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Motivation

• Type-2 fuzzy sets (T2 FSs), originally
introduced by Zadeh (1975), provide
additional  design degrees of freedom in
Mamdani and TSK fuzzy logic systems (FLS)

• This can be very useful when such systems
are used in situations where lots of
uncertainties are present

• The resulting type-2 fuzzy logic systems
(T2 FLS) have the potential to provide better
performance than a type-1 (T1) FLS

This section is self-explanatory. Just read on.
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Motivation (Cont'd.)

• To-date, because of the computational
complexity of using a general T2 FS, most
people only use interval T2 FSs in a T2
FLS, the result being an interval T2 FLS
(IT2 FLS)

• The computations associated with
interval T2 FSs are very manageable,
which makes an IT2 FLS quite practical
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Motivation (Cont'd.)
• There is a heavy educational burden even to using

an IT2 FLS
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Motivation (Cont'd.)
• There is a heavy educational burden even to using an IT2

FLS

• One must first become proficient about (top-down):

– T1 FLSs

– General T2 FSs

– Operations performed upon them (T2 FS mathematics)

– T2 fuzzy relations

– T2 FLSs

– Interval T2 FSs, their associated operations and
relations, and IT2 FLSs—all as examples of the more
general results
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Motivation (Cont'd.)

• To obtain such a level of proficiency, one has to
make a very significant investment of time,
something that many practicing engineers do not
have

• Courses about FL also do not have enough time to
do this

• Requiring a person to use T2 FS mathematics
represents a barrier to the use of IT2 FSs and FLSs
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Motivation (Cont'd.)

• This talk demonstrates that it is
unnecessary to take the above route, from
general T2 FS to IT2 FS

• Our approach will be "bottom-up"
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Motivation (Cont'd.)

• This talk demonstrates that it is
unnecessary to take the above route, from
general T2 FS to IT2 FS

• Our approach will be "bottom-up"

• All of the results that are needed to
implement an IT2 FLS can be obtained
using T1 FS mathematics
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Motivation (Cont'd.)

• This talk demonstrates that it is
unnecessary to take the above route, from
general T2 FS to IT2 FS

• Our approach will be "bottom-up"

• All of the results that are needed to
implement an IT2 FLS can be obtained
using T1 FS mathematics

• As such, this talk will make IT2 FLSs
much more accessible to all
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What is a T2 FS and How is it
Different From a T1 FS?
• T1 FS has a grade of membership that is crisp

Some eye contact

MF (Some eye contact)

In this section I will cover some aspects of general type-2 fuzzy sets (T2 FSs).
For any value of the primary variable (some eye contact) when you project
upwards you will intersect the membership function (MF) at a single point. In
this case, "the T1 FS has a grade of membership that is crisp."
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What is a T2 FS and How is it
Different From a T1 FS?
• T2 FS has a grade of membership that is fuzzy (a

fuzzy-fuzzy set    )

x

MF1(x)

MFN(x) MF1(x)               MFN(x) 

wx1
wxN

Some eye contactl                                                                           r

Uncertainty about

right end-point

Uncertainty about

left end-point
 

MF (Some eye contact)

I have assumed that there is some uncertainty about both the left-end and right-
end vertices of the T1 MF. This is just one example, e.g. uncertainty could have
also been assigned to the apex of the triangle.
I have drawn some additional triangle MFs that begin at some point in the
interval of uncertainty for the left-end vertex, then pass through the apex and
finally terminate at some point in the interval of uncertainty for the right-end
vertex.
If all of the possible triangle MFs are shown (of course, we can't do that because
there are an uncountable number of them), we would get a region that is called
the footprint of uncertainty (FOU)—more about the FOU shortly.
When some eye contact has value x' then projecting vertically from x' a
continuum of triangle MF values will be intersected. Note, however, that this
continuum of MF values is bounded by both lower and upper values (bounds).
The insert shows that each point in the interval of MF values (the primary
memberships) can be weighted differently. The weights—secondary
grades—come out of the page, and provide the MF of a general T2 FS with a
new third dimension.
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Does a T2 FS reduce to a T1
FS?
• Yes, when all uncertainties disappear

• Analogous to randomness reducing to determinism
when random uncertainty disappears

MF (Some eye contact)

So, a T2 FS reduces to a T1 FS when the FOU collapses to a T1 FS. This T1
FS is called a primary MF.
Consequently, T2 FS theory contains T1 FS theory as a special case.
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What's the Main Difference
Between T2 and T1 FSs?
• MF of a T1 FS is 2D

Nothing to add here.
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What's the Main Difference
Between T2 and T1 FSs?
• MF of a T1 FS is 2D

• MF of a T2 FS is 3D

– Too difficult to draw 3D functions

– Convention is to focus on the 2D domain of the
3D MF

– That domain is called the footprint of uncertainty

Recall that the MF of a general T2 FS is 3D.
So the FOU is the domain of the T2 FS MF. The secondary grades sit atop the
FOU.
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What's the Main Difference
Between T2 and T1 FSs?
• MF of a T1 FS is 2D

• MF of a T2 FS is 3D

– Too difficult to draw 3D functions

– Convention is to focus on the 2D domain of the
3D MF

– That domain is called the footprint of uncertainty

The left-hand FOU was obtained by beginning with a triangle primary MF and
assuming uncertainty only about its apex. Assume the uncertainty is given by
the interval [m - a, m + a]. Now beginning at m slide the triangle a units to the
left and a units to the right. Doing this you will obtain the filled-in FOU.
The middle FOU demonstrates that uncertainty does not have to be symmetrical,
i.e. the FOU to the left of the apex is "larger" (e.g., contains more area) than the
FOU to the right of the apex. So, a FOU does not have to be symmetrical.
The right-hand FOU demonstrates that its bounds do not have to be piecewise
linear. In this case, they are both Gaussian.
Observe that a FOU is described by more parameters than is the original
primary MF. It is these additional parameters—degrees of freedom—that
provide T2 FSs the potential to outperform T1 FSs.
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Are There Limitations to
Using T2 FSs?

