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Modelling allows to simulate the behavior of a system for a variety
of initial conditions,excitations and systems configurations 
- often in a much shorter time than would be required to 
physically build and test a prototype experimentally

The quality and the degree of the approximation of the model can be 
determined only by a validation against experimental measurements. 

The convenience of the model means that it is capable of performing 
extensive parametric studies, in which independent parameters 
describing the model can be varied over a specified range in order to gain 
a global understanding of the response. 

A more relevant model might be one which provides results more 
rapidly - even if a degradation in a solution accuracy results.

NEURAL NETWORK  MODELS OF  PHYSICAL PROCESSES
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Analog Computer vs. Neural Network Tools
for Physical Processes Modelling

q Both the Analog Computers and the Neural Networks are continuous 
modelling devices.

q The Analog Computer (AC) allows to solve the linear or nonlinear differential
and/or integral equations representing mathematical model of a given physical 
process.  The coefficients of these equations must be exactly known as they are
used to program/adjust the coefficient-potentiometers of the AC’s computing 
-elements (OpAmps).  The AC doesn’t follow a sequential computation, all its 
computing elements perform simultaneously and continuously.
As an interesting note, “because of the difficulties inherent in
analog differentiation the [differential] equation is rearranged so that it can be
solved by integration rather than differentiation.” [A.S. Jackson, Analog 
Computation, McGraw-Hill Book Co., 1960].
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q The Neural Network (NN) doesn’t require a prior mathematical model. 
A learning algorithm is used to adjust, sequentially by trail and error 
during the learning phase, the synaptic-weights/ coefficient-potentiometers 
of the neurons/computing-elements. As the AC, the NN don’t follow a 
sequential computation, all its neuron performing simultaneously and 
continuously.  The neurons are also integrative-type computing/processing 
elements.

>>   Analog Computer vs. Neural Network Tools for Physical Processes Modelling
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NN Modelling of 
3D Electromagnetic Fields for a 
Virtual Prototyping Environment 

E.M. Petriu, M. Cordea, D.C. Petriu, Lou McNamee, "Modelling Issues in Virtual 
Prototyping Environments," Proc. VIMS'99, IEEE Workshop Virtual and Intell. Meas. 
Syst., pp. 1-5,  Venice, Italy, May 1999 
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EMC  Modelling for Electronic Design Automation

Optimum Approach to EMC Design

• {Design+Test+Analysis} Synergy

• EMC_Behavior = F (Design_Principle, 
Analysis&Modeling&Simulation_Tools,
Test_Methodology&Instrumentation)

System
Sub-System

Equipment
Motherboard

P.C. Board
Component/Device

EMC Design Levels
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Multiple PCBs can be integrated in any way as desired to define a 
complete electronic system, including mechanical parts. 

The final system can be interactively tested on an enhanced-reality
virtual work-bench as a final product, by concurrently running 
what-if experiments in a multi-domain (mechanical, electrical, 
thermal)environment. 

The design cycle is shortened, the cost of  the tests is reduced,  the
quality of the product is improved, and the time-to-market is reduced.
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EM Virtual Prototyping Environment for the 
Interactive Design of Very High Speed Circuits

Ø user-centered, task driven point of view; 

Ø interactive functions: 
(i)     walk-through the 3D virtual world; 
(ii)    specify material, electrical, and thermal specifications of 

circuit components; 
(iii)   3D manipulation of the position, shape, size, of the circuit 

components and layout; 
(iv)   visualization the electrical wave forms, 3D Electromagnetic 

(EM) field and thermal field effects in different regions of 
the electronic circuit.
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q 3D scenes are composed of multiple objects: boards, components, connectors.

§ any object is characterized by its usual  3D geometric shape and  safety-envelopes (the 
3D geometric space points where the intensity of a given field radiated by that object
becomes smaller than a specified threshold value), each type of field (EM, thermal) will 
have its own safety-envelope (the geometric safety-envelope being the object shape itself);

§ any object can be selected/becomes active by attaching a manipulator to it;

q The main objective is to detect a collision caused by a linear transformation 
(translation, rotation or scaling) between the selected object and the other 
objects in the scene.  

