# Learning to Play Games IEEE CIG 2008 Tutorial

Simon M. Lucas University of Essex, UK

## **Aims**

- To provide a practical guide to the main machine learning methods used to learn game strategy
- Provide insights into when each method is likely to work best
  - Details can mean difference between success and failure
- Common problems, and some solutions
- We assume you are familiar with
  - Neural networks: MLPs and Back-Propagation
  - Rudiments of evolutionary algorithms (evaluation, selection, reproduction/variation)
- Demonstrate TDL and Evolution in action

#### Overview

- Architecture (action selector v. value function)
- Learning algorithm (Evolution v. Temporal Difference Learning)
- Function approximation method
  - E.g. MLP or Table Function
  - Interpolated tables
- Information rates
- Sample games (Mountain Car, Othello, Ms. Pac-Man)

## Architecture

- Where does the computational intelligence fit in to a game playing agent?
- Two main choices
  - Value function
  - Action selector
- First, let's see how this works in a simple grid world

#### **Action Selector**

- Maps observed current game state to desired action
- For
  - No need for internal game model
  - Fast operation when trained
- Against
  - More training iterations needed (more parameters to set)
  - May need filtering to produce legal actions
  - Separate actuators may need to be coordinated

#### State Value Function

- Hypothetically apply possible actions to current state to generate set of possible next states
- Evaluate these using value function
- Pick the action that leads to the most favourable state
- For
  - Easy to apply, learns relatively quickly
- Against
  - Need a model of the system

#### **Grid World**

- n x n grid (toroidal i.e. wrap-around)
- Reward: 0 at goal, -1 elsewhere
- State: current square {i, j}
- Actions: up, down, left, right
- Red Disc: current state
- Red circles: possible next states
- Each episode: start at random place on grid and take actions according to policy until the goal is reached, or maximum iterations have been reached
- Examples below use 15 x 15 grid



# State Value versus State-Action Value: Grid World Example

- State value: consider the four states reachable from the current state by the set of possible actions
  - choose action that leads to highest value state
- State-Action Value







# Run Demo: Time to see each approach in action

# Learning Algorithm: (Co) Evolution v. TDL

- Temporal Difference Learning
  - Often learns much faster
  - But less robust
  - Learns during game-play
  - Uses information readily available (i.e. current observable game-state)
- Evolution / Co-evolution (vanilla form)
  - Information from game result(s)
  - Easier to apply
  - But wasteful: discards so much information
- Both can learn game strategy from scratch

# Co-evolution (single population)

Evolutionary algorithm: rank them using a league

|    | Team            | P | W | D | L | F  | Α  | GD  | PTS |
|----|-----------------|---|---|---|---|----|----|-----|-----|
| 1  | Arsenal         | 6 | 5 | 1 | 0 | 15 | 4  | 11  | 16  |
| 2  | Man Utd         | 7 | 4 | 2 | 1 | 6  | 2  | 4   | 14  |
| 3  | Manchester City |   | 4 | 1 | 2 | 8  | 5  | 3   | 13  |
| 4  | Liverpool       |   | 3 | 3 | 0 | 11 | 2  | 9   | 12  |
| 5  | Newcastle       |   | 3 | 2 | 1 | 9  | 5  | 4   | 11  |
| 6  | Chelsea         | 7 | 3 | 2 | 2 | 7  | 8  | -1  | 11  |
| 7  | West Ham        | 6 | 3 | 1 | 2 | 9  | 6  | 3   | 10  |
| 8  | Aston Villa     | 6 | 3 | 1 | 2 | 7  | 4  | 3   | 10  |
| 9  | Everton         | 7 | 3 | 1 | 3 | 8  | 8  | 0   | 10  |
| 10 | Blackburn       | 6 | 2 | 3 | 1 | 5  | 4  | 1   | 9   |
| 11 | Portsmouth      | 7 | 2 | 3 | 2 | 8  | 8  | 0   | 9   |
| 12 | Wigan           | 7 | 2 | 2 | 3 | 8  | 7  | 1   | 8   |
| 13 | Middlesbrough   | 7 | 2 | 2 | 3 | 9  | 11 | -2  | 8   |
| 14 | Birmingham      | 7 | 2 | 2 | 3 | 7  | 9  | -2  | 8   |
| 15 | Sunderland      | 7 | 2 | 2 | 3 | 7  | 11 | -4  | 8   |
| 16 | Reading         | 7 | 2 | 1 | 4 | 5  | 11 | -6  | 7   |
| 17 | Fulham          | 7 | 1 | 3 | 3 | 12 | 14 | -2  | 6   |
| 18 | Tottenham       | 7 | 1 | 2 | 4 | 10 | 12 | -2  | 5   |
| 19 | Bolton          | 7 | 1 | 1 | 5 | 8  | 12 | -4  | 4   |
| 20 | Derby           | 7 | 1 | 1 | 5 | 4  | 20 | -16 | 4   |

