Inductive Agent Modeling in Games

Bobby D. Bryant

Neuroevolution and Behavior Laboratory
Department of Computer Science and Engineering
University of Nevada, Reno

Today's Plan

- Introduction to Inductive Agent Modeling
 - o concepts and issues
- In-depth example

Why model agents?

- Competitive reasons
- Automated content creation

How complicated is an agent model?

- from the very simple
 - e.g., drama manager sets parameter for whether
 the player wants to see cat-fights
- to the very complex
 - e.g., controller emulates the Red Baron's use of his airplane and guns in a dog-fight

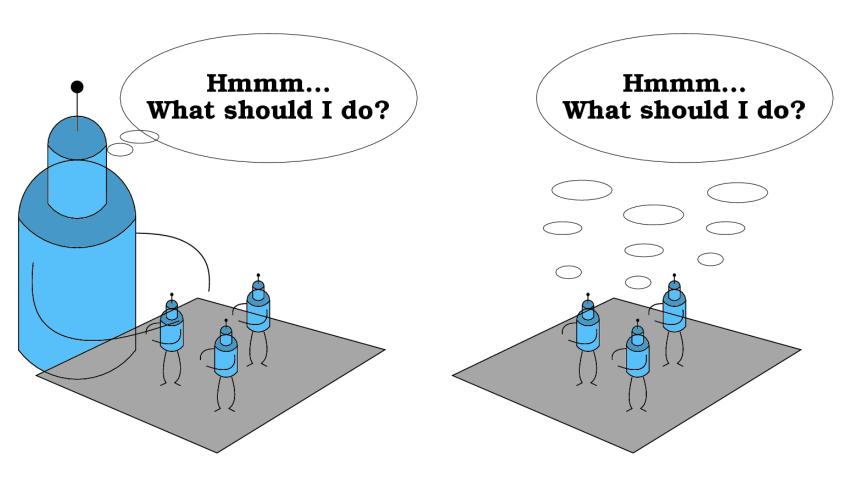
Relationship of Modeler to Modeled

- Foe (AKA opponent modeling)
- Ally (e.g., human teammate)
- Neutral (e.g., NPCs for richer game environment)

Who/what do we model?

- Human player
- Game Al
 - Virtual player (e.g., Ms. Pacman)
 - Autonomous in-game agent (e.g., NPC in FRPG)

Autonomous In-Game Agents



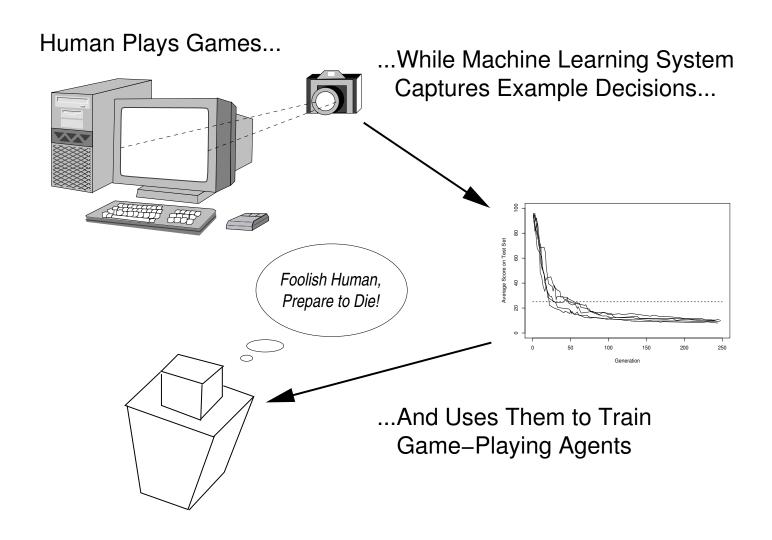
Virtual Player

Embedded Agents

What if You Want to Model a *Specific Kind* of Behavior?

- E.g., **The** Red Baron (vs. "a fighter pilot")
- Behavior may not be optimal (in the normal sense)
 - o this notion 'challenges' many researchers
- Hand-code the behavior?
- Use RL with a complex/subtle reward function?
- Derive policy from examples?
 - bypasses traditional knowledge engineering methods
 - allows indirect, intuitive expression of behavior
 - uses subject-matter experts, not technical experts

Now here's the plan...



