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Aims

To provide a practical guide to the main machine
learning methods used to learn game strategy

Provide insights into when each method is likely to
work best

— Details can mean difference between success and failure
Common problems, and some solutions
We assume you are familiar with

— Neural networks: MLPs and Back-Propagation

— Rudiments of evolutionary algorithms (evaluation,
selection, reproduction/variation)

Demonstrate TDL and Evolution in action



Overview

Architecture (action selector v. value function)

_earning algorithm (Evolution v. Temporal
Difference Learning)

~unction approximation method
— E.g. MLP or Table Function
— Interpolated tables

Information rates

Sample games (Mountain Car, Othello, Ms. Pac-
Man)



Architecture

* Where does the computational intelligence fit
in to a game playing agent?

e Two main choices
— Value function

— Action selector

e First, let’s see how this works in a simple grid
world



Action Selector

e Maps observed current game state to desired
action

* For
— No need for internal game model
— Fast operation when trained
e Against
— More training iterations needed (more parameters to
set)
— May need filtering to produce legal actions
— Separate actuators may need to be coordinated



State Value Function

Hypothetically apply possible actions to current
state to generate set of possible next states

Evaluate these using value function

Pick the action that leads to the most favourable
state

For

— Easy to apply, learns relatively quickly
Against

— Need a model of the system



Grid World

n x n grid (toroidal i.e. wrap-around)
Reward: O at goal, -1 elsewhere
State: current square {i, j}

Actions: up, down, left, right

Red Disc: current state

Red circles: possible next states

Each episode: start at random place
on grid and take actions according to
policy until the goal is reached, or
maximum iterations have been
reached

Examples below use 15 x 15 grid

|| Value function

= | ) |




State Value versus
State-Action Value: Grid World Example

e State value: consider the four
states reachable from the
current state by the set of
possible actions

— choose action that leads to highest
value state

e State-Action Value

— Take the action that has the
highest value given the current
state




Run Demo:
Time to see each approach in action



Learning Algorithm:
(Co) Evolution v. TDL

e Temporal Difference Learning
— Often learns much faster
— But less robust
— Learns during game-play

— Uses information readily available (i.e. current
observable game-state)

e Evolution / Co-evolution (vanilla form)
— Information from game result(s)
— Easier to apply
— But wasteful: discards so much information

 Both can learn game strategy from scratch



Co-evolution (single population)
Evolutionary algorithm: rank them using a league

Team PW DL F A& GD PTS
1 Arsenal 6 5 10 15 4 11 16
2 ManUtd 7421 6 2 4 14
3 Manchester City 7 412 & 5§ 3 13
4 Liverpool 6 3 30 11 2 9 12
5 Hewcastle 6 321 9 5 4 11
& Chelsea 7322 7 8 -1 11
7  West Ham & 312 9 & 3 10
g  Aston Villa & 3 12 7 4 3 10
9 Everton 7 313 838 83 0 10
10 Blackburn & 2 31 5 4 1 9
11 Portsmouth 7232 8 3 0 9
12 Wigan 7223 8 7 1 8
13  Middlesbrough 2023 9 11 I B
14 Birmingham 7223 7T 9 -2 B
15 Sunderland i 22123 7 11 4 3
16 Reading 7214 5 11 6 7
17 Fulham F1/3 3 12 14 -1 &
18 Tottenham 71 24 10 12 -2 &
19 Bolton 7 115 8 12 -4 4
20 Derby 7115 4 20 16 4



In Pictures...

Co-evolution




Information Flow

Interesting to observe information flow
Simulating games can be expensive

Want to make the most of that computational
effort

Interesting to consider bounds on information
gained per episode (e.g. per game)
Consider upper bounds

— All events considered equiprobable



Evolution

Suppose we run a co-evolution league with 30
players in a round robin league (each playing
home and away)

Need n(n-1) games

Single parent: pick one from n

log_2(n) n | Le(bg™")
2 0.500
Information rate: j _ _lo%n 51 o1
n(n—1) 10 0.037
30 0.006




TDL

Information is fed back as follows:
— 1.6 bits at end of game (win/lose/draw)

In Othello, 60 moves

Average branching factor of 7
— 2.8 bits of information per move
— 60 *2.8=168

Therefore:

— Up to nearly 170 bits per game (> 20,000 times more than
coevolution for this scenario)

— (this bound is very loose — why?)
See my CIG 2008 paper



Sample TDL Algorithm: TD(0)
typical alpha: 0.1
pi: policy; choose rand move 10% of time
else choose best state

Algorithm 1: On-line TD(0) adapted from Sutton and Barto

INITIALIZE V' (s) arbitrarily. for all s € S
for each episode do
Initialize s to start state
(could be random start state)
for each step in episode do
a «— action given by 7 for s
Take action a. observe reward . and next state s’
d—r—+V(s)—V(s)
IF{H} — IF{H} + o
end
end




Main Software Modules
(my setup — plug in game of choice)

G
Problem ame
Adapter Agent
Controller

Vector . Value
.. Vectoriser .
Optimiser Function

Radial
ENN
Function

Interpolated
Table



Function Approximators

e For small games (e.g. OXO) game state is so small
that state values can be stored directly in a table

 QOur focus is on more complex games, where this
is simply not possible e.g.
— Discrete but large (Chess, Go, Othello, Pac-Man)
— Continuous (Mountain Car, Halo, Car racing: TORCS)

 Therefore necessary to use a function
approximation technique



Function Approximators

e Multi-Layer Perceptrons (MLPs)
— Very general
— Can cope with high-dimensional input
— Global nature can make forgetting a problem
 N-Tuple systems
— Good for discrete inputs (e.g. board games)
— Harder to apply to continuous domains

e Table-based

— Naive is poor for continuous domains
— CMAC coding improves this (overlapping tiles)

— Even better: use interpolated tables
e Generalisation of bilinear interpolation used in image transforms



Standard (left) versus CMAC (right)

N
X

‘Z




Interpolated Table




Method

e Continuous point p(x,y)

e x and y are discretised, then residues r(x) r(y)
are used to interpolate between values at four
corner points

 N-dimensional table requires 2*n lookups

fe(z.y) (1 —r(2)(1 —r(y)tla(x)]|ay)]
r(2)(1 = r(y))t[qu ()] [a(y)]
(1 —r(x))r(y)tla(x)] [qu(y)]

')
() ()t [qu ()] [gu(y)]

+ + + |



Supervised Training Test

e Following based on 50,000 one-shot training
samples

* Each point randomly chosen from uniform
distribution over input space

* Function to learn: continuous spiral (r and
theta are the polar coordinates of x and y)

f(i;‘_ y_) — 5111((9 + 'f"f"ﬁf-f.)



Results

True MLP-BP-25 Ntuple: CMAC + Grey

! MLP-CMAES

)

CRR

Table CMAC Bilinear




Test Set MSE

Architecture MSE
MLP 0.13
N-Tuple (CMAC + Grey) | 0.30
Standard Table 0.08
CMAC (Shared) 0.01
Bi-Linear 0.006




Standard Regression
200 Training Points
Gaussian Processes Model

Data set Interpolated Table
| £| Regression Test lilmﬂ

e

| 4| Data Set (SR

Gaussian Processes

| £| Gaussian Proc... [E@-E_hj

Gaussian Processes: learn more from the data, but hard to

interface to games



Function Approximator: Adaptation Demo

This shows each method after a single presentation of each of six

patterns, three positive, three negative. What do you notice?
r|i-€>| neuml.simple.MLPWrap...ElElg |£| CMAC: Shared E@Iﬂ

| £ Bilinear = E e | [ 2] CMAC: Seperate = 5

*_l‘




Grid World — Evolved MLP

[&] v =)

MLP evolved using
CMA-ES

Gets close to optimal
after a few thousand
fitness evaluations

Each one based on 10
or 20 episodes

Value functions may
differ from run to run

| £| Value Function |E|E‘i-J




Evolved N-Linear Table

e This was evolved
using CMA-ES, but
only had a fitness of
around 80

| £ Value Function

=




Evolved N-Linear Table
with Lamarkian TD-Learning

e This does better

* Average score now

3.4

| £ Value Function

=NECN X

Evo N-Linear 5

|£| Value Function

| £:| Value Function @Eﬂ_hj

T —

-




TDL Again

 Note how quickly it
converges with the
small grid
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TDL MLP e —— =T

e Surprisingly hard to
make it work!