# In Pictures...



## Information Flow

- Interesting to observe information flow
- Simulating games can be expensive
- Want to make the most of that computational effort
- Interesting to consider bounds on information gained per episode (e.g. per game)
- Consider upper bounds
  - All events considered equiprobable

## **Evolution**

- Suppose we run a co-evolution league with 30 players in a round robin league (each playing home and away)
- Need n(n-1) games
- Single parent: pick one from n
- log\_2(n)
- Information rate:  $I_c = -$

|   | _ | $\log_2 n$          |    |
|---|---|---------------------|----|
| c | _ | $\overline{n(n-1)}$ | 10 |

| n  | $I_c(bg^{-1})$ |
|----|----------------|
| 2  | 0.500          |
| 5  | 0.12           |
| 10 | 0.037          |
| 30 | 0.006          |

#### **TDL**

- Information is fed back as follows:
  - 1.6 bits at end of game (win/lose/draw)
- In Othello, 60 moves
- Average branching factor of 7
  - 2.8 bits of information per move
  - -60 \* 2.8 = 168
- Therefore:
  - Up to nearly 170 bits per game (> 20,000 times more than coevolution for this scenario)
  - (this bound is very loose why?)
- See my CIG 2008 paper

# Sample TDL Algorithm: TD(0) typical alpha: 0.1

pi: policy; choose rand move 10% of time else choose best state

#### **Algorithm 1**: On-line TD(0) adapted from Sutton and Barto

```
Initialize V(s) arbitrarily, for all s \in S
for each episode do
    Initialize s to start state
    (could be random start state)
    for each step in episode do
        a \leftarrow action given by \pi for s
        Take action a, observe reward r, and next state s'
        \delta \leftarrow r + V(s') - V(s)
        V(s) \leftarrow V(s) + \alpha \delta
    end
end
```

# Main Software Modules (my setup – plug in game of choice)



# **Function Approximators**

- For small games (e.g. OXO) game state is so small that state values can be stored directly in a table
- Our focus is on more complex games, where this is simply not possible e.g.
  - Discrete but large (Chess, Go, Othello, Pac-Man)
  - Continuous (Mountain Car, Halo, Car racing: TORCS)
- Therefore necessary to use a function approximation technique

# **Function Approximators**

- Multi-Layer Perceptrons (MLPs)
  - Very general
  - Can cope with high-dimensional input
  - Global nature can make forgetting a problem
- N-Tuple systems
  - Good for discrete inputs (e.g. board games)
  - Harder to apply to continuous domains
- Table-based
  - Naïve is poor for continuous domains
  - CMAC coding improves this (overlapping tiles)
  - Even better: use interpolated tables
    - Generalisation of bilinear interpolation used in image transforms

# Standard (left) versus CMAC (right)





# Interpolated Table



## Method

- Continuous point p(x,y)
- x and y are discretised, then residues r(x) r(y) are used to interpolate between values at four corner points
- N-dimensional table requires 2<sup>n</sup> lookups

$$f_t(x,y) = (1-r(x))(1-r(y))t[q_l(x)][q_l(y)]$$
+  $r(x)(1-r(y))t[q_u(x)][q_l(y)]$ 
+  $(1-r(x))r(y)t[q_l(x)][q_u(y)]$ 
+  $r(x)r(y)t[q_u(x)][q_u(y)]$ 