• Today, using general T2 FSs is
computationally infeasible

– Efficient algorithms do not yet exist for
computing operations

– Finding such algorithms is a very hot and active
research area

Yes, T2 FSs require more computation than do T1 FSs. However, do we
complain about using probability because it is also more complicated that
deterministic analysis? We don't, because it provides us with a very useful model
of unpredictability. Well, T2 FSs provide us with a very useful model of
linguistic uncertainty.
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So What Do We Do?

• We use Interval T2 FSs (IT2 FS)

– They only use the FOU

In an interval T2 FS (IT2 FS) all secondary grades have the same value, namely
1. Consequently, they convey no useful information, and can be discarded.
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So What Do We Do?

• We use Interval T2 FSs (IT2 FS)

– They only use the FOU

• Rationale

– There is no best choice for even the MF of a
type-1 FS (Triangle? Trapezoid? Gaussian?)

– Let's uniformly weight the entire FOU IT2 FS

T1 FS applications seem to be very robust to the specific choice made for the
shape of the MF. The shape is usually fixed and then the associated parameters
of that shape are optimized (tuned).
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So What Do We Do?

• We use Interval T2 FSs (IT2 FS)

– They only use the FOU

• Rationale

– There is no best choice for even the MF of a
type-1 FS (Triangle? Trapezoid? Gaussian?)

– Let's uniformly weight the entire FOU IT2 FS

• Advantage

– Formulas for computing all operations are
simple—only have to keep tabs of the two end-
points of an interval

An interval is completely defined by its left-end and right-end points. You will
see later in this talk that when operations are performed on IT2 FSs, intervals get
mapped into other intervals. Simple formulas for the mapped intervals will be
derived later in this talk.
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Interval Type-2 Fuzzy Sets:
Terminology-1

u

x

1

0

Upper MF:

Lower MF:

µ 
 ̃A 
(x)

µ  ̃A 
(x)

FOU( ˜ A )

Just as you learned new terminology in a course on probability, you have to
learn some new terminology for IT2 FSs.
By the way, this terminology also applies to general T2 FSs.
First of all, it is now common to distinguish between a T2 FS and a T1 FS by
using a tilde over the former symbol.
The upper MF is abbreviated to UMF,  and lower MF is abbreviated to LMF. An
over-bar on the T2 MF denotes the former, and an under-bar on the T2 MF
denotes the latter.
The LMF and UMF play very important roles in all calculations involving IT2
FSs.
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Interval Type-2 Fuzzy Sets:
Terminology-1

u

x

1

0

Upper MF:

Lower MF:

µ 
 ̃A 
(x)

µ  ̃A 
(x)

FOU( ˜ A )

• Because all
secondary grades
of an IT2 FS equal
1, they convey no
information—2D

• An IT2 FS is
completely
described by its
Footprint of
Uncertainty (FOU)

Nothing to add here.
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Interval Type-2 Fuzzy Sets:
Terminology-2

1

x

 FOU(
!A)

Embedded Set
1

1 Ae
j

An embedded set (also called an embedded T1 FS) is a function that lies within
or on the FOU.
Two other examples of embedded sets are the LMF and UMF.
A short arrow labeled "1" is shown along the embedded T1 FS. When it is
included with the embedded T1 FS, the result is an embedded T2 FS.
Because the third dimension of a general T2 FS is irrelevant for an IT2 FS, it is
unnecessary to carry along the equal unit secondary grades. The FOU says it all
for an IT2 FS.
For a continuous FOU (i.e., a completely filled-in FOU) there are an
uncountable number of embedded sets. Don’t' worry, though, because such sets
will only be used for theoretical derivations, and never for computation.
If both the primary and secondary variable axes are discretized, then there will be
a countable number of embedded sets, but there could still be an astronomical
number of them. Again, don't worry because such sets will only be used for
theoretical derivations, and never for computation
Observe that an embedded set looks like a wavy slice that cuts through the FOU.
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Interval Type-2 Fuzzy Sets:
Terminology-2

1

x

 FOU(
!A)

Embedded Set
1

1

Representation Theorem (Wavy Slices)

 

!A = 1 / FOU( !A) = 1 Ae
j

j=1

nA

" =
1 µ

!A
(x),...,µ !A (x){ } !x "Xd

1 µ
!A
(x),µ !A (x)

#
$

%
& !x "X

'

(
)

*)

Ae
j

The Representation Theorem (also known as the Mendel-John Representation
Theorem) is to-date the most important theoretical result in T2 FS theory.
It is covering theorem. In words, it states the obvious, namely the FOU can be
covered by the union of all of its embedded sets.
The 1/FOU( ) notation is a shorthand notation. It means the secondary grades
equal 1 at all points in the FOU.
The upper line in this equation is for a discrete universe of discourse, for which
there will be a finite number of embedded sets. The second line in this equation
is for a continuous universe of discourse, for which there will be an infinite and
uncountable number (a continuum) of embedded sets.
So why is the Representation Theorem so important? Because it lets us
represent the FOU (the IT2 FS) in terms of T1 FSs!
Although there are a lot of these T1 FSs, the Representation Theorem will only
be used to derive formulas, and, because it only involves T1 FSs, this means
derivations will only use T1 FS mathematics.
You will soon see that the resulting formulas are very easy to compute, and do
NOT involve an astronomical number of T1 FS calculations.
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Set Theoretic Operations