The Inductive Agent Modeling Challenge

- Capture examples
- Create an agent model
 - Conceive as a function:
 - · for reactive control -

 $m_a:observablestate \rightarrow action$

· more generally -

 $m_a: observable state \times context \rightarrow action$

Derive by inductive machine learning mechanism

Terminology

- Exemplar the agent creating the examples
- Observer the agency for capturing the examples
- Learner the model that will emulate the exemplar

On-line vs. Off-line

- On-line: the learner and observer may be the same
- Off-line: the learner and observer are (probably) distinct

Challenge: Induction

- Deriving a generality from a collection of instances
- A hard problem...
 - known to be a logical problem since Hume (18th C.)
 - no-free-lunch theorems
- But we do it all the time anyway...
 - Quine: Creatures inveterately wrong in their inductions have a pathetic but praise-worthy tendency to die before reproducing their kind.
 - works because the universe isn't a random place(?)

Induction in Machine Learning (i) Learning Classifier Systems (LCS)

Map feature sets onto discrete classifications

$$c:< f_1, f_2, f_3, \ldots, f_n > \rightarrow class$$

- Learn general rule from examples
- Large body of research
 - we can adopt these methods directly,
 when the agent to be modeled has
 discrete action space

Induction in Machine Learning (ii) Artificial Neural Networks (ANN)

- Map input patterns onto (continuous) output patterns $n: \mathbb{R}^m \to \mathbb{R}^n$
- Learn general rule from examples
- Large body of research
 - we can adopt these methods directly,
 when the agent to be modeled has
 continuous action spaces

Induction in Machine Learning (iii)

< Your Favorite Method Goes Here>

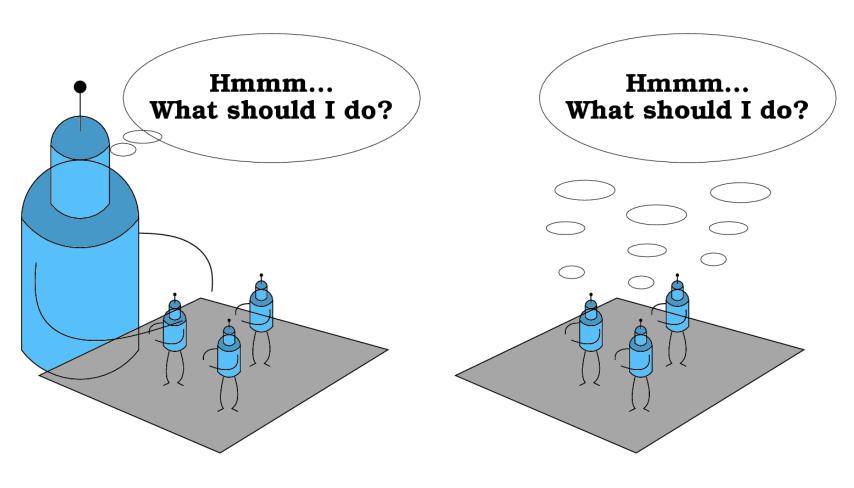
- Map ??? onto ???
- Learn general rule from examples
- Your body of research
 - you can adopt these methods directly,
 when the agent to be modeled has
 appropriate input/output types
- [Discuss!]

Challenge: Change in POV (i)

Observer and/or learner may have a different observable state (or view thereof) than the exemplar has

- e.g., *Legion-II* example (later)
 - exemplar is human player with "God's-eye" view
 - observer/learner is in-game agent with egocentric view
- may make the induction harder
- can make the induction impossible,
 if critical state information is not visible
 - e.g., trying to model a driver when observer or learner cannot see street lights

Challenge: Change in POV (ib)



Human Player

In-Game Agents

Challenge: Change in POV (ii)

Observer's and/or learner's view of state may have a completely different modality than the exemplar's

- e.g., Parker & Bryant (in press) work on emulating Quake II bot
 - exemplar (bot) has direct access to games's state variables
 - · distances, directions, etc.
 - observer/learner has only low-resolution rendered visual input
- presumably makes the induction harder

Challenge: Measuring Success

- Nix "I don't think the Red Baron would do it that way."
- Approach based on Behavior Analysis
 - 2007 workshop
 - anecdote (if time allows)
- Holding back training examples for testing
 - conventional ML technique
 - best suggestion so far

Detailed Example Using Lamarckian Neuroevolution

But let's talk about this a bit more first...