# Supervised Training Test

- Following based on 50,000 one-shot training samples
- Each point randomly chosen from uniform distribution over input space
- Function to learn: continuous spiral (r and theta are the polar coordinates of x and y)

$$f(x,y) = \sin(\theta + r\pi\omega)$$

# Results



**MLP-CMAES** 



# Test Set MSE

| Architecture          | MSE   |
|-----------------------|-------|
| MLP                   | 0.13  |
| N-Tuple (CMAC + Grey) | 0.30  |
| Standard Table        | 0.08  |
| CMAC (Shared)         | 0.01  |
| Bi-Linear             | 0.006 |

# Standard Regression 200 Training Points Gaussian Processes Model



Gaussian Processes: learn more from the data, but hard to interface to games

## Function Approximator: Adaptation Demo

This shows each method after a single presentation of each of six patterns, three positive, three negative. What do you notice?



## Grid World – Evolved MLP

- MLP evolved using CMA-ES
- Gets close to optimal after a few thousand fitness evaluations
- Each one based on 10 or 20 episodes
- Value functions may differ from run to run





# **Evolved N-Linear Table**

 This was evolved using CMA-ES, but only had a fitness of around 80



# Evolved N-Linear Table with Lamarkian TD-Learning

- This does better
- Average score now8.4

Evo N-Linear 5







# TDL Again

 Note how quickly it converges with the small grid





## TDL MLP

 Surprisingly hard to make it work!





## **Table Function TDL**

 $(15 \times 15)$ 

- Typical score of 11.0
- Not as good as interpolated 5 x 5 table on this task
- Model selection is important





## Grid World Results – State Table

- Interesting!
- The MLP / TDL combination is very poor
- Evolution with MLP gets close to TDL with N-Linear table, but at much greater computational cost

| Architecture           | <b>Evolution (CMA-ES)</b> | TDL(0) |
|------------------------|---------------------------|--------|
| MLP (15 hidden units)  | 9.0                       | 126.0  |
| N-Linear Table (5 x 5) | 11.0                      | 8.4    |

# Action Values - Takes longer e.g. score of 9.8 after 4,000 episodes



# Simple Example: Mountain Car

- Standard reinforcement learning benchmark
- Accelerate a car to reach goal at top of incline
- Engine force weaker than gravity



## Value Functions Learned (TDL)









## Mountain Car Results (TDL, 2000 episodes, ave. of 10 runs)

| System         | Mean steps to goal (s.e.) |
|----------------|---------------------------|
| Table          | 1008 (143)                |
| CMAC: separate | 81.8 (11.5)               |
| CMAC: shared   | 60.0 (2.3)                |
| Bilinear       | 50.5 (2.5)                |

#### Othello

See Demo



#### Volatile Piece Difference



#### Setup

- Use weighted piece counter
  - Fast to compute (can play billions of games)
  - Easy to visualise
  - See if we can beat the 'standard' weights
- Limit search depth to 1-ply
  - Enables billions of games to be played
  - For a thorough comparison
- Focus on machine learning rather than game-tree search
- Force random moves (with prob. 0.1)
  - Get a more robust evaluation of playing ability

#### Othello: After-state Value Function



## Standard "Heuristic" Weights (lighter = more advantageous)



### TDL Algorithm

Nearly as simple to apply as CEL

```
public interface TDLPlayer extends Player { void inGameUpdate(double[] prev, double[] next);  \alpha \big[ v(x') - v(x) \big] \big( 1 - v(x)^2 \big) x_i  void terminalUpdate(double[] prev, double tg);  \alpha \big[ r - v(x) \big] \big( 1 - v(x)^2 \big) x_i  }
```

- Reward signal only given at game end
- Initial alpha and alpha cooling rate tuned empirically

#### TDL in Java

```
public void inGameUpdate(double[] prev, double[] next) {
    double op = tanh(net.forward(prev));
    double tg = tanh(net.forward(next));
    double delta = alpha * (tq - op) * (1 - op * op);
    net.updateWeights(prev, delta);
public void terminalUpdate(double[] prev, double tg) {
    double op = tanh(net.forward(prev));
    double delta = alpha * (tg - op) * (1 - op * op);
    net.updateWeights(prev, delta);
```

