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DSP group

Research Is focussed on the
development of novel technigues In

- Intelligent collaborative Systems

- speech/image enhancement, compression,
analysis and synthesis

- Information fusion
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Intelligent Systems Lab

Collaborative mobile

robots (5 Pioneer- " EEmESE=
3DX) with >

evolvable intelligence : .~
using embedded eTS
systems for: :
prediction,
classification and
control

I
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Outline

Models with Flexible Structure

Evolving Neuro-Fuzzy Models (eTS)

NOXx emissions real-time modelling (DC)
Quality of crude olil distillation (CESPA)
Applications to speech processing (Nokia)
Autonomous vehicles (BAE, Qinetiq, J&S)
System on chip implementation (FPGA)
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Outline

Controllers with evolvable structure

Application to EEG signals
classification

Classification of Carcinoma Kidney
Tissue Status based on Protein
Expression Data

Biotech process applications
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System Modeling

- predict object reactions;

- control It;

- detect faults;

- study process performance

A. Conventional Models
- First Principles Models

- Black-box models
B. Fuzzy Models
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Fermentation Process 7\

A. First Principle Models

- Example: Fermentation
process

transparent, close to
nature (mass- and
energy conservation in
closed systems)

\J

tedious, even
Impossible, (highly) non-
linear
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Black-box Models

- Linear state-space models
- Polynomial models

- ARMA models

10
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Fuzzy Model Types

e Fuzzy parameters
e Fuzzy (in)equalities
 FRB models

relational

Mamdani

Takagi-Sugeno or TSK

11
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TSK Models

TSK systems — important tool for
system modeling and identification
Computational efficiency (local linearity)
Universal approximators
Good transparency

Convenient for data-driven design

12
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SK Fuzzy model of a
ermentation (concept)




~ " InfoLab21 ﬂ:
‘TSK in 2D Feature Spacé'

YVOLVING CLUSTERING, | - data sample; ™ - current data sample; o - focal point

-

ii..f



Data-driven learning 7
Until 1990s fuzzy systems were
designed based on

design ('95) can include
expert knowledge If it exists, but tries
to from the data

Recent tendency —

15
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The challenge

» Systems that posses
Computational Intelligence usually
rely on rule-bases or NN

» Trained , do not adapt to
environment

» They do not develop their
structure (evolve)

16
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limited flexibility
limited control functions

the new environment

Herta-1A UAV T e

g ——

i

Flew 08/18/06 —

over Scotland



L

Mobile robots:

Pre-programmed logic
Remotely controlled vehicles
_imited learning capabilities

the de-miner ELTA —
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The challenge

» The environment in which real
systems (technological processes,
robotic systems, transport vehicles)
operate Is (unpredictably) changing

» The challenge - to develop systems
capable of higher level adaptation to
the environment and to internal
changes (wearing, faults, regimes etc.)

19
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On-line |dent|f|c:at|on 7\

What to do when
INnto the model with a chosen structure?

Adaptive systems theory answer ('70s):
adapt the

This may be an outlier

Or it may

(knowledge) — about a different
regime, operation point, change etc.

Thus update the structure o



Evolving Systems

— a possible solution

IS INn terms of both structure
and parameters

evolution of the
(clusters): update, replace, add new

What to evolve?

(parameters of linear
sub-models);

Premise parameters (centers and widths of the
Gaussians);

Rule-base (rules, fuzzy sets/linguistic terms);,;

LR L



SK MIMO model
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TSK MIMO model

23
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TSK model as a FBFN

/ \4
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elS systems ) AN

v Adapt parameters and evolve structure;

AN

— eClustering (on-line version of the
subtractive clustering) + a version of RLS

v Applied so far to
etc.

v Fuzzy rules and linguistic terms are not
fixed and learning can start ‘from scratch’

25
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eTS systems (2002)

=l e TE
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Basic Principle .