• We need formulas for union, intersection and
complement

• They can be derived using the Representation

Theorem

• We will show the details for the union of two
interval T2 FSs

Just as in T1 FS theory, where the union, intersection and complement of T1
FSs are frequently computed, these same quantities will also have to be
computed for IT2 FSs.
By the way, all of the nitty-gritty details of derivations are in Reference 1 that is
given at the end of this talk. I will only high-light the steps of derivations.
Details for the intersection and complement are in Ref. 1. Conceptually, these
derivations are no different than the derivation of the union.
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Union-Derivation: 1

 
!A! !B = 1 / FOU( !A! !B)

This equation states that the union of two IT2 FSs is another IT2 FS, one that is
completely described by its FOU.
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Union-Derivation: 1

 
!A! !B = 1 / FOU( !A! !B)

 

FOU( !A! !B) = Ae
j
! Be

i

i=1

nB

"
j=1

nA

" = Ae
j
!

i=1

nB

"
j=1

nA

" Be
i

In the second equation, the Representation Theorem has been used two times,
once for IT2 FS A (sorry, I can't do tildes in these notes) and once for IT2 FS B.
In line 2, the sigma signs represent unions of elements within each of the two
IT2 FSs, whereas the union sign represents the union across the two IT2 FSs.
To paraphrase the famous author Gertrude Stein (who said "A rose is a rose is a
rose"), "a union is a union is a union." Consequently, the second part of line 2
reorganizes all of the unions.
IMPORTANT OBSERVATION: The union of the two embedded sets is the
union of two T1 FSs, and this can be computed using T1 FS mathematics.



28

28

Union-Derivation: 1

 
!A! !B = 1 / FOU( !A! !B)

 

FOU( !A! !B) = Ae
j
! Be

i

i=1

nB

"
j=1

nA

" = Ae
j
!

i=1

nB

"
j=1

nA

" Be
i

Ae
j
! Be

i
= max µ

Ae
j (xk ),µ

Be
i (xk ){ }    k = 1,2,...,N

In this derivation, the maximum operation is used for the disjunction operation.
In a more general derivation, the disjunction could be replaced by a t-conorm
operator, of which the maximum is but one such operator.
The maximum is taken at all N points in the discretized domains of the two T1
embedded sets.
It is important to recall that the union of two T1 FSs is another T1 FS, i.e. it is a
function (in this case it is defined at N points).
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Union-Derivation: 2
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!j ,i

max µ
Ae
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Be
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                                         = µ
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FOU( !A! !B) = Ae
j
!
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nB

"
j=1

nA

" Be
i

The collection of all unions will have lower and upper bounding functions.
Consequently, the second critical step in the derivation is to return to the second
line on the previous slide, and to find the largest and the smallest of the just-
calculated unions.
The largest of these unions is found by determining the supremum of all of the
unions.
Because the UMFs are legitimate T1 embedded sets, at each sampled value of
the primary variable the supremum must occur at the UMFs of both IT2 FSs.
The result of doing this for all values of the primary variable is the first line of
the top equation.
The second line is just another way of writing the right-hand part of the first line.
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Union-Derivation: 2
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The smallest of all the unions is found by determining the infimum of all of the
unions.
Because the LMFs are legitimate T1 embedded sets, at each sampled value of the
primary variable the infimum must occur at the LMFs of both IT2 FSs. The
result of doing this for all values of the primary variable is the top line of the
second equation.
The second line of that equation is just another way of writing the right-hand
part of its first line.
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Union-Derivation: 2
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The last equation on this slide collects the two calculations in one place.
Observe that the union of two IT2 FSs is also an IT2 FS, one whose LMF is
obtained from the LMFs of the original IT2 FSs, and whose UMF is obtained
from the UMFs of the original IT2 FSs.
Observe, also, that although the Representation Theorem was used in the first
steps of the derivation, additional analyses were needed to reach the final results.
These analyses led to a simple computational algorithm for the union.
As promised, the Representation Theorem is a means to an end, and is not used
as the final computational algorithm.
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Summary Formulas

 

!A! !B = 1 [µ
!A
(x)" µ

!B
(x),µ

!A
(x)" µ

!B
(x)]     #x $X

On this slide and the next two, computational formulas are stated for union,
intersection and complement of two IT2 FSs.
It is straightforward to extend these formulas from two to a finite number of IT2
FSs. Just repeat the process adding in one new IT2 FS at a time.
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Summary Formulas
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Summary Formulas
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What a Type-2 FLS is: Diagram

Output
Processing

Crisp input

Crisp output (Type-0)

Fuzzy input sets
(Type-2)

Fuzzy output sets
(Type-2)

Type-2 Fuzzy Logic System

Type-reduced
set (Type-1)

y = f (x) !Y

Rules

Inference

Fuzzifier
x !X

A T2 FLS has almost the same structure as a T1 FLS, the main difference being
the box labeled "Output Processing."
Note that T2 and IT2 will be used interchangeably from here on in. All of our
results are only for the latter.
Crisp inputs are fuzzified by the Fuzzifier. Unlike a T1 FLS, in which only two
kinds of fuzzification are possible—singleton and T1—in an IT2 FLS three
kinds of fuzzification are possible—singleton, T1 and IT2. The latter offers a
possibility that is not available at all in a T1 FLS.
When either T1 or IT2 fuzzification is used, it is common to state that non-
singleton fuzzification is used.
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What a Type-2 FLS is: Diagram

Output
Processing

Crisp input

Crisp output (Type-0)

Fuzzy input sets
(Type-2)

Fuzzy output sets
(Type-2)

Type-2 Fuzzy Logic System

Type-reduced
set (Type-1)

y = f (x) !Y

Rules

Inference

Fuzzifier
x !X

 