#### **CEL Algorithm**

- Evolution Strategy (ES)
  - (1, 10) (non-elitist worked best)
- Gaussian mutation
  - Fixed sigma (not adaptive)
  - Fixed works just as well here
- Fitness defined by full round-robin league performance (e.g. 1, 0, -1 for w/d/l)
- Parent child averaging
  - Defeats noise inherent in fitness evaluation

## Algorithm in detail (Lucas and Runarsson, CIG 2006)

```
Initialize: \mathbf{w}' = \mathbf{0} and \beta = 0.05 (or 1.0)
  while termination criteria not satisfied do
      for k := 1 to \lambda do (replication)
         \boldsymbol{w}_k \leftarrow \boldsymbol{w}' + \boldsymbol{N}(0, 1/n)
      od
      each individual \mathbf{w}_k, k = 1, \ldots, \lambda plays another
       (once each color) for a total of \lambda(\lambda-1) games,
     find the player i with the highest score (breaking ties randomly)
     \boldsymbol{w}' \leftarrow \boldsymbol{w}' + \beta(\boldsymbol{w}_i - \boldsymbol{w}') (arithmetic average)
  od
```

#### CEL (1,10) v. Heuristic



#### TDL v. Random and Heuristic



### Othello: Symmetry

- Enforce symmetry
  - This speeds up learning



Use trusty old friend: N-Tuple System for value approximator

#### NTuple Systems

- W. Bledsoe and I. Browning. Pattern recognition and reading by machine. In Proceedings of the EJCC, pages 225 232, December 1959.
- Sample n-tuples of input space
- Map sampled values to memory indexes
  - Training: adjust values there
  - Recognition / play: sum over the values
- Superfast
- Related to:
  - Kernel trick of SVM (non-linear map to high dimensional space; then linear model)
  - Kanerva's sparse memory model
  - Also similar to Michael Buro's look-up table for Logistello

## Symmetric 3-tuple Example



## Symmetric N-Tuple Sampling

| 0  | 1          | 3               | 3          | 4         | Æ  | 6  | 7          |
|----|------------|-----------------|------------|-----------|----|----|------------|
| 8  | 9          | 10              | $\nearrow$ | <u>12</u> | 13 | 14 | 15         |
| 16 | 17         | 18              | 16         | 30        | 21 | 22 | 23         |
| 24 | 25         | 26              | 3          |           | Ŕ  | 30 | 31         |
| 32 | <i>3</i> 3 | \3 <del>\</del> | <b>*</b>   |           | ħ  | 38 | 39         |
| 40 | 41         | 42              | 48         | <b>)</b>  | 45 | 46 | <b>4</b> 7 |
| 48 | 49         | 50              | 5/         | 255       | 53 | 54 | 55         |
| 56 | 57         | 58              | 59         | 60        | В1 | 62 | 63         |

#### N-Tuple System

- Results used 30 random n-tuples
- Snakes created by a random 6-step walk
  - Duplicates squares deleted
- System typically has around 15000 weights
- Simple training rule:

$$l(d) = l(d) + \delta \ \forall d \in D(b)$$

#### N-Tuple Training Algorithm

```
Algorithm 2: N-tuple training algorithm
```

```
NOTE: f is the indexing function
INITIALIZE: set weights to zero
for i in set of n-tuples do
    for j in symmetries(i) do
        index = f_{ij}(board)
        l_i[index] += \delta
    end
end
```