§ for each transformation of the selected/active object, the program updates the 3D geometric
parameters and the  bounding box of the object; 

§ then the  program checks for collision between the safety-envelopes selected object and
those of the other objects in the scene;  

§ when a collision is detected, the active object returns to its position just before the collision
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Rotation-translation  manipulator dragger

University of Ottawa 
School of Information Technology - SITE

Prof. Emil M. Petriu
http://www.site.uottawa.ca/~petriu/



Editing material properties
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Assembling multiple PCBs 
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circuit theory to describe the conducted disturbances (such as 
overvoltages, voltage dips, voltage interruptions, harmonics, 
common ground coupling);

equivalent circuit with either distributed or lumped parameters
(such as in low frequency electromagnetic field coupling expressed 
in terms of mutual inductances and stray capacitances, field-to-line 
coupling using the transmission line approximation, and cable crosstalk);

formal solutions to Maxwell's equations and the appropriate 
field boundary conditions (as for example in problems involving 
antenna scattering and radiation).

Electromagnetic Compatibility (EMC) Modelling Methods
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*   Classical numerical EM modelling using sequential algorithms
such as TLM (transmission-line matrix) or FEM (finite element method) 
is computer intensive, particularly as spatial discretization, geometry 
complexity, and domain size requirements become more demanding.

*   More efficient parallel and distributed computing techniques must be 
developed to reduce the execution time for these methods so that they can 
be used in commercial CAD software. Speed of execution is particularly 
important when the field analysis is to be coupled with optimization, 
which may require several hundred analyses to be performed within a     
reasonable time. NN models

Parallel  and  Distributed Processing  Techniques  
for Electromagnetic Field  Solution
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NN modeling of the 3D EM field radiated by a dielectric-ring
resonator antenna

q I. Ratner, H.O. Ali, E.M. Petriu, "Neural 
Network Simulation of  a Dielectric Ring 
Resonator Antenna,"  J. Systems Architecture, 
vol. 44, No. 8, pp. 569-581, 1998.
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Finite Element Method (FEM)
1400 frequency steps 2-16 GHz;
31 dielectric constants;   a = d = 5.14 mm

∇ x H = (σ + jωε)E

∇ x E = -jωµH

Maxwell’s equations:

∇ x H = -jωµ (σ + jωε)H∇ x

>> NN modeling of dielectric-ring resonator antenna EMF
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NEURAL NETWORK
§ Two input neurons (frequency,  dielectric constant)  + Two hidden layers (5 neurons 

each, with hyperbolic tangent activation function) + One output linear neuron;
§ Backpropagation using the Levenberg-Marquard algorithm;
§ 55 s /200 epochs to train the NN  off lineon SPARC 10 UNIX station;
§ 0.5 s to render on line5,000 points of the EM field surface- model, SPARC 10 UNIX.

FEM numerical 
Solution  =>
1.3x105  s  on 
SPARC 10 UNIX

>> NN modeling of dielectric-ring resonator antenna EMF
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Modeling Single Stripline Interconnects

w

Ground Plane

t

H2

H1Dielectric, ε r

Model for Z0.

Model for  C0 and L0.

[ Mao Jie, “NN Modeling of Single Stripline Interconnects,” Technical Report, 
SMRLab, SITE, University of Ottawa, 1998
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NN architecture modelling Z0

Hidden Layer Output Layer

w
h
t

εr
Z0tansig

12 neurons

purelin

14 neurons

>> Modeling Single Stripline Interconnects
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>> Modeling Single Stripline Interconnects
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NN architecture modelling C0 and L0

Hidden Layer Output Layer

w
h
t
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C0
tansig-purelin

12 hidden neurons

logsig-purelin

14 hidden neurons

>> Modeling Single Stripline Interconnects
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>> Modeling Single Stripline Interconnects
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>> Modeling Single Stripline Interconnects
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v The problem was solved by “Vector Finite Element Method” VFEM, 
and the values of the microstrip characteristic impedance for both plain and grooved 
geometries were obtained. These values describing both the frequency-dependent 
and/or groove-dependent behaviour of each microstrip geometry were used to 
train the NN models.