R
l
:  IF x

1
 is !F

1

l
 and ... and xp  is !Fp

l
, 

       THEN y is !G
l
     l = 1,...,M

Rules don't change. What does change are the models used for antecedents and
consequents in the rules.
Again, paraphrasing Gertrude Stein, "A rule is a rule is a rule."
As long as even one antecedent or consequent is modeled as T2, the entire FLS
is T2. In fact, if all antecedents and consequents are modeled as T1 FSs, but at
least one input is fuzzified as an IT2 FS, then the FLS is T2.
The Inference engine maps T2 FSs into fired-rule T2 FSs. Closed-form
formulas that do this are derived below.
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What a Type-2 FLS is: Diagram

Output
Processing

Fuzzy input sets
(Type-2)

Fuzzy output sets
(Type-2)

Type-2 Fuzzy Logic System

Type-reduced
set (Type-1)

Output Processing

Output of 
inference engine
(Type-2)

Rules

Inference

Fuzzifier

Type-reduced
set (Type-1)

Defuzzifier

Type-reducer

Crisp output (Type-0)
y = f(x) ∈ Y

Crisp output (Type-0)
y = f(x) ∈ Y

Crisp input

   x ∈ X

Usually, the desired output of a FLS is a number. Output Processing maps the
fired rule IT2 FSs into a number, but it does so in two steps.
Type-reduction (discussed in detail below, and abbreviated TR) maps IT2 FSs
into an interval set.
Defuzzification maps the TR set into a number.
Next, let us see how the Representation Theorem can be used to obtain closed-
form formulas for inferencing.
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Interval T2 FLS Formulas: SF
and One Antecedent

 IF x = is !F,THEN y is !G

A bottom-up approach is taken, one that begins with the simplest situation, a
single rule with one antecedent and singleton fuzzification (SF).
Once the details of the derivation of the fired-rule set are understood for this
case, it will be very straightforward to extend the results to more general cases.
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Interval T2 FLS Formulas: SF
and One Antecedent

 IF x = is !F,THEN y is !G

 

!F = 1 / FOU( !F) = 1 Fe
i

i=1

nF

!   

!G = 1 / FOU( !G) = 1 Ge

j

j=1

nG

!

To begin, the Representation Theorem is used for both the antecedent and
consequent IT2 FSs.
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Interval T2 FLS Formulas: SF
and One Antecedent

 IF x = is !F,THEN y is !G

 

!F = 1 / FOU( !F) = 1 Fe
i

i=1

nF

!   

!G = 1 / FOU( !G) = 1 Ge

j

j=1

nG

!

n
F
! n

G
 possible combinations of

embedded T1 antecedent and

consequent FSs

The approach taken next is to consider all possible  nF×nG type-1 rules.
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Interval T2 FLS Formulas: SF
and One Antecedent (Cont'd.)

Key Idea

This is a directed graph showing (from left-to-right) the singleton input
(fuzzified into AX) fanning out into each of the nF embedded T1 FSs of the
antecedent. Each of these then fan out into each of the nG embedded T1 FSs of
the consequent. In total, there are nF×nG paths. A group of nG such paths is
enclosed by the red dashed rectangle, and the path shown with red arrows is one
such path.
For convenience, this derivation is done for a discrete universe of discourse so
that it is possible to use directed graphs.
So, the "Key Idea" is to use a directed graph to show all of the nF×nG paths, and
each path is associated with a T1 calculation.
Observe the indexing of the T1 fired rule consequent set. The first index in B(i, j)
is associated with the superscript of the antecedent embedded T1 FS, and the
second index in B(i, j) is associated with the superscript of the consequent
embedded T1 FS.
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Interval T2 FLS Formulas: SF
and One Antecedent (Cont'd.)

 

B(y) ! µB(i, j ) (y)
j=1

nG

!
i=1

nF

! = µ
"B
(y),...,µ "B (y){ }    "y#Yd

Key Idea

All of the nF×nG T1 FS s are unioned in order to obtain the MF of the fired rule
consequent set of the rule.
This union has a smallest and a largest member, and these are shown with the
usual under and over bars.
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Interval T2 FLS Formulas: SF
and One Antecedent (Cont'd.)

 

B(y) ! µB(i, j ) (y)
j=1

nG

!
i=1

nF

! = µ
"B
(y),...,µ "B (y){ }    "y#Yd

Our task is to compute these two MFs.
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Interval T2 FLS Formulas: SF
and One Antecedent (Cont'd.)

 

µ
!B
(y) = inf

!i, j
(µB(i, j ) (y))     !y"Yd

µ
!B
(y) = sup

!i, j
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j=1
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!
i=1

nF

! = µ
"B
(y),…,µ "B (y){ }    "y#Yd

The second and third equations are just formal statements of what needs to be
computed for the LMF and UMF of the IT2 FS B.
These calculations can be done using T1 FS mathematics.
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Interval T2 FLS Formulas: SF
and One Antecedent (Cont'd.)

 

µ
!B
(y) = inf

!i, j
(µB(i, j ) (y))     !y"Yd

µ
!B
(y) = sup

!i, j
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B(y) ! µB(i, j ) (y)
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nG

!
i=1

nF

! = µ
"B
(y),…,µ "B (y){ }    "y#Yd

In the fourth equation, Mamdani implication has been assumed (I am assuming
that you are familiar with a T1 Mamdani FLS), and so the formula for the MF of
the T1 consequent set B(i, j) is very simple.
The t-norm is either minimum or product.
Observe x' in the antecedent MF. It is due to singleton fuzzification for which x
= x'.
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Interval T2 FLS Formulas: SF
and One Antecedent (Cont'd.)