### NTuple System (TDL) total games = 1250 (very competitive performance)



# Typical Learned strategy... (N-Tuple player is +ve – 10 sample games shown)



### (May 15<sup>th</sup> 2008) All Leading entries are N-Tuple based

Web-based League

|          | Trial League                                     |        |     |       |      |          |  |
|----------|--------------------------------------------------|--------|-----|-------|------|----------|--|
| Position | Name                                             | Played | Won | Drawn | Lost | Format   |  |
| 1        | t15x6x8                                          | 100    | 79  | 3     | 18   | SNT-Text |  |
| 2        | x30x6x8                                          | 100    | 71  | 4     | 25   | SNT-Text |  |
| 3        | Stunner                                          | 100    | 67  | 1     | 32   | SNT-Text |  |
| 4        | Woxy SNT                                         | 100    | 67  | 1     | 32   | NET-WOX  |  |
| 5        | WOX Test                                         | 100    | 65  | 1     | 34   | NET-WOX  |  |
| 6        | WOX Test 3                                       | 100    | 64  | 1     | 35   | NET-WOX  |  |
| 7        | newp8                                            | 100    | 64  | 3     | 33   | SNT-Text |  |
| 8        | yp278a                                           | 100    | 64  | 2     | 34   | SNT-Text |  |
| 9        | Stunner-2                                        | 100    | 63  | 6     | 31   | SNT-Text |  |
| 10       | WOX Test 2                                       | 100    | 62  | 4     | 34   | NET-WOX  |  |
| 11       | MLP_Original-MoreNeurons.0.1-gen312-ties0.FF     | 100    | 60  | 4     | 36   | MLP-Text |  |
| 12       | try3MLP_Original-MoreNeurons.0.1-gen341-ties0.FF | 100    | 59  | 4     | 37   | MLP-Text |  |
| 13       | shrd-MaxSolve-7c1kg                              | 100    | 59  | 2     | 39   | MLP-Text |  |
| 14       | test-mlp1                                        | 1000   | 582 | 34    | 384  | unknown  |  |

## Results versus CEC 2006 Champion (a manual EVO / TDL hybrid MLP)

| $n_{sp}$ | Won | Drawn | Lost |
|----------|-----|-------|------|
| 250      | 89  | 5     | 106  |
| 500      | 135 | 6     | 59   |
| 750      | 142 | 5     | 53   |
| 1000     | 136 | 2     | 62   |
| 1250     | 142 | 5     | 53   |

#### N-Tuple Summary

- Stunning results compared to other gamelearning architectures such as MLP
- How might this hold for other problems?
- How easy are N-Tuples to apply to other domains?

#### Ms Pac-Man

- Challenging Game
- Discrete but large search space
- Need to code inputs before applying to function approximator



#### Screen Capture Mode

- Allows us to run software agents original game
- But simulated copy (previous slide) is much faster, and good for training



### Ms Pac-Man Input Coding

- See groups of 4 features below
- These are displayed for each possible successor node from the current node
  - Distance to nearest ghost
  - Distance to nearest edible ghost
  - Distance to nearest food pill
  - Distance to nearest power pill



## Alternative Pac-Man Features (Pete Burrow)

- Used a smaller feature space
- Distance to nearest safe junction
- Distance to nearest pill

### So far: Evolved MLP by far the best!



#### Results: MLP versus Interpolated Table

- Both used a 1+9 ES, run for 50 generations
- 10 games per fitness evaluation
- 10 complete runs of each architecture
- MLP had 5 hidden units
- Interpolated table had 3<sup>4</sup> entries
- So far each had a mean best score of approx 3,700
- More work is needed to improve this
  - And to test transference to original game!

#### Summary

- All choices need careful investigation
  - Big impact on performance
- Function approximator
  - N-Tuples and interpolated tables: very promising
  - Table-based methods often learn much more reliably than MLPs (especially with TDL)
  - But: Evolved MLP better on Ms Pac-Man
    - Input features need more design effort...
- Learning algorithm
  - TDL is often better for large numbers of parameters
  - But TDL may perform poorly with MLPs
  - Evolution is easier to apply
- Some things work very well, though much more research needed
- This is good news!

#### **New Transactions**

#### IEEE TRANSACTIONS ON

#### COMPUTATIONAL INTELLIGENCE

#### AND AI IN GAMES

A PUBLICATION OF THE COMPUTATIONAL INTELLIGENCE SOCIETY, THE IEEE COMPUTER SOCIETY, THE IEEE CONSUMER ELECTRONICS SOCIETY, AND THE IEEE SENSORS COUNCIL

www.ieee-cis.org/pubs/tciaig/