References

Bryant, B. D., and Miikkulainen, R. (2007). Acquiring visibly intelligent behavior with example-guided neuroevolution. In *Proceedings of the Twenty-Second National Conference on Artificial Intelligence (AAAI-07)*, 801–808. Menlo Park, CA: AAAI Press.

Acquiring Visibly Intelligent Behavior with Example-Guided Neuroevolution

Bobby D. Bryant

Department of Computer Science and Engineering University of Nevada, Reno

Risto Miikkulainen

Department of Computer Sciences
The University of Texas at Austin

Visibly Intelligent Behavior

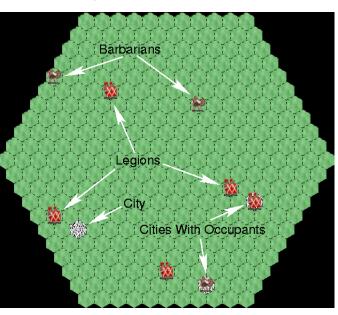
Focus on agents in environments where -

- The agents' behavior is directly observable
- Humans have intuitions about what is and is not intelligent

Obvious examples: games and simulators

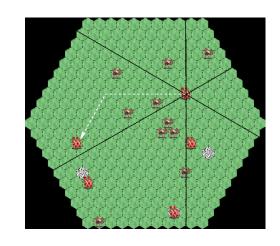
Example Game Environment: Legion-II

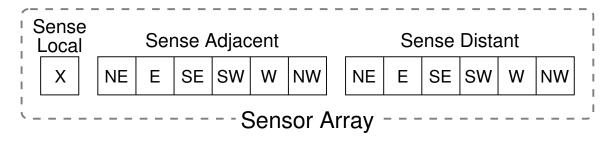
- Discrete-state strategy game with video display
- Pits legions vs. barbarians
- Legions must learn to cooperate to minimize the barbarians' pillage
 - pre-programmed barbarians
 - legions trained by neuroevolution
- Designed as multi-agent testbed
 - o complex enough to produce interesting phenomena
 - transparent enough for analysis
 - scalable in complexity



The Legions' Sensors

- Three egocentric sensor arrays detect cities, barbarians, and other legions
- Sub-arrays provide range and direction information for objects in six 60°
 "pie slices":

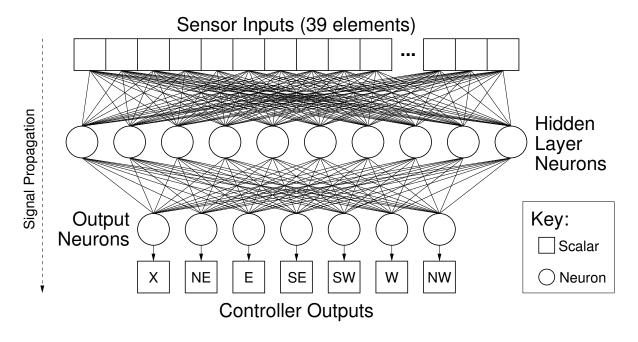




- Each ranged element computed as $\sum_i \frac{1}{d_i}$
- $3 \times (1+6+6) = 39$ FP sensor elements total
- Still only provides a fuzzy view of the map

The Legions' Controllers

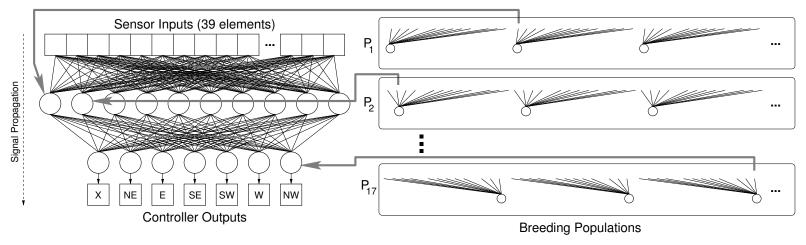
 Sensor activations are propagated through an artificial neural network:



- Then the network's output activations are decoded to choose an action
- The network must be trained to the task

Neuroevolution with Enforced Sub-Populations (ESP)

(Gomez 2003)



- Direct-encoding neuroevolution mechanism
- Separate breeding population for each neuron
 - populations co-evolve to produce network
- Use game scores for fitness function
 - score = pillage rate (lower is better)
 - evaluation noise reduced by averaging

How well does it work?