 

µ
!B
(y) = inf

!i, j
(µB(i, j ) (y))     !y"Yd

µ
!B
(y) = sup

!i, j

(µB(i, j ) (y))     !y"Yd

  

µ
!B
(y) = µ

F
( !x )!µ

G
(y),     "y#Yd

µ
!B
(y) = µF ( !x )!µG (y),     "y#Yd

 
µB(i, j ) (y) = µ

Fe
i ( !x )!µ

Ge
j (y)     "y#Yd T1 formula

 

B(y) ! µB(i, j ) (y)
j=1

nG

!
i=1

nF

! = µ
"B
(y),…,µ "B (y){ }    "y#Yd

Analyzing the fourth equation, it is easy to see that its lower (upper) bound is
achieved when both the antecedent and consequent MFs are their respective
LMFs (UMFs).
This analysis leads to the last two equations on this slide.
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Interval T2 FLS Formulas: SF
and One Antecedent (Cont'd.)

 
B(y) = µ

!B
(y),...,  µ

!B
(y){ }=FOU( !B),    !y"Y

In this first equation, the IT2 fired rule consequent set is equated to its FOU.
In effect, the Representation Theorem is now being used in reverse, i.e. the
totality of T1 FSs contained within the bracketed set is the union of all MFs that
describe the FOU of the IT2 fired rule consequent set.
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Interval T2 FLS Formulas: SF
and One Antecedent (Cont'd.)

 
B(y) = µ

!B
(y),...,  µ

!B
(y){ }=FOU( !B),    !y"Y

 
!B = 1 FOU( !B)

The second equation is just the formal description of the IT2 fired rule
consequent set given on the bottom of Slide 24.
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Interval T2 FLS Formulas: SF
and One Antecedent (Cont'd.)

 
B(y) = µ

!B
(y),...,  µ

!B
(y){ }=FOU( !B),    !y"Y

 
!B = 1 FOU( !B)

  
FOU( !B) = µ

F
( !x )!µ

G
(y),...,  µF ( !x )!µG (y){ }

The third equation was obtained by substituting the last two equations on Slide
46 into the first equation on the present slide.
Next, this third equation will be written in a more informative way.
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Interval T2 FLS Formulas: SF
and One Antecedent (Cont'd.)

 
B(y) = µ

!B
(y),...,  µ

!B
(y){ }=FOU( !B),    !y"Y

 
!B = 1 FOU( !B)

  

FOU( !B) = µ
F
( !x )!µ

G
(y),...,  µF ( !x )!µG (y){ }

               = µ
F
( !x ),...,  µF ( !x ){ }! µ

G
(y),...,µG (y){ }    

Convince yourselves that the second line of the third equation is the same as the
first line of that equation.
Take all of the t-norms between the antecedent and consequent MFs, and note
that this collection will have a smallest and a largest function, and those
functions are the ones given on the second line.
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Interval T2 FLS Formulas: SF
and One Antecedent (Cont'd.)

 
B(y) = µ

!B
(y),...,  µ

!B
(y){ }=FOU( !B),    !y"Y

 
!B = 1 FOU( !B)

  

FOU( !B) = µ
F
( !x )!µ

G
(y),...,  µF ( !x )!µG (y){ }

               = µ
F
( !x ),...,  µF ( !x ){ }! µ

G
(y),...,µG (y){ }    

              " f ( !x ),...,  f ( !x ){ }
Firing Interval

# $%% &%%
! µ

G
(y),...,µG (y){ }
Consequent FS

# $%% &%%
   "y#Y

It is common practice to label the elements of the excited antecedent MFs using
the symbol "f" to denote "firing."
The elements in the first bracketed set are collectively called the "firing interval."
The elements in the second bracketed set constitute the entire IT2 consequent set.
The uncertainties about the antecedent as it is excited by the singleton input x =
x' are carried through the computations by means of the firing interval.
When the antecedent collapses to a T1 FS, then the firing interval collapses to a
point value, the firing level.
And, when the consequent is also a T1 FLS, then this is how an IT2 FLS
reduces to a T1 FLS.



52

52

Interval T2 FLS Formulas: SF
and One Antecedent (Cont'd.)

 
B(y) = µ

!B
(y),...,  µ

!B
(y){ }=FOU( !B),    !y"Y

 
!B = 1 FOU( !B)

  

FOU( !B) = µ
F
( !x )!µ

G
(y),...,  µF ( !x )!µG (y){ }

               = µ
F
( !x ),...,  µF ( !x ){ }! µ

G
(y),...,µG (y){ }    

              " f ( !x ),...,  f ( !x ){ }
Firing Interval

# $%% &%%
! µ

G
(y),...,µG (y){ }
Consequent FS

# $%% &%%
   "y#Y

All using T1 FS math!!

All of the mathematics that has been used to derive the preceding results was T1
FS math., as promised!
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Interval T2 FLS Formulas: SF
and Multiple Antecedents

Next, consider a single rule with p antecedents, and singleton fuzzification.
I had some difficulty coming up with a simple directed graph for this important
case. My graph is above.
Each input is singleton-fuzzified and then fans out into its respective embedded
T1 antecedent sets. Each of those in turn fans out into the nG embedded T1
consequent sets.
The dashed block around all of the embedded antecedent sets denotes the fact
that all possible nF combinations of them must be formed, where the formula for
nF is given at the top of the dashed block.
Of course, in this case there are many more paths than in the previous case, but
conceptually there is nothing new.
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Interval T2 FLS Formulas: SF
and Multiple Antecedents

 

B(y) ! µB(n, j ) (y)
j=1

nG

!
n=1

nF

!