NEURAL NETWORK MODELLING OF
PLAIN AND GROOVED MICROSTRIPS

v A feedforward network with backpropagation, having one or more hidden 
layers with non-linear transfer functions and one output layer with a linear 
transfer function, is capable of approximating any function with a finite number 
of discontinuities with arbitrary accuracy. A two-layer sigmoid/linear NN can 
represent any functional relationship between inputs and outputs if the sigmoid 
layer has enough neurons. 

q A. Chubukjan, “Computational Aspects in Modelling Electromagnetic Field Parameters in Microstrips,
“ Ph.D. Thesis, University of Ottawa, 2000
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v The grooved microstrip was modelled initially by two separate 
one hidden-layer NN architectures, having 50 and 60 hidden neurons 
respectively. These networks were trained both by decimation and by 
the standard way. The resulting error obtained by decimation was
comparable to that obtained by standard training, and at times, was superior. 
The networks reached the desired error goal easily, with excellent 
sum-squared error figures. Nevertheless, the NN architecture with
60 neuron hidden-layer gave better results compared to the 50 neuron 
hidden-layer architecture, and it was selected for further modelling.

>> NN modelling of microstrips
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Error performance
for standard and 
decimated training
of a “60 neuron 
one hidden-layer”
NN model of
grooved microstrip.
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>> NN modelling of microstrips

University of Ottawa 
School of Information Technology - SITE

Prof. Emil M. Petriu
http://www.site.uottawa.ca/~petriu/



10 12 14 16 18 20 22 24 26 28
10

-10

10-9

10
-8

10
-7

10-6

10-5

10
-4

10
-3

Frequency  GHz

E
rr

or
 P

ro
fil

e

Groove Depth = 0.045 mm    1 HL -- 60 Neurons -- 6+6+5=17 Epochs

RelErr
Goal  

>> NN modelling of microstrips

Error performance for standard 
and decimated training of a  
“60 neuron one hidden-layer”
NN model of grooved microstrip. 
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MODEL CALIBRATION

The whole idea of virtual prototyping relies on the ability  
to develop models conformable to the physical objects and 
phenomena which represent reality very closely.

There is a need for calibration techniques able to validate
the conformance with the physical  reality of the models
incorporated in the new prototyping  tools.   
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Experimental Measurements

q The EM field training data are conveniently obtained as analytical

estimations of far-field values in 3D space and frequency from near-field 

data using the finite element method combined with method of integral 

absorbing boundary conditions.

q The near field data could be obtained analytically and/or by physically 

measuring EM field values at for given frequency values and 3D space locations.

q This approach allows to replace the usual cumbersome open site far-field

measurement technique by anechoic chamber measurements.
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The amount and extent of the area of measurements is significantly 
reduced by collecting data in the near-field only and calculating 
then the far-field values using Poggio's equation:

where:
-S1 is the surface on which measurements are made, 
closed or made closed,

-n is the normal to S1 and
is the free space Green’s function.

H r'( )=
1

4π
G r, r'( )∂H r( )

∂n
− H r( )

∂G r ,r'( )
∂n

 

 

 
 
 

 

 

 
 
 
dS1s1∫

• This equation states that if the field values and their derivatives are  known on a closed 

surface enclosing all inhomogeneities, then the field outside the surface can be calculated.
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Experimental setup for the 
noninvasive measurement 
of the 3D near field data

Computer vision recovery of the 
3D position of the EM probe
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Neural Network Modeling of 
3D Objects

A-M. Cretu, E.M. Petriu, G.G. Patry, " A Comparison of Neural Networks Architectures for 
Geometric Modelling of 3D Objects," Proc. CIMSA’04 IEEE Intl. Conference on Computational
Intelligence for Measurement Systems and Applications, pp. 155-160, Boston, MA, USA, July 2004 
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Initial3D pointcloud of sample
points representing the object

{(xi, yi, zi) | i = 1,...,N}

Neural-network model of the
object

{(xp, yp, zp) | p = 1,...,P}

xi, yi, zi xp, yp, zp

Transformed (translated, rotated,
scaled, bent, tapered, twisted)

object
{(Xi, Yi, Zi) | i = 1,...,N}

Neural Network Architecture
for 3D Object Representation

MLFF SOM Neural Gas

Xi, Yi, Zi

MLFF

Compare the performance of three NN architectures used for 3D Object modelling:
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• Multilayer Feedforward Neural Network (MLFFNN) 
• Self-Organizing Map (SOM) 
• Neural Gas Network