1%

The approach can be summarised as:

v of the complex data
space Iinto

v’ Joint identification of local (simpler)
sub-systems In

v'Forming the output of the system as a

27
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‘The concept of Potentlai

‘Key notion — spatial proximity in the
Input/output data space

28
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» Centers’ scatter up-date:
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Rule-base evolutlon

>
])k(Zk)>F

>

>
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Rule-base evolutio

Real-time update

(potential-based)

31
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|dentification criteria:

(Y—\PTH)T (Y —\PTH)—> min

32
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Parameters learning 7%

Weighted RLS

Or = O0x1+ Coy (¥, — vy Oi1)

33
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Basic procedure .
1. First data - first rule center
2. Collect new data In
3. Calculate Shew
4. Recursively up-date S*
5. Up-grade or modify the Rule-base
6. Estimate Consequent parameters
7. Form the final output "
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Flow-Chart — pm

Begin

Initialization; ke«-1; 6,¢-0; 1,¢-1; P*,¢«1

Get the input, x,
Generate y,

k < k+1

Get the real output, y,

Generate potential, P, (x,, y, )

Update the potential of the
focal points, P,

35
2 1
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yes

no

yes

no

Form new cluster/ rule/
neuron/ x V) ¢ x,

Initialize it; Oy ), P*™*Y

Replace the rule x"« x,

Initialize the
replaced rule

Update parameters 0,

36



eTS Systems AnaIyS|s 4

e Single algorithmic parameter — cluster
radius

- ¢ previous model
structure), changes are

e extracts spatial proximity
iInformation from the data;

eIt IS very and
, because their S is high

37
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Applications: 5

NOX emissions modelling
(Daimler-Chrysler)

Quality modelling of crude olil distillation
(CESPA)

Lost packets estimation in VolP (Nokia)
Autonomous systems (BAE, Qinetiq, J&S)
Fermentation processes on-line modeling

System on chip implementation (FPGA) s



v NOx emissions modeling for a

car engine (Daimler-Chrysler
test engines, Dr. E. Lughofer)

v" NOx — 4s ahead prediction

v 667 training+824 testing samples
at 1 Hz

&
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~ NOXx: variables

~ » 4 Input attributes:

= N - engine rotation speed, rpm

= P, - pressure offset in cylinders, bar
e T, - engine output torque, Nm

e Ny — speed of the dynamometer

A LA
44

A

NOX(k)=f(N(k —4),P2offset(k — 5), Te(k — 5),

Nd(k — 6),N(k — 6))

40
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MO emissions, ppRim
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‘QyNOx accuracy (correlatio
<
Method Quality Quality Quality

3 features 4 features 5 features

A

/ No. of Rules / No. of Rules / No. of Rules

[ CPU, s / CPU, s / CPU, s
0904 /74/081 | 0906/4/080 | 0915/3/70.76
0892 /57223 | 0903 /57276 | 0911/5/3.18
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InfoLab21

Department of nmumnmication sysieams

Engine rotation speed - fu

06 04
MNik-43, normalized P2°fel normalized

Mormalised Troque - fuzzy sets MNormalised Speed of the dynamometr - fuzzy sets

e
04

Te, normalized Nd, normalized
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Local model parameters

\l

R\par a, a, a, ag a, ag
0.62122 |0.57316 |-0.79908 | -0.10607 |-3.8705 3.6797

R, |0.25019 |0.24239 |-0.29438 | 0.46455 | -1.533 1.4712
R, |0.77561 |0.12709 |0.37604 |0.078215 | 0.45054 -0.2973
R, |0.29341 |0.45984 |0.38647 |0.27322 |-0.55073 -0.30107
R, |-0.27591 |0.033233 |-0.22574 | 0.44712 | 0.45803 0.46113
R, |0.42849 |0.47549 |-1.9812 |-1.1318 |-2.7612 -0.22697
R -0.43818 | 0.6626 1.0395 |2.8411 -0.0079526 | -0.071655

CrrerrEgr

49
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Rule Base Evolution

Number of ADDED

Number of MODIFIED rules : 6
Samples that originate new rules :

1 3 58 12 21 588

Final position of the focal points :
1 45 311 12 21 588

MODIFIED rules formed around samples :

2 4 41 53 57 311

Variance Accounted For (VAF): 85.034
PERFORMANCE MEASURES

MSE 0.0037546
RMSE 0.061275
NDEI 0.38991

50



Quality of crude oil b

CESPA oll refinery, Tenerfie, Spain
80000 bb/d

Products: heavy naphta, kerosene,
GOL

Parameters: T4, ; Pensky-Martens
(inflammability analysis)

Off-line, once a day lab test

5l

FEEEEF e



Quality of crude 0|I

The aim is to predict daily:

Temperature of the heavy Naphtha when it
evaporates 95% liquid volume, ASTM D96

Temperature of the kerosene when it
evaporates 95% liquid, ASTM D96

Pensky Martens inflammabllity analysis of the
Kerosene

Temperature of the GOL when it evaporates
85% liquid, ASTM D96

EEL LAY



T of heavy naphtha

Temperature of the heavy Naphtha when it
evaporates 95% liquid volume In a
distillation tower, mainly depends on

