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FUZZY SETS

In the binary logic: t (S) = 1 - t (S), and

t (S) = 0 or 1,  ==> 0 = 1    !??!

I am a liar. 
Don’t trust me.

Bivalent Paradox as Fuzzy Midpoint

The statement S and its negation S have

the same truth-value  t (S) = t (S) .

Fuzzy logic accepts that t (S) = 1- t (S), 
without insisting that t (S) should only be 
0 or 1, and accepts the half-truth: t (S) = 1/2 .

Definition:  If X is a collection of objects denoted generically by x, then a fuzzy set
A in  X is defined as a set of ordered pairs:  

A = { (x, µA(x))  x     X}
where µA(x) is called the membership function for the fuzzy set A.  The membership
function maps each element of X (the universe of discourse)  to a membership grade
between 0 and 1.
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FUZZY LOGIC CONTROL

q The basic idea of “fuzzy logic control” (FLC) was suggested by Prof. L.A. Zadeh: 
- L.A. Zadeh, “A rationale for fuzzy control,” J. Dynamic Syst. Meas.Control, vol.94, 

series G, pp.3-4,1972.
- L.A. Zadeh, “Outline of a new approach to the analysis of complex systems and decision 

processes,” IEEE Trans. Syst., Man., Cyber., vol.SMC-3, no. 1, pp. 28-44, 1973.

q The first implementation of a FLC was reported by Mamdani and Assilian:
- E.H. Mamdani and N.S. Assilian, “A case study on the application of fuzzy set theory

to automatic control,”Proc. IFAC Stochastic Control Symp, Budapest, 1974.

v FLC provides a nonanalytic alternative to the classical 
analytic control theory. <== “But what is striking is that 
its most important and visible application today is in a realm 
not  anticipated when fuzzy logic was conceived, namely, 

the realm of fuzzy-logic-based process control,” [L.A. Zadeh, 
“Fuzzy logic,” IEEE Computer Mag., pp. 83-93, Apr. 1988].
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Classic control is based on a detailed  I/O 
function OUTPUT= F (INPUT)  which maps 
each high-resolution quantization interval of
the input domain into a high-resolution 
quantization interval of the output domain.
=> Finding a mathematical expression for 
this detailed mapping relationship F may be

difficult, if not impossible, in many applications.
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Fuzzy control is based on an I/O function that maps
each very low-resolution quantization interval of the input 
domain into a very low-low resolution quantization interval 
of the output domain. As there are only 7 or 9 fuzzy 
quantization intervals covering the input and output domains 
the mapping relationship can be very easily expressed using 
the“if-then” formalism. (In many applications, this leads to a 
simpler solution in less design time.) The overlapping of these 
fuzzy domains and their linear membership functions will 
eventually allow to achieve a rather high-resolution I/O 
function between crisp input and output variables.
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FUZZY LOGIC CONTROL
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Fuzzy
Logic
Controller

x1 x2

y
RULE BASE:

As an example, the rule base for the two-input and one-output 
controller consists of a finite collection of rules with two 
antecedents  and one consequent of the form:

Rulei : if ( x1 is A1 ji ) and ( x2 is A2ki) then ( y is Om
i )

where: 
A1j is a one of the fuzzy set of the fuzzy partition for x1
A2k is a one of the fuzzy set of the fuzzy partition for x2
Om

i is a one of the fuzzy set of the fuzzy partition for y

For a given pair of crisp input values x1 and x2 the antecedents are the degrees
of membership obtained during the fuzzification: µA1 j(x1)  and µA2k(x2).  
The strength of the Rulei (i.e its impact on the outcome) is as strong as its 
weakest component:                            

µOm
i(y) = min [µA1 ji (x1), µA2ki(x2)]

If more than one activated rule, for instance Rule p and Rule q,  specify the same output
action, (e.g. y is Om), then the strongest rule will prevail: 

µOm
p&q(y) = max { min[µA1 jp (x1),  µA2kp (x2)], min[µA1 jq (x1),  µA2kq (x2)] }
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x1       x2     RULE y