MLFFNN
Pointcloud of sample points
representing the objectO
{(xi, yi, zi) | i = 1,...,N}

xi, yi zi

Transformed object pointcloud
{(X i, Yi, Zi) | i =1,..., N }

X i, Y i , Z i
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Transformation Function:
translation, rotation, scaling, 

and deformations (bending, tapering, twisting)



Transformation Function – NN Architecture
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Transformation Function - Training Mode

Motion Estimation
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Transformation Function - Generation Mode

Original

Tapering

Rotation

Translation,
Rotation,
Scaling

Twisting

Bending
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MLFF Representation

generates a value proportional to the distance between an

input point and the modeled object surface
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Pointcloud of sample points
representing the object O
{(xi, yi, zi) | i = 1,...,N}

MLFFNN
xi, yi zi

Continuous volumetric
neural-networkmodel of the object

with given accuracy {(xi, yi, zi) |
(xi,yi,zi)∈ O}



MLFFNN Representation – NN Architecure

• Activation Function
– sigmoid

• Training/Testing Data
– normalized points in 

the [-1 1 –1 1 –1 1] cube
• Learning

– supervised
– scaled-gradient descent 

backpropagation

Representation module

...

OR

X2

Z2

Y2

X
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XY

YZ
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...
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MLFFNN Representation - Training Mode

• Models objects given 
as pointclouds

• Decisions:
– inputs to use
– number of neurons 

in hidden layer
– values for training 

parameters
– number of extrasurfaces

and distance

outside
extrasurface

inside
extrasurface

object
surface

d

 -1

  1
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250 points, 6-3-1, 1 
extrasurface, d=0.055, 550 
epochs, mse: 0.14, 7 min.

19000 points, 14-7-1, 4 
extrasurfaces, d=0.055, 1100 
epochs, mse: 0.4, 3.3 hrs51096 points, 20-10-1, 5 

extrasurfaces, d=0.055, 2000 
epochs, mse: 0.67, 5.2 hrs.

19080 points, 10-5-1, 5 
extrasurfaces, d=0.055, 1200 
epochs, mse: 0.35, 2.8 hrs.

7440 points, 8-4-1, 5 
extrasurfaces, d=0.055, 
1100 epochs, mse: 0.24, 
1 hr

2500 points, 12-6-1, 2 
extrasurfaces, d=0.06, 1020 
epochs, mse: 0.39, 45 min.
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MLFFNN  Modelling - Results
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MLFFNN Representation – Applications          Object Morphing
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MLFFNN Representation – Applications         Set  Operations
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MLFFNN Representation – Applications        
Object Collision Detection 



2.4% 4.9% 1.6% 99.1%
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MLFFNN Representation – Applications         Object Recognition

W
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• simple and compact (weights+architecture)
• less memory usage
• continuous volumetric model (though 

trained with surface)
• information about the entire object space
• provides desired accuracy
• represents objects of varied complexity
• preserves details
• morphing, set operations, recognition, 

collision detection (convenience)

• computationally 
expensive (for both 
learning and rendering)

• lack of local control of 
the object
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MLFFNN  Modelling – Summary

Advantages Disadvantages
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SOM and Neural Gas 
- Compressed Representation Models

Compressed NN  model of the 3D object

{(xp, yp, zp) | p = 1,2, …, P }, where P<N 

SOM / Neural Gas
Pointcloud of sample points
representing the objectO
{(xi, yi, zi) | i = 1,...,N}

xi, yi zi

xp, yp zp
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SOM Representation – NN Architecture

• Activation Function
– soft competition

• Learning
– unsupervised

input layer ...

[ x i, y i, z i]

wji

yj
K=2

K=1

winning
neuron
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• Activation Functions:
– soft competition
– neighbourhood ranking

• Learning
– unsupervised

Neural Gas Representation – NN Architecture



Initial 
pointcloud

Neural Gas

SOM

19080 points 14914 points 13759 points 

1125 points, 
42 min.

1125 points, 
26 min.

875 points,

11 min.

875 points,

24.5 min.

875 points

22 min.