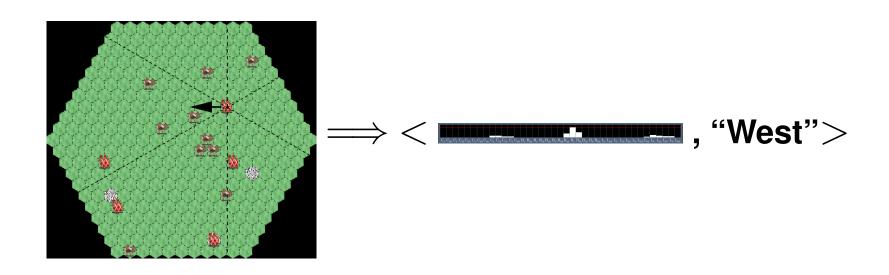
- Quantitative results see prior publications
 - visit

http://www.cse.unr.edu/~bdbryant/#ref-research-publications

Qualitative results – see movie

Learning from Examples

- Play a dozen games
- Capture examples as < state, action > pairs
 - use egocentric sensor readings for state
 - use the human's choice of move for action

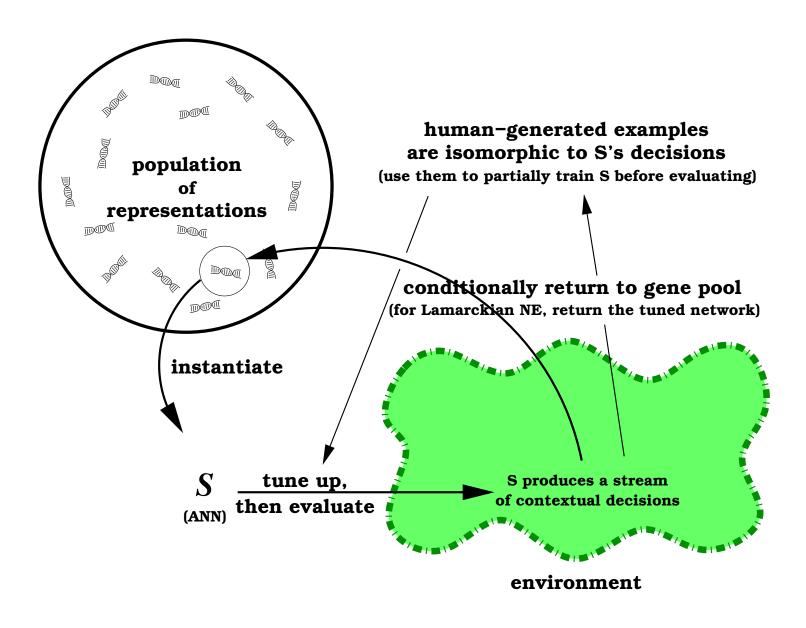


Target Policies

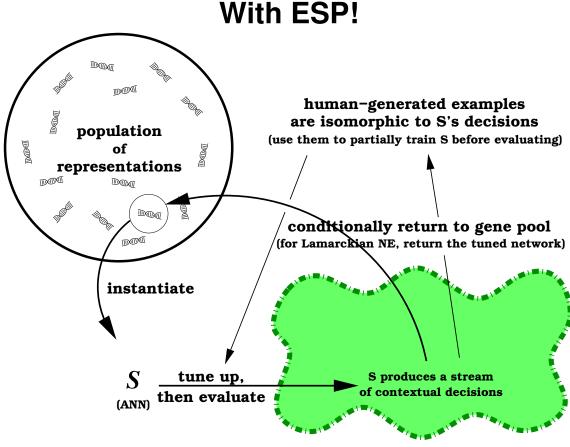
(Used for Example Generation)