        = µ
"B
(y),...,µ "B (y){ }    

            "y#Yd

You should compare the formula that is given on this slide for the IT2 fired rule
consequent set with the one on Slide 42. They look exactly the same.
The difference in the two formulas is in the formulas for nF.
The rest of the derivations proceed exactly as in the previous case and are not
included here. See Ref. 1 for more details.
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Interval T2 FLS Formulas: T2
NSF and One Antecedent

Returning to the case of a single antecedent rule, this time the single input is
modeled as an IT2 FS. A representative FOU for the input is shown in the upper
left-hand insert.
Now the Representation is used three times, once each for the input, antecedent
and consequent.
Observe that each of the input's nX embedded sets fans out into a directed graph
(in the dashed red rectangle) that looks exactly like the one on Slide 41, and of
course there are many more embedded sets in the present case than in the first
case.
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Interval T2 FLS Formulas: T2
NSF and One Antecedent

 

B(y) ! µB(n, j ,k )
(y)

k=1

nX1

!
j=1

nG

!
n=1

nF1

!

        = µ
"B
(y),...,µ "B (y){ }    

           "y#Yd

Now the formula for the IT2 fired rule consequent set has three unions, where
the third one is for the input IT2 FS.
I have purposely made the new union the right-most one, and have also made the
third index on the MF of the fired rule consequent set the third one. In this way
it is east to connect the formula that is shown on this slide to the one that is
shown on Slide 42.
For the rest of the derivation, see Ref. 1. It makes use of the sup-star
composition that is used in a T1 FLS when the input is modeled as a T1 FS, the
so-called non-singleton T1 case.
The final results can again be expressed as the t-norm between a firing interval
and the entire IT2 consequent set, as on Slide 52, but the calculation of the firing
interval is more complicated in the present case. It does not involve x', but
instead it involves a value of x that derives from the sup-star composition
calculation.
Once again, all of the mathematics that is needed to obtain formulas for the LMF
and UMF of the IT2 fired-rule consequent set is T1 FS mathematics.
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Interval T2 FLS Formulas:
Multiple Rules

Use a rule-notation—l (l =1, …, M)

Our last generalization is from one rule to multiple rules. To that end, the rule-
notation shown on this slide is introduced.
M rules are assumed.
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Interval T2 FLS Formulas:
Multiple Rules

Use a rule-notation—l (l =1, …, M)

If l fired rules are combined using the union operation,
leading to a composite IT2 FS,   , then: 

!B

We don't necessarily advocate combining the fired rule consequent sets by the
union. Union combining is used here merely as an illustration.
Recall, even in a T1 FLS there can be different ways of combining the fired rule
consequent sets, and many times it is done as part of defuzzification.
The same is true for an IT2 FLS. Fired rule consequent sets can be combined as
a part of the type-reduction process.
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Interval T2 FLS Formulas:
Multiple Rules

Use a rule-notation—l (l =1, …, M)

If l fired rules are combined using the union operation,
leading to a composite IT2 FS,    , then:

 

!B = 1 FOU( !B)

FOU( !B) = µ
!B
(y),...,µ

!B
(y){ },      !y"Yd

 
!B

The symbolic structure of the two equations shown on this slide do not change
as a result of multiple rules. That's because when fired rule consequent sets are
combined by the union operation there is then only one combined fired rule
consequent set.
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Interval T2 FLS Formulas:
Multiple Rules

Use a rule-notation—l (l =1, …, M)

If l fired rules are combined using the union operation,
leading to a composite IT2 FS,    , then:

 

µ
!B
(y) = µ

!B
1
(y)! µ

!B
2
(y)! ...! µ

!B
M
(y)

µ
!B
(y) = µ

!B
1 (y)! µ

!B
2 (y)! ...! µ

!B
M (y)

 

!B = 1 FOU( !B)

FOU( !B) = µ
!B
(y),...,µ

!B
(y){ },      !y"Yd

 
!B

It is the formulas for the LMF and UMF that change.
In the last two equations on this slide, our earlier formula for the union of IT2
FSs, given on Slide 31, has been used repeatedly for the union of the M fired
rule consequent sets.
A super-script rule notation has been included in order to distinguish each of the
fired rule consequent sets.
Each of the super-scripted LMFs and UMFs can be computed using T1 FS
mathematics as described in the earlier slides. The exact formulas to use depend
on the kind of fuzzification and number of antecedents.
Again, for more details see Ref. 1.
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Output Processing

Output
Processing

Fuzzy input sets
(Type-2)

Fuzzy output sets
(Type-2)

Type-2 Fuzzy Logic System

Type-reduced
set (Type-1)

Output Processing

Output of 
inference engine
(Type-2)

Rules

Inference

Fuzzifier

Type-reduced
set (Type-1)

Defuzzifier

Type-reducer

Crisp output (Type-0)
y = f(x) ∈ Y

Crisp output (Type-0)
y = f(x) ∈ Y

Crisp input

   x ∈ X

It is now time to turn our attention to the Output Processing block.
Recall, that if this was a T1 FLS only defuzzification would be needed in order
to map the fired rule consequent sets (or their union) into a number.
In an IT2 FLS, Output Processing consists of two stages, type-reduction and
then defuzzification.
Type-reduction maps the fired rule consequent sets (or their union) into a T1 FS.
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Type-Reduction: 1

• Type-reduction begins with the interval T2
output of the inference engine of an IT2

FLS

Because there are many type-1 defuzzification methods, there are a comparable
number of type-reduction methods. See Ref. 3 for discussions about some of
them.
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Type-Reduction: 1

• Type-reduction begins with the interval T2
output of the inference engine of an IT2
FLS

• It reduces an IT2 FS to a T1 FS, which we
call the type-reduced set

Type-reduction (TR) is the process that leads to the type-reduced set.
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Type-Reduction: 1

• Type-reduction begins with the interval T2
output of the inference engine of an IT2
FLS