875 points, 
10 min.

er= 0.0098

er= 0.0125
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SOM and Neural Gas  Modelling – Applications          Object Morphing
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SOM and Neural Gas  Modelling – Applications          Segmentation 



• simple and compact (weights)
• compressed
• less memory usage
• desired accuracy
• objects of varied complexity
• details 
• morphing, motion detection, 

segmentation

• computational expensive 
for high accuracy

• no information about the 
object space

• no direct surface 
representation
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SOM and  Neural Gas Modelling – Summary

Advantages Disadvantages
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§ computational time 
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time+rendering

§ SOM and Neural Gas
§ computational time 
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MLFF, SOM, and Natural Gas Modelling – Performance Comparison 
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MLFF, SOM, and Natural Gas Modelling – Performance Comparison 
Compactness 



• The use of neural network modeling advantageous mainly for simplicity 
and compactness

• MLFNN – continuous model, information on the entire object space, 
many applications, but time consuming

• SOM and Neural Gas – compressed model while maintaining the 
properties of the object, very good accuracy, less time consuming

• The use of different techniques depends on the application 
requirements.
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MLFF, SOM, and Natural Gas Modelling of 3D Objects

CONCLUSIONS



Neural Network Adaptive Sampling 
of 3D Surface Elastic Properties

A-M. Cretu, E.M. Petriu, G.G. Patry, "Neural Network-Based Adaptive Sampling 
of 3D Object Surface Elastic Properties," Proc. IMTC/2004, IEEE Instrum. Meas. 
Technol. Conf., pp. 285-290, Como, Italy, May 2004 
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Recovery of the elastic material properties requires touching each point of interest on the 

explored object surface and then conducting a strain-stress relation measurement on each of 

the touched points.
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The elastic behaviour at any given 

point (xp, yp, zp) on the object surface 

is described by the Hooke’s law: 

where Ep is the modulus of elasticity ,  

s p is the stress, and e p is the strain 

on the normal direction. 

Tactile probing is a time consuming 
Sequential operation

Find fast sampling procedures 
able to minimize the number of the 
sampling points by selecting only 
those points that are relevant to the 
elastic characteristics.

non-uniform adaptive sampling 

algorithm of the object’s surface, 

which exploits the SOM (self-organizing 

map) ability to find optimal finite 

quantization of the input space.
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Initial3D geometric
model of the object's surface

{(xi, yi, zi) | i = 1,...,N}
SOM / Neural Gas

Adaptive-sampled3Dgeometric
model of the object surface

{(xp, yp, zp) | p = 1,..., P}

RoboticTactile
Probing

Adaptive-sampled3D geometric
&

elastic composite model
of object's surface

{(xp, yp, zp, Ep) | p = 1,..., P}

xi, yi, zi

xp, yp, zp

Ep

Adaptive Sampling Control of the Robotic Tactile Probing 
of Elastic Propertiesof 3D Object Surfaces
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q SOM (Self Organizing Map) and Neural Gas NN architectures 
are both used to build compressed model of the 3D object 
originally defined as a point-cloud.

q The weight vector will consist of the 3D coordinates of 
the object’s points. 

q During the learning procedure, the model will contract 
asymptotically towards the points in the input space, 
respecting their density and thus taking the shape of the 
object encoded in the point-cloud. 

q Data point-clouds obtained with a range scanner are used 
to train the network. Normalization is employed, to remove 
redundant information from a data set, by a linear rescaling
of the input vectors such that their variance is 1.

q In order to evaluate the quality of the models, a straightforward
measure of the precision is used. The precision is estimated      
as the average distance between each data  vector and its  
winning neuron . 

>>> Adaptive Sampling Probing of Elastic Properties of 3D Object Surfaces
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a) b) c)

d) e) f)

g) h) i)

(a) Training data set
of 3721points 

(b) Neural Gas network, 
error=0.0112, 

(c) SOM, error=0.0133
(d) Noisy data set, 

random 0 – 0.1 (
e) Neural Gas network 

error=0.0383, 
(f) SOM, error=0.0266
(g) Noisy data set, 

random 0 – 0.04, 
(h) Neural Gas network 

error=0.0224, 
(i) SOM, error=0.0241

Robustness to noisy 
training data

>>> Adaptive Sampling Probing of Elastic Properties of 3D Object Surfaces
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Training Neural Gas network
with a map size of 25×45 for 20 epochs, for α0 = 0.5, 
λ0 = number of neurons/2 and a SOM, with the initial 
neighborhood radius σ0 =5, and a map size of 25×45, 
trained for 100 epochs, with data corrupted by different 
levels of noise. 