A1 j1 A2k1 r1 Om1

A1 j1 A2k2 r2 Om2

A1 j2 A2k1 r3 Om1

A1 j2 A2k2 r4 Om3

µOm1
r1(y)=min [µA1 j1(x1), µA2k1(x2)]

µOm1
r3(y)=min [µA1 j2(x1), µA2k1(x2)]

µOm2
r2(y)=min [µA1 j1(x1), µA2k2(x2)] µOm3

r4(y)=min [µA1 j2(x1), µA2k2(x2)]

µOm1
r1 & r3(y)=max {min[µA1 j1 (x1),  µA2k1 (x2)], min[µA1 j2 (x1),  µA2k1 (x2)]}

x2

A2k1

A2k2

x1

A1j2

A1j1

Om2

Om1

Om3

INPUTS OUTPUTS
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µO1 (y) , µO2 (y) 

µO1* (y) 

µO2* (y) 

O1 O2

G1* G2*

y*= [ µO1* (y)   G1*  +  
[ µO1* (y)  +  µO1* (y) ]

. µO1* (y)   G1* ] / .

DEFUZZIFICATION

Center of gravity (COG) defuzzification 
method avoids the defuzzification ambiguities 
which may arise when an output degree of 
membership can come from more than one 
crisp output value
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Fuzzy Controller for Truck and Trailer Docking
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NL NM NS PS PM PLZE

AB
(α−β)

[deg.]     -110 -95    -35   -20  -10  0    10  20   35       95     110

NL NM NS PS PM PLZE

GAMMA
( γ )

[deg.]     -85 -55  -30  -15  -10    0    10  15    30       55     85

NEAR LIMITFAR

DIST
( d )

[m] 0.05     0.1 0.75    0.90

INPUT MEMBERSHIP FUNCTIONS

SPEED

[ % ] 16            24            30

STEER
( θ )

[deg.] -48  -38     -20             0             20      38  48 

LH   LM   LS           ZE            RS   RM  RH

SLOW       MED      FAST

REV        FWD

DIRN

[arbitrary]                     - +

OUTPUT MEMBERSHIP FUNCTIONS

>>> Truck & trailer docking
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>>> Truck & trailer docking

STEER / DIRN
rule base

LM/F LS/F RS/F RM/F

LM ZE RM

RM

RH

RH

RHRM RH

RH/F

RH/F

RH/F

RH/F

RH/F

RH/FRH/FRH/FRM/F

LS/R RS/R

RS/R

RS/R RM/R

ZE/R

ZE PS PM PL

LH/F LH/F LH/F

LH

LH

LH

LM

LM

LH

ZE

LH/F

LH/F

LH/F

LH/F

LH/F

LM/F RS/FLS/F

LM/R

LS/R

LS/R

NM

NL

NS

ZE

PS

PM

PL

NL NM NS

GAMMA ( γ )

AB
(α−β)

F-R F-R F-R F-R F-R

F-R

F-R

F-R

F-R F-R F-R F-R F-R

F-R

F-R

F-R

There is a hysteresis ring around the 
center of the rule base table for 
the DIRN output. This means that when
the vehicle reaches a state within this 
ring, it will continue to drive in the same 
direction, F (forward) or R (reverse), as 
it did in the previous state outside this ring.

The hysteresis was purposefully introduced 
to increase the robustness of the FLC.
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>>> Truck & trailer docking

DEFFUZIFICATION

The crisp value of the steering angle is obtained by the modified “centroidal” 
deffuzification (Mamdani inference):

θ = (µLH
. θLH +µ LM

. θLM + µLS
. θLS + µZE

. θZE
+ µRS

. θRS +µ RM
. θRM + µRH

. θRH ) /
(µLH + µLM + µLS + µZE + µRS + µRM + µRL)

207

47

θ2
0

63

α−β

θ

63

γ

0

I/O characteristic of the 
Fuzzy Logic Controller 
for truck and trailer 
docking.