ﬁ* i i
500

400 71

300 71
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200 71

100 71
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Table Function TDL

(15 x 15) (i

* Not as good as
interpolated 5 x 5
table on this task

rr- -
E‘
: : 500
e Model selection is

. 400 1
Important

300 1

ssssss
200 1
100 1
0 t t t t t
0 200 400 600 200 1000
episode
Postscript JPEG PNG




Grid World Results — State Table

* Interesting!

 The MLP / TDL combination is very poor

e Evolution with MLP gets close to TDL with N-Linear
table, but at much greater computational cost

Cvlution (CWAES) | TOLO

MLP (15 hidden units) 9.0 126.0
N-Linear Table (5 x 5) 11.0 8.4



Action Values - Takes longer

e.g. score of 9.8 after 4

000 episodes

4

B S S S
R - o

b g g S R g OB """
PP




Simple Example: Mountain Car

e Standard reinforcement learning benchmark
e Accelerate a car to reach goal at top of incline
* Engine force weaker than gravity

0| 2| Step: 588 = | B |




Value Functions Learned (TDL)

| Table (=] | [ (2] CMAC: Seperate SIS
i

| 4| CMAC: Shared SRS

R




Mountain Car Results
(TDL, 2000 episodes, ave. of 10 runs)

Table 1008 (143)
CMAC: separate 81.8 (11.5)
CMAC: shared 60.0 (2.3)

Bilinear 50.5 (2.5)



Othello

See = Ijth E!'"r_-'
Demo




Volatile Piece Difference
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15 1
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Setup

Use weighted piece counter

— Fast to compute (can play billions of games)
— Easy to visualise

— See if we can beat the ‘standard’ weights
Limit search depth to 1-ply

— Enables billions of games to be played

— For a thorough comparison

Focus on machine learning rather than game-tree
search

Force random moves (with prob. 0.1)
— Get a more robust evaluation of playing ability



Othello: After-state Value Function
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Standard “Heuristic” Weights
(lighter = more advantageous)




TDL Algorithm

 Nearly as simple to apply as CEL

public interface TDLPlayer extends Player {
void i1nGameUpdate(double[] prev, double[] next);

-n:[-t-*(;r’) —v(x ,‘I}(l —v(x JQ)IE.
void terminalUpdate(double[] prev, double tg);
} ﬁ[!——t[ ﬂ(l——t[ f)zg
e Reward signal only given at game end

Initial alpha and alpha cooling rate tuned
empirically



TDL In Java

public void inGameUpdate (double[] prev, double[] next)
double op = tanh(net.forward (prev)) ;
double tg = tanh(net.forward(next)) ;

double delta = alpha * (tg - op) * (1 - op * op);

net.updateWeights (prev, delta);

public void terminalUpdate (double[] prev, double tg) {
double op = tanh(net.forward (prev)) ;
double delta = alpha » (tg - op) * (1 - op * op);

net.updateWeights (prev, delta);



CEL Algorithm

0

e Evolution Strategy (ES)

— (1, 10) (non-elitist worked best)
* (Gaussian mutation

— Fixed sigma (not adaptive)

— Fixed works just as well here

* Fitness defined by full round-robin league
performance (e.g. 1, 0O, -1 for w/d/l)

e Parent child averaging
— Defeats noise inherent in fithess evaluation

o




Algorithm in detail
(Lucas and Runarsson, CIG 2006)

1
2
3
4
5
6

o0

Initialize: w’ = 0 and 5 = 0.05 (or 1.0)
while rermination criteria not satisfied do
for £ := 1 to A do (replication)
wyp — w' + N(0,1/n)
od
each individual wy., £ =1,..., A plavs another

(once each color) for a total of A(A — 1) games,
find the plaver 1 with the highest score (breaking ties randomly)
w' — w' + F(w; — w’) (arithmetic average)
od




CEL (1,10) v. Heuristic
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probability of winning

TDL v. Random and Heuristic
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Othello: Symmetry

 Enforce symmetry
— This speeds up learning

e Use trusty old friend: N-Tuple System for value
approximator



NTuple Systems

W. Bledsoe and |. Browning. Pattern recognition and
reading by machine. In Proceedings of the EJCC, pages 225
232, December 1959.