The initial set of 3721 points is reduced to 1125 points.

It takes approximately 250s for the SOM to build a model 
of a sphere, while it takes approximately double for the 
Neural Gas NN. However, even for a larger number of 
training epochs (5 times more) the SOM does not reach 
the same accuracy as the Neural Gas NN does, for data 
that is not very noisy (a random noise level below 0.1).

SOM suffers from the boundary problem. The models 
obtained look as if they contain cavities.  

>>> Adaptive Sampling Probing of Elastic Properties of 3D Object Surfaces
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For low levels of noise the Neural Gas network performs better than SOM. 
For higher level of noise, SOM tends to smooth the effect of noise, while the 
Neural Gas network, which has high sensitivity, follows the noisy patterns. 

>>> Adaptive Sampling Probing of Elastic Properties of 3D Object Surfaces
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>>> Adaptive Sampling Probing of Elastic Properties of 3D Object Surfaces

• The first column presents 
three views of the original
point-cloud of 19080 points 
representing a human face.

• The second column presents 
the compressed model of 
1152 points obtained using 
The Neural Gas network.

• The third column presents the 
compressed model of 1152 
points obtained using SOM.
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>>> Adaptive Sampling Probing of Elastic Properties of 3D Object Surfaces

Qualitative comparison 
between the Neural Gas 
and the SOM adaptive 
sampled models.

• The map sizes are equal 
for both networks. 

• The first column represents 
the original point-cloud, 

• The second column represents 
the Neural Gas model.

• The third column represents 
the SOM model.
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>>> Adaptive Sampling Probing of Elastic Properties of 3D Object Surfaces

q For the 14914 points of the original point-cloud model given in the first figure,
it takes 24 min. to build the Neural Gas model shown in the second figure and 
11 min. to build  the SOM model shown in the third figure (for the same map 
size of 25x35 in both cases). 
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>>> Adaptive Sampling Probing of Elastic Properties of 3D Object Surfaces
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q For both, Neural Gas and SOM, networks the quality is 
improving with the number of  training epochs
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>>> Adaptive Sampling Probing of Elastic Properties of 3D Object Surfaces

On the whole the quality of the Neural Gas models appears to 
be better. Because of the boundary problem, the SOM models 
are to be avoided for non-noisy data. 

§ Neural Gas and SOM neural networks are both able to compress the 
initial model with the desired degree of accuracy. 

§ The number of points can be further reduced by reducing the map size. 
However, there is a compromise to be made between the quality of the 
resulting compressed model and the map size. 

§ Neural Gas networks are able to model an entire scene of objects while 
the SOM networks are not able of such a performance.

University of Ottawa 
School of Information Technology - SITE

Prof. Emil M. Petriu
http://www.site.uottawa.ca/~petriu/



Modelling Avatar Behaviours in 
Interactive Virtual Environments. 

T.E. Whalen, D.C. Petriu, L. Yang, E.M. Petriu, M.D. Cordea, “Capturing Behaviour
for the Use of Avatars in Virtual Environments,” CyberPsychology & Behavior, 
Vol. 6, No. 5, pp. 537-544, 2003

M. D. Bondy, E. M. Petriu, M. D. Cordea, N. D. Georganas, D. C. Petriu, and T. E. 
Whalen, “Model-based Face and Lip Animation for Interactive Virtual Reality 
Applications”, Proc. ACM Multimedia 2001 , pp. 559-563, Ottawa, ON, Canada, 
Sept. 2001 
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q R. Rae and H.J. Ritter, “Recognition of Human Head Orientation Based on Artificial Neural Networks,”
IEEE Tr. Neural Networks, Vol. 9, No. 2, pp.257-265, March 1998 ]