µ XX is the current membership value 
(obtained by a “max-min”compositional
mode of inference) of the output θ
to the fuzzy class XX, where 

XX {LH, LM, LS, ZE, RS, RM, RH}.
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There is tenet of common wisdom that FLCs are meant to successfully deal with uncertain data. 
According to this, FLCs  are supposed to make do with  “uncertain” data coming from (cheap) low-resolution 
and imprecise sensors.  However, experiments show that the low resolution of the sensor data results in 
rough quantization of of the controller's I/O characteristic: 
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00
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α−β

θ

16

γ
0

207

47

θ 1disp

4-bit 
sensors

7-bit 
sensors

I/O characteristics of the FLC for truck & trailer docking for 4-bit sensor data (α, β, γ) and 7-bit sensor data.

“FUZZY UNCERTAINTY” ==>  WHAT ACTUALLY IS  “FUZZY” IN A FUZZY CONTROLLER ??

The key benefit of FLC is that the desired system behavior can be described with simple “if-then” relations 
based on very low-resolution models able to incorporate empirical  (i.e. not too “certain”?) engineering 
knowledge.  FLCs have found many practical applications in the context of complex ill-defined processes 
that can be controlled by skilled human operators : water quality control, automatic train operation control, 
elevator control, nuclear reactor control, automobile transmission control, etc., 
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Fuzzy Control for Backing-up a Four Wheel Truck

Using a truck backing-up Fuzzy Logic Controller (FLC) as test bed, this
Experiment revisits a tenet of common wisdom which considers FLCs  
as beingmeant to make do with uncertain data coming from low-resolution  
sensors.  

The experiment studies the effects of the input sensor-data resolution on the 
I/O characteristics of  the digital FLC for backing-up a four-wheel truck.   

Simulation experiments have shown that the low resolution of the sensor 
data results in a rough quantization of the controller's I/O characteristic.  
They also show that it is possible to smooth the I/O characteristic of a 
digital FLC by dithering the sensor data before quantization.
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ϕ
θ

d

Loading Dock

( , )x y Front Wheel

Back Wheel
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y

The truck backing-up problem

Design a Fuzzy Logic 
Controller (FLC) able 
to back up a truck into 
a docking station from 
any initial position that 
has enough clearance 
from the docking station. 
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The FLC is based 
on the Sugeno-style 
fuzzy inference. 

The fuzzy rule base 
consists of 35 rules.
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Matlab-Simulink to model different FLC scenarios for the truck backing-up 
problem.  The initial state of the truck can be chosen anywhere within the 
100-by-50 experiment  area as long as there is enough clearance from the dock. 
The simulation is updated every 0.1 s.  The truck stops when it hits the loading 
dock situated in the middle of the bottom wall of the experiment area. 

The Truck Kinematics model is based on the following system of equations:

where  v is the backing up speed of the truck and l is the length of the truck.
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Simulink diagram 
of a digital  FLC 
for truck backing-up
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Time diagram of digital FLC's output θ during a docking 
experiment when the input variables, ϕ and x are analog
and respectively quantizied with a 4-bit bit resolution
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Dithered digital FLC architecture with low-pass filters 
placed immediately after the input  A/D converters
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Dithered digital FLC architecture 
with low-pass filters placed at the
FLC's  outputs

It offers a better performance 
than the previous one because 
a final low-pass filter can also 
smooth the non-linearity caused 
by the min-max composition 
rules of the FLC.
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Time diagram of 
dithered digital 
FLC's output θ 
during a docking 
experiment when  
4-bit A/D converters 
are used to quantize 
the dithered inputs 
and the low-pass 
filter is placed at 
the FLC's output
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Truck trails for different FLC architectures: (a) analog ; 
(b) digital  without dithering;  (c) digital with uniform 
dithering and 20-unit moving average filter
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Dithered FLCDigital FLC

Analog FLC
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Conclusions

A low resolution of the input data in a digital FLC results in 
a low resolution of the controller's characteristics.  

Dithering can significantly improve the resolution of a digital 
FLC beyond the initial resolution of the A/D converters used 
for the input data. 
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