Sample n-tuples of input space

Map sampled values to memory indexes
— Training: adjust values there
— Recognition / play: sum over the values
Superfast

Related to:

— Kernel trick of SVM (non-linear map to high dimensional space;
then linear model)

— Kanerva’s sparse memory model
— Also similar to Michael Buro’s look-up table for Logistello



Symmetric 3-tuple Example
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Symmetric N-Tuple Sampling
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N-Tuple System

Results used 30 random n-tuples
Snakes created by a random 6-step walk

— Duplicates squares deleted

System typically has around 15000 weights

Simple training rule:

I(d)=1(d) +0 Vde D)



N-Tuple Training Algorithm

Algorithm 2: N-tuple training algorithm
NOTE: f 1s the indexing function
INITIALIZE: set weights to zero
for 7 in set of n-tuples do

for j in symmetries(1) do
index = f;,(board)
[;[index] += 0
end
end




NTuple System (TDL)
total games =1250
(very competitive performance)
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Typical Learned strategy...

(N-Tuple player is +ve — 10 sample games

shown)
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Position

[—

LY s B . TS T o L O O Ny I R
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Web-based League

(May 15t 2008)
All Leading entries are N-Tuple based

Trial League
Name
t15x6x8 100 79
x30x6x8 100 | 71
Stunner 100 | 67
Woxy SNT 100 | 67
WOX Test 100 | 65
WOX Test 3 100 | 64
newp8 100 | 64
vpl78a 100 | 64
Stunner-2 100 | 63
WOX Test 2 100 | 62
MLP Original-MoreNeurons 0.1-gen312-tiesQ FF 100 | &0
try3MLP Orniginal-MoreNewrons (0 1-gen341-ties0 FF 100 | 39
shrd-MaxSoblve-Telkg 100 | 39
test-mlp 1000 | 582

Plaved Won Drawn Lost Format

3

[ S R e L=

[ S N O R EN N N

34

18 | SNT-Text
5 | SNT-Text
2 | SNT-Text
2 INET-WOX
34 NET-WOX
35 NET-WOX
33 | SNT-Text
34 | SNT-Text
31 | SNT-Text
34 NET-WOX
36 | MLP-Text
37 | MLP-Text
39 | MLP-Text
384 unknown

Lbd | Lid | b



Results versus CEC 2006 Champion
(a manual EVO / TDL hybrid MLP)

nsp | Won | Drawn | Lost

250 39 S 106
500 135 6 39
750 142 S 33
1000 | 136 2 62

1250 | 142 S 33




N-Tuple Summary

e Stunning results compared to other game-
earning architectures such as MLP

* How might this hold for other problems?

e How easy are N-Tuples to apply to other
domains?




Ms Pac-Man

|| Score: 2880

* Challenging Game

e Discrete but large
search space

* Need to code inputs
before applying to
function
approximator

|_|:|||E|




Screen Capture Mode

e Allows us to
run software
agents original
game

e But simulated
copy (previous
slide) is much
faster, and
good for
training




Ms Pac-Man Input Coding

e See groups of 4 features below

 These are displayed for each possible
successor node from the current node
— Distance to nearest ghost
— Distance to nearest edible ghost
— Distance to nearest food pill
— Distance to nearest power pill

[l_l"."ect r View =l E&}




Alternative Pac-Man Features
(Pete Burrow)

Used a smaller feature space
Distance to nearest safe junction

Distance to nearest pill



So far: Evolved MLP by far the best!

Comparison of evolution and TDL on the Pac Man problem
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Results: MLP

e 10 games per fi
e 10 complete ru

e MLP had 5 hidc
e |nterpolated ta

versus Interpolated Table

Both used a 149 ES, run for 50 generations

tness evaluation

ns of each architecture
en units

ole had 374 entries

e So far each had
3,700

a mean best score of approx

More work is needed to improve this

— And to test transference to original game!



Summary

All choices need careful investigation
— Big impact on performance

Function approximator
— N-Tuples and interpolated tables: very promising

— Table-based methods often learn much more reliably than MLPs
(especially with TDL)

— But: Evolved MLP better on Ms Pac-Man
* Input features need more design effort...

Learning algorithm

— TDL is often better for large numbers of parameters
— But TDL may perform poorly with MLPs

— Evolution is easier to apply

Some things work very well, though much more research
needed

This is good news!
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