The pressure of the tower
Amount of product taking off
Density of the crude

Temperature of the column overhead

53

AT LTI Td

Temperature of the Naphtha Extraction



T of kerosene

Temperature of kerosene when it
evaporates 95% lig. vol. depends on:

The pressure of the tower

Amount of product taking off, Naphtha and KNO
Density of the crude

Temperature of the column overhead

Steam introduced in GOL stripper ratio to KNO
Temperature of the Kerosene Extraction

Temperature of the Naphtha Extraction
o4
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Inflammability analysis of the Kerosene concern

ne light part of the kerosene, and therefore it
epends mainly in the Naphtha above and

t

L L

ne steam injected in the kerosene stripper.

The pressure of the tower

Amount of product taking off

Density of the crude

Temperature of the column overhead

Temperature of the Naphtha Extraction

Steam introduced in Kerosene stripper, ratio to KNQO



T of gas oll

Temperature of GOL when it evaporates
95% depends on:

The pressure of the tower

Amount of product taking off, Naphtha and KNO
Density of the crude

Temperature of the column overhead

Steam introduced in GOM stripper, ratio to GOM
Temperature of the GOL Extraction

Temperature of the Kerosene Extraction
Temperature of the Naphtha Extraction 3
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the range of 100-160°C.
The precision iIs comparable with the

precision of the laboratory test

and can be done In real-time.

59
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Voice communication using

IS becoming
common place (e.g Internet)

The future I1s Mobile IP based Comms

GSM AiIr interface is hostile environment:
due to urban, multi-path interference
error rates/ can be high

60



QoS | 1P

QoS requires error concealment

Approach — real-time novel error
concealment approach using eTS
models suitable for VolP over GSM with
“severe” packet losses (100 to 200 mS
of Speech, getting towards word loss
level) that

minimise transmission bandwidth

minimise system delays

maximise speech quality (QoS) 61
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Speech processmgcoders

A

W

Modern Speech commissions digitise
analog speech signal & use speech
coding techniques to reduce the
transmission bandwidths (reduced

O

S
S

perator fixed costs)
neech Coding applies DSP techniques to

neech segments (=20 mS) in order to

Identify and isolate “perceptually” important
characteristics of the voice signal

then digitize and quantize them

Transmit the quantized/digital values. -
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LPC parameters

Vocoder are a class of parametric coder

that use a parametric model of the vocal
tract

Linear Prediction coding is a widely used
method for representing the frequency
shaping attributes of the vocal tract

The short term spectral envelop Is modeled
by all pole Linear Predicting Filter

This yields a small number of parameters
(10)

63
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The approach

LPC is typically 10t Order

10 LPC filter coefficients are generated
per frame (20mS speech segments)

LPC Filter Coefficients are usually
transformed into the Line Spectral
Frequencies (LSP) before guantization

modelling different aspects of speech\
language but in the
(not necessarily the time domain)

64
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Preliminary results

eTS is able replace
around 100 mS of lost
unguantized speech
with small losses (state
of art is currently
around 40mS)

eTS when continuously

executed ( always

replace the LSP) can

Improve the overall

speech quality of low T
bit rate codec 66




Real speech, female speaker
MOS 2.6 insignificant drop

e lS-solid, real-dotted,; Rule-base evolution: o-new;, =-modified; * -final
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QoS for VolP, NOKIA

Real speech, female speaker
MOS 2.6 insignificant drop

68
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Distributed co-eClass

-—
---

I

ol

Ty
LEESE

A



Co-operation In
autonomous detection =

Agent 1 Unrecognized

agent i
\ 1 — "
Agentd
—
Environment \\

AJent 3
\ Agent 2

Cooperative Rule-base
]

V‘J‘J‘J‘J‘J-‘I‘J

70
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Underwater target VAN
recognition, J&S Marine
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Underwater target
classification- scenario 2

>

12



Onboard Computer (PIIl CPU,256M RAM)

Camera, Digital Compass, Sonar, bumpers, Laser

Controller (embedded microprocessor ARCOS)

- A team of 5 robots with l- "f:_
WIFI connection F— [l:

for collaborative tasks

B

73
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No communication link (no GPS, maps...)