• It reduces an IT2 FS to a T1 FS, which we
call the type-reduced set

• Type-reduction methods are “extended”
versions of T1 defuzzification methods,
and compute the centroid of the T2 output
FS

The word "extended" refers to Zadeh's Extension Principle. The earliest
derivation of the type-reduced set relied on it.
As a result of the Representation Theorem, it is no longer necessary to use it.
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Type-Reduction: 2

•  FOU for an interval
   T2 FS

Shown on this slide is a generic FOU, representative of the FOU of unioned
fired rule consequent sets.
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Type-Reduction: 2

•  FOU for an interval
   T2 FS

• Sampled primary
variable and primary
memberships leading
to discretized FOU

Whenever computations are performed for a FS using a digital computer the
primary variable and the primary membership must be discretized (sampled).
Sampling does not have to be uniform.
Representative sampling is shown in the second figure of this slide.
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Type-Reduction: 2

•  FOU for an interval
   T2 FS

• Sampled primary
variable and primary
memberships leading
to discretized FOU

•  The solid curve is one
 embedded type-1 set

Recall that the FOU is the union of all of its embedded T1 FSs.
A representative embedded T1 FS is shown in the third figure on this slide.
Because each embedded set is a type-1 FS, its center of gravity (COG) can be
computed using existing and well-known type-1 COG formulas.
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Type-Reduction: 3

Embedded type-1
FLS #1

Embedded type-1
FLS #2

Embedded type-1
FLS #a

y
1

y
2

y
a

Aggregator. . .

Type-reduced set, Y

Crisp
Output

y(x)

x

• We have already shown that an IT2 FLS can be
interpreted as a collection of a very large number of
embedded T1 FLSs

This figure provides an interpretation for an IT2 FLS that lets us easily
communicate what an IT2 FLS is to others—a collection of a very large number
of embedded T1 FLSs.
Of course, because the number of embedded T1 FSs for the FOU of an IT2 FS
is astronomical, you would never think of actually computing using all of these
embedded T1 FSs.
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Type-Reduction: 3

• Compute the
centroid for all
embedded T1
FLSs

• Fuse the
centroids using
union

• We have already shown that an IT2 FLS can be
interpreted as a collection of a very large number of
embedded T1 FLSs

Embedded type-1
FLS #1

Embedded type-1
FLS #2

Embedded type-1
FLS #a

y
1

y
2

y
a

Aggregator. . .

Type-reduced set, Y

Crisp
Output

y(x)

x

Contained within the dashed red rectangle are the defuzzified outputs of all of
the embedded T1 FLSs.
Visualize them as points on a horizontal axis. These points will have a smallest
and a largest value. This collection of points is the TR set.
Aggregation refers to defuzzification of the type-reduced set.
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Type-Reduction: 4

 
C
!B
= 1 {c

l
,...,c

r
}

The inserted FOU shows the union (shaded green) of two IT2 fired rule
consequent sets.
Picture in you mind the Representation Theorem applied to this FOU.
Even though there may be an astronomical number of embedded T1 FSs in the
FOU, there will be embedded T1 FSs which have the smallest and largest
centroid; hence, the centroid of an IT2 FS is an IT1 FS. The membership value
for all points in this interval equals 1, because the secondary grades for an IT2
FS all equal 1.
The smallest centroid is denoted cl and the largest centroid is denoted cr.
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Type-Reduction: 4

 
C
!B
= 1 {c

l
,...,c

r
}

 

cl = min
!"i# µ

!B
(yi ),µ !B (yi )
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cl  is given by the second formula on this slide. It is a mathematical version of
what has just been stated on Slide 70.
What makes the computation of cl  challenging are the interval sets that appear in
both its numerator and denominator.
Because the same interval sets appear in numerator and denominator, standard
interval arithmetic cannot be used to compute cl.
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Type-Reduction: 4

 
C
!B
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l
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cr = max
!"i# µ
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(yi ),µ !B (yi )
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(
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cr  is given by the third formula on this slide. It is also a mathematical version of
what has just been stated on Slide 70.
What makes the computation of cr also challenging are the interval sets that
appear in both its numerator and denominator.
Because the same interval sets appear in numerator and denominator, standard
interval arithmetic also cannot be used to compute cr.



73

73

Type-Reduction: 5

 

cl =

yiµ !B (yi )
i=1

L

! + yiµ !B (yi )
i=L+1

N

!

µ
!B
(yi )

i=1

L

! + µ
!B
(yi )

i=L+1

N

!

Karnik and Mendel have shown that cl can be expressed as shown on this slide.
Observe that the first summation in both the numerator and denominator use the
UMF of the combined fired rule output set, whereas the second summation in
both the numerator and denominator use the LMF of the combined fired rule
output set.
The key is to determine the switch point L.
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Type-Reduction: 5

 

cl =

yiµ !B (yi )
i=1

L

! + yiµ !B (yi )
i=L+1
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!

µ
!B
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cr =

yiµ !B (yi )
i=1

R

! + yiµ !B (yi )
i=R+1

N

!

µ
!B
(yi )

i=1

R

! + µ
!B
(yi )

i=R+1

N

!

Karnik and Mendel have also shown that cr can be expressed as shown on this
slide.
Observe that the first summations in both the numerator and denominator use
the LMF of the combined fired rule output set, whereas the second summation
in both the numerator and denominator use the UMF of the combined fired rule
output set.
The key is to determine the switch point R.
In general, R ≠ L.
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Type-Reduction: 5

 

cl =

yiµ !B (yi )
i=1
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R
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R
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!