- ullet Policy family L_d , where d is an integer distance
 - \circ garrison may not move >d from city
 - \circ must return to city when no barbarians within d
- Safety condition
 - garrison may not end with barbarian equally near city
 - must move directly to city if unavoidable
 - o side effect: two barbarians can lock a garrison in
- Examined only $d \in 0, 1$ (limited sensor resolution)
 - \circ notice that L_0 is degenerate (trivial)
- No constraints on 'rovers'

Lamarckian Neuroevolution



Lamarckian Neuroevolution



environment

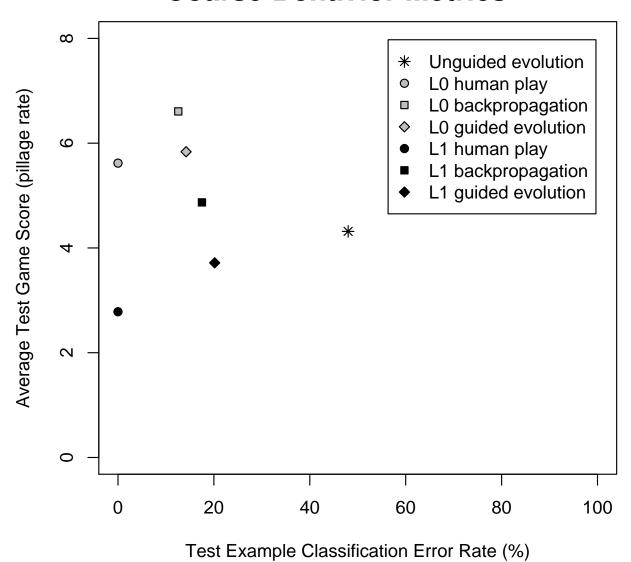
- Tuning is done with backpropagation
- ESP and Lamarckian mechanisms are orthogonal

Comparanda

- Unguided evolution (as before)
 - 5,000 generations
 - o fitness = 1 / pillage rate
- Lamarckian neuroevolution
 - 5,000 generations
 - various amounts of training per generation
 - · sample sizes: 5, 10, 20, 50, 100, 200, ... 10,000
 - only report results for 5,000 in the paper
 - · in general, more examples better results, higher cost
- Backpropagation
 - o 20,000 epochs
 - o full 11,000 examples per epoch

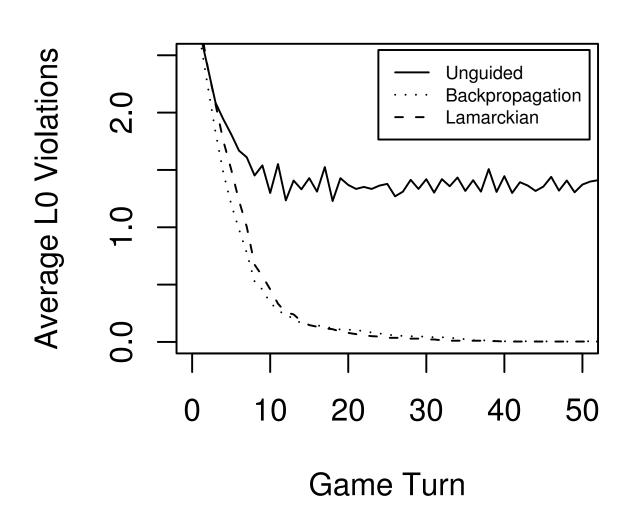
Results (i)

Coarse Behavior Metrics



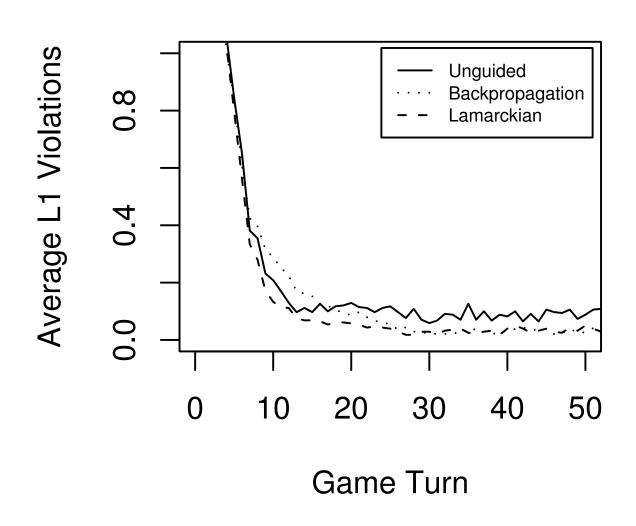
Results (ii)