>> NN modelling of human avatars in interactive virtual environments

REAL-TIME TRACKING OF THE HEAD & BODY  MOVEMENTS

q C. Rigotti, P. Cerveri, G. Andreoni, A. Pedotti, and G. Ferrigno, “Modeling and Driving a Reduced 
Human Mannequin through Motion Captured Data: A Neural Network Approach,” IEEE Tr. Syst. Man
Cyber., Vol. 31, No. 3, pp. 187-193, May 2001 

q M.D. Cordea, "Real Time 3D Head Pose Recovery for Model BasedVideo Coding,"  M.A.Sc. Thesis, 
SITE/OCIECE, University of Ottawa, 2001
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q Y.-I. Tian, T. Kanade, and J.F. Cohn, “Recognizing Action 
Units for Facial Expression Analysis,” IEEE Tr.  Pattern 
Analysis and Machine  Intelligence, Vol. 23, No. 2, 
pp. 97-115, Feb. 2001 

>> NN modelling of human avatars in interactive virtual environments

REAL-TIME RECOGNITION OF FACIAL EXPRESSIONS

v Facial expressions can be  described using the 
Facial Action Coding System , allowing  to  
control the movements of specific facial muscles. 
It supports 46  Action Units – AU’s (37 are muscle
controlled and 11 do not involve facial muscles)
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ANIMATION
SCRIPT

Voice
synthesizer

Face 
muscle-
activation 
instructions

Joint-
activation 
instructions

Face Modell
(Facial Action Coding ) 

Body Model
(Joint Control )

3-D ARTICULATED AVATAR

Avatar Machine-level Instructions

Story-level 
Instructions

l COMPILER
l INVERSE KINEMATIC CONTROL
l SCHEDULER
l CONCURRENCY MANAGER
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Scripting Language: Abstraction Levels

• Three levels of abstraction for the avatar animation scripting language:
– Highest: story-level description

• constrained English-like description
• syntactic and semantic analysis to extract information such as: main player(s), action, 

subject and object of the action, relative location, degree, etc.
• translate in a set of skill-level instructions, that may be executed sequentially or 

concurrently 
– Middle: skill-level macro-instructions

• describe basic body and facial skills (such as walk, smile, wave hand, etc.)
• each skill involves a number of muscle/joint activation instructions that may be executed 

sequentially or concurrently
– Lowest: muscle/joint activation instructions

• activation of individual muscles or joints to control the face, body or hand movement
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Personalizing Skills

• Add “personality” to skill-level macro-instructions
– different avatars may perform a certain skill in a “personalized” way

• examples: “walk like Charlie Chaplin”
“write like Emil”

– there is a skill generalization/specialization relationship (similar to object-
oriented systems) between

• a generic skill
• one or more specialized (or personalized) skills 

• Personalizing skills
– by using Neural Network models

• off-line training
• on-line rendering 
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STORY-LEVEL DESCRIPTION
…..
DanielA sits on the red chair. 
DanielA  writes “Hello” on stationary.
DanielA sees HappyCat under the white table 
and starts smiling. 
HappyCat grins back.
……

SKILL-LEVEL (“MACRO”) INSTRUCTIONS
…..
DanielA’s right hand moves the pen to follow the trace representing  “H”.
DanielA’s right hand moves the pen to follow the trace representing  “e”.
DanielA’s right hand moves the pen to follow the trace representing  “l”.
DanielA’s right hand moves the pen to follow the trace representing  “l”.
DanielA’s right hand moves the pen to follow the trace representing  “o”.
……
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DanielA’s specific style
of  moving his right arm 
joints to write “H”
( NN model capturing
DanielA’s writing personality )

Rotate Wrist to α i

Rotate Elbow to β j 

Rotate Shoulder  to γ k 

Wrist

Elbow

Shoulder

x

y

z

3-D Model of 
DanieA’s
Right Hand

SKILL-LEVEL MACRO-INSTRUCTIONS
…

DanielA’s right hand moves the pen to follow the trace representing  “H”.

…
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q M. Costa, P. Crispino, A. Hanomolo, and E. Pasero, "Artificial Neural Networks and the Simulation of Human 
Movements in CAD Environments", International Conference on Neural Networks, 1997, vol. 3, pp. 1781 -1784 



Model-based Lip Animation for Interactive Virtual Environments
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q M. Bondy, “Voice Stream Based Lip Animation for Audio-Video Communication,” M.A.Sc. Thesis, 2001 
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