

[Kemp 09] [Sturm, Stachniss, Burgard 08] [Yan, Pollefeys 06]

Learning About Furniture World

The robot interacts with an environment containing kinematic regularities.

A Relational Representation

Learning Performance

Sebastian Höfer

RBO^{CO}

They have society, education, the environment, and "survival" to tell them a lot about what is important.

Robotics and Biology Laboratory @ TUB

Understanding Intelligence by Building Robots?

iat 9 cannot oreate, 1 Why const × sort . Pc I do not understand. To "Bethe Ansity Prob. Know how to solve every 5-0 Hall necel. Temp Non Linear Oraneed Harton $\bigcirc f = UYr, a)$ g = 4(r z) u(r. 7) (D) += 21 r.a (U.a)