• Switch points
L and R can be

computed
using the
Karnik-Mendel

algorithms

Switch points L and R can be computed using algorithms that were developed
by Karnik and Mendel. There are no closed form formulas for them.
The Karnik-Mendel (KM) algorithms are iterative and each of the two
algorithms can be run in parallel.
The original references for the KM algorithms are: N. Karnik and J. M.
Mendel, “ Centroid of a Type-2 Fuzzy Set,”  Information Sciences, vol. 132, pp.
195-220, 2001. See , also Ref, 3, Chapter 9.
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Type-Reduction: 5
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• Switch points
L and R can be

computed
using the
Karnik-Mendel

algorithms

• Monotonic and
super-

exponentially
convergent 

Recently, it was proved that these algorithms converge to their exact answer
monotonically and super-exponentially fast (really fast!).
The algorithms are very easy to derive and implement, and they are very widely
used by practitioners of IT2 FLSs.
See, also, Ref. 1.



77

77

Type-Reduction: 6

• FOU at output
of an IT2-FLS

• Type-reduced
set

The upper figure is a generic FOU at the output of an IT2 FLS.
The KM algorithms were used to compute the left and right end-points of the
type-reduced set that is shown in the bottom figure on this slide.
Again, the type-reduced set is an IT1 FS. Its center of gravity is shown dashed.
Intuitively, we expect the width of the type-reduced set to increase as the area of
the FOU increases and to decrease as the area of the FOU decreases.
In fact, if all uncertainty disappears then the FOU becomes a curve—a T1
FS—and the type-reduced set is a single number, i.e. the IT2 FLS reduces to a
T1 FLS.
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Defuzzification

• We defuzzify the type-reduced set to get a
crisp output from a type-2 FLS

• The most natural way of doing this seems
to be by finding the centroid of the type-
reduced set

No additional comments are needed about this slide.
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Defuzzification: Interval
Type-2 FLS

y
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y
r

TR
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Y
TR

Defuzzifier

  y =
y
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+ y

r

TR

2

y

Type-reduced 
output

Defuzzified 
output

A representative type-reduced set is shown at the left.
Once the type-reduced set has been computed, defuzzification is trivial. Just
compute the average of the left and right end-points of the type-reduced set.
The formula for the defuzzified output is shown on this slide.



80

80

Summary

Output
Processing

Fuzzy input sets
(Type-2)

Fuzzy output sets
(Type-2)

Type-2 Fuzzy Logic System

Type-reduced
set (Type-1)

Output Processing

Output of 
inference engine
(Type-2)

Rules

Inference

Fuzzifier

Type-reduced
set (Type-1)

Defuzzifier

Type-reducer

Crisp output (Type-0)
y = f(x) ∈ Y

Crisp output (Type-0)
y = f(x) ∈ Y

Crisp input

   x ∈ X

All of the computations needed to implement an IT2 FLS have now been
presented.
Only T1 FS mathematics has been used to do this.
Pretty simple :).
Feel free to use this presentation and Ref. 1 to teach about IT2 FLSs.
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Conclusions

• We have shown that all of the results that
are needed to implement an IT2 FLS can
be obtained using T1 FS mathematics
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Conclusions

• We have shown that all of the results that
are needed to implement an IT2 FLS can
be obtained using T1 FS mathematics

• The key to doing this is the

Representation Theorem for an IT2 FS
that lets us express the FOU as a union of
T1 wavy-slices
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Conclusions (Cont'd.)

• Although a huge number of T1 FSs appear
in the derivations, only two are needed in
the final calculations, and they are
associated with lower and upper MFs of

the FOUs of all IT2 FSs
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Conclusions (Cont'd.)

• Although a huge number of T1 FSs appear
in the derivations, only two are needed in
the final calculations, and they are
associated with lower and upper MFs of
the FOUs of all IT2 FSs

• The third dimension of general T2 FSs is
not needed for an IT2 FS
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Conclusions (Cont'd.)

• Although a huge number of T1 FSs appear
in the derivations, only two are needed in
the final calculations, and they are
associated with lower and upper MFs of
the FOUs of all IT2 FSs

• The third dimension of general T2 FSs is
not needed for an IT2 FS

• It is only the FOU that is needed for an IT2
FS
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Conclusions (Cont'd.)

• IT2 FLSs should now be more accessible
for developing improved control systems
and for modeling human decision making
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Conclusions (Cont'd.)

• IT2 FLSs should now be more accessible
for developing improved control systems
and for modeling human decision making

• This new approach may also be used to
extend many existing T1 FS results to IT2
FSs

The Representation Theorem is the starting point for establishing such things as
similarity, fuzziness, skew, etc. for IT2 FSs.
It leads to solution-structures quickly.
Then, practical algorithms have to be established to compute the solutions (e.g.,
as in the centroid of an IT2 FS, and the KM algorithms).
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Conclusions (Cont'd.)

• IT2 FLSs should now be more accessible
for developing improved control systems
and for modeling human decision making

• This new approach may also be used to
extend many existing T1 FS results to IT2
FSs

• Whether or not comparable results can be
obtained for general T2 FSs is also an
open question

As mentioned earlier the Representation Theorem was initially developed for a
general T2 FS.
The possibility exists that its use for such sets and general T2 FLSs will also
lead to useful results.
Much work remains to be done.
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Announcement

• "Standard Background Material About
Interval Type-2 Fuzzy Logic Systems that
can be Used by All Authors," J. M. Mendel,
H. Hagras and R. I. John
– http://ieee-cis.org/_files/standards.t2.win.pdf

– MAC version and non-pdf versions also available
on the web-site

• As a service to the fuzzy logic community we give
all authors permission to use any or all of this
material in their articles, as long as they reference
this Standard.

Many people are now publishing articles about IT2 FLSs.
Because most people still do not know about IT2 FSs and FLSs, these articles
require some background material about them.
No sense re-inventing the wheel.
Feel free to cut and paste from this on-line article, which is available in different
formats.