Rule Induction – L_0 Results



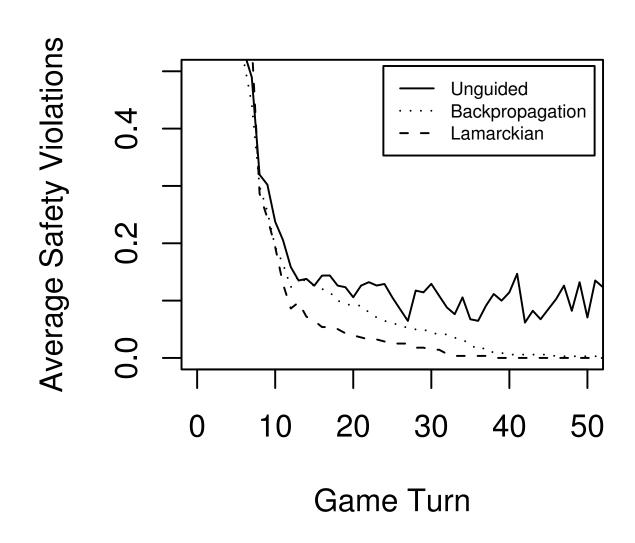
Results (iii)

Rule Induction – L_1 Results



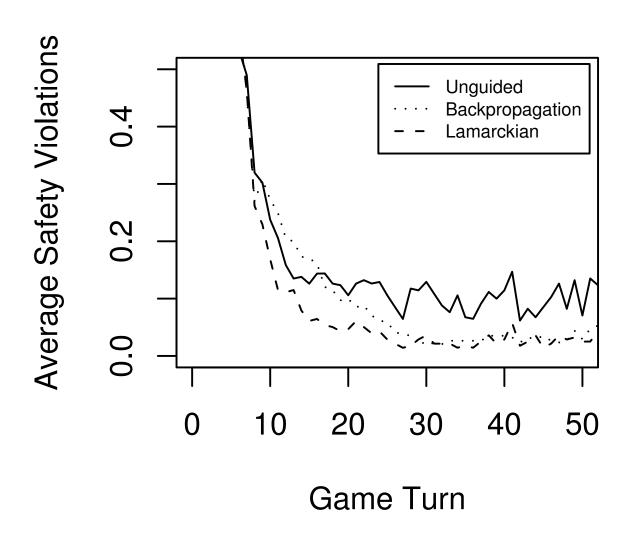
Results (iv)

Rule Induction – L_0 Results



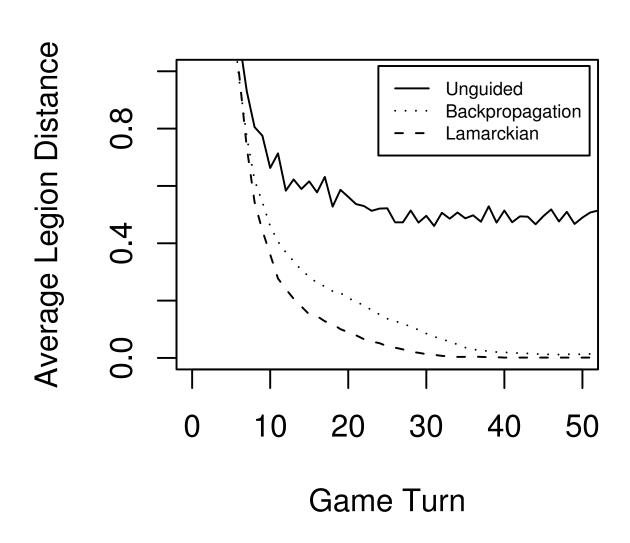
Results (v)

Rule Induction – L_1 Results



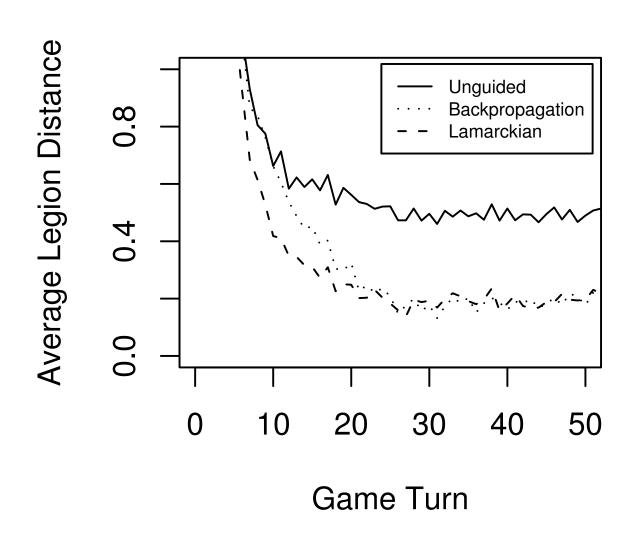
Results (vi)

Rule Induction – L_0 Results



Results (vii)

Rule Induction – L_1 Results



Related Work

- Policy induction with rule-based systems
 - behavioral cloning (Sammut et al. 1992)
 - KnoMic (van Lent and Laird 2001)
 - Style Machines (Brand and Hertzmann 2000)
- Social robotics / mimetic algorithms
 - surveyed in Nicolescu (2003)
- Advice systems
 - RL advice unit (Kuhlmann et al. 2004)
 - appliqué networks (Yong et al. 2005)
- Inverse reinforcement learning (Ng and Russell 2000)
- User modeling
 - adaptive user interfaces
 - drama management for interactive fiction (AIIDE'07)

Conclusions

- Some applications require intuitively correct behaviors
- Policy induction can simplify creating such behaviors
- Lamarckian neuroevolution can implement PI for some applications
 - beats backpropagation on enforcing rule conformance
 - more power and efficiency are needed
 - o raises questions about how success can be measured

Related papers and movies can be found at

www.cse.unr.edu/ bdbryant/#ref-research-publications

Acknowledgments

This research was sponsored in part by the **Digital Media Collaboratory** at the IC² Institute at the University of Texas at Austin.

It builds on earlier research supported in part by the **National Science Foundation** under grant IIS-0083776 and the **Texas Higher Education Coordinating Board** under grant ARP-003658-476-2001.

CPU time for the experiments was made possible by NSF grant EIA-0303609, using the **Mastodon** cluster at UT-Austin.

Some of the images are taken from the open-source game Freeciv.

References

- Gomez, F. (2003). *Robust Non-Linear Control Through Neuroevolution*. PhD thesis, Department of Computer Sciences, The University of Texas at Austin.
- Kuhlmann, G., Stone, P., Mooney, R., and Shavlik, J. (2004). Guiding a reinforcement learner with natural language advice: Initial results in RoboCup soccer. In *The AAAI-2004 Workshop on Supervisory Control of Learning and Adaptive Systems*.
- Ng, A. Y., and Russell, S. (2000). Algorithms for inverse reinforcement learning. In *Proceedings of the 17th International Conference on Machine Learning*, 663–670. San Francisco: Morgan Kaufmann.
- Nicolescu, M. N. (2003). A Fremework for Learning From Demonstration, Generalization and Practiced in Human-Robot Domains. PhD thesis, University of Southern California.
- Sammut, C., Hurst, S., Kedzier, D., and Michie, D. (1992). Learning to fly. In *Proceed-*

ings of the Ninth International Conference on Machine Learning, 385–393. Aberdeen, UK: Morgan Kaufmann.

- van Lent, M., and Laird, J. E. (2001). Learning procedural knowledge through observation. In *Proceedings of the International Conference on Knowledge Capture*, 179–186. New York: ACM.
- Yong, C. H., Stanley, K. O., and Miikkulainen, R. (2005). Incorporating advice into evolution of neural networks. In *Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2005): Late Breaking Papers*.