Simple landmark (corner) recognition

Fully » eemmeees

model

)
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The ability to differentiate between
common sensory stimuli and
perceptions never experienced before

With Novelty Detection, robot can
select aspects of the environment that
are unusual and therefore can be

used as landmarks for self-localization .,
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Jepartme

Reference Nehmzow, 1991

SOM (50 neurons, supervised,
pre-training, fixed structure)

Pre-training
Evolving SOM (Kasabov, 2000)— too
relaxed — based on a
threshold, not robust
enough to avoid noise
becoming cluster centres
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Novelty detection and Iandmarlgjiu
recognition by eClass
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Our experiment (B-69, InfoLab?2
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Novelty detection and landma kﬁi‘
recognition by eClass g

Jgf

calculation less

computing power required

Extend to image-based (CASPIA)

R1:
R2:
R3:
R4:
R5:
R6:
R7:

IF (¢ 1s close to %) AND (d s close to 0.3000) THEN (Corner is 1)
IF (¢ 1s close to ¥2) AND (d i1s close to 0.1268) THEN (Corner is 2 )
IF (¢ is close to Y4) AND (d 1is close to 0.0648) THEN (Corner is 3 )
IF (¢ is close to 742) AND (d 1is close to 0.2357) THEN (Corner is 4 )
IF (¢ 1s close to ¥2) AND (d is close to 0.0792) THEN (Corner is 5)
IF (¢ 1is close to Y2) AND (d is close to 0.1744) THEN (Corner is 6)
IF (¢ 1is close to %2) AND (d is close to 0.0371) THEN (Corner is 8) -
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NG CLASSIFICATION FOR LANDMARK, RECQGEMITION
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&

Centre

Correct | { NG

Description

: Comers Clustering) | separation) | Dup)
I S B T T
B 2 N N A T

Table 1 Result Comparison (T: turning, D: distance)

Unsupervised — fully automatic
Learning from scratch — no pre-training

Cluster (fuzzy rules/neurons) number is not
predetermined, defined by data only — structure is flexible
and evolving

v Recursive calculation — less computing power required fQr
real-time execution
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d_synch

R

Pk_out

rule_set_update

replace_rule

Pk

Pmax

clusAddr

replaceFlag
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Applications: niokab2l ﬂ‘

i d

Classification and Control

a'.i'-—:q:j" -

Controllers with evolvable structure
Application to EEG signals classification

Classification of Carcinoma Kidney Tissue
Status based on Protein Expression Data

Biotech process applications

84



Evolving Controllers 7%

» Indirect learning (Psaltis et.al, 1988)
» Adaptive control (incl. controller structure)

»

85
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Controller - example
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eController -
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eController - results

Dutlet from the coil termnperature (T‘:'Lﬂ:l

150

Control signal to the valve
T

=
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valve opening, -
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eController - results

Cutlet from the coil termnperature |:T‘:'"‘t:|

200 =00 400
tirme,
Caontrol signal to the valve

valve positian, -
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eController - results

. Controller structure

rule:

- modified rule:

90
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VI strategy (N=10) 1180 on-line samples On-lineg wiidafion fest - VL strafegy

original data

FRE (of-line trained) : — &R model prediction
| ---- offtline trained FRE model prediction

o
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=
=
E)
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1 )
1000 1200
time, min

Centres of the linguistic terms of Tin

< Off-line
“# Innovated

New linguistic terms

// \\  Infolab21
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Establish the first EEG signal as the first
prototype. Its S=0

Starting from the next the Scatter of each
new EEG signal Is calculated recursively

The Scatter of the existing prototypes are
recursively updated

Scatter of new EEG signal is compared to
updated scatter of the existing prototypes

93
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If in addition to 5) the new EEG signal is
~ close to an old prototype then the new
EEG signal replaces this prototype

If Snew < S* then the new EEG signal Is
added as a new prototype and a new
rule I1s formed (R := R+1)

~ The condition to have lower S Is a very
strong one, which restricts excessively
large rule base to be formed

3
<
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THEN (Class is Pain/NoPain)

EEG vector
xXe RnxL
EEG signal
selected as
a prototype
fOI’ C]assl ........
Class, Class,,
Overall e 1
Rule-base Classification result

R

Rulé:  IF (EEG,is EEG ) AND ...AND (EEG, is EEG )

o R\
EEG
signal
selected as
a prototype
for Class,,
95



EEG, Experimental .

Hope Hospital, Liverpool, UK
Female volunteer

64 electrode cap ‘
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The subject was a healthy female

EEG data were recorded on 8th and 15t June
2000, and 2"d August 2000

On each of these days, three EEG recordings
were taken during “painful” laser stimulation of
the right arm

In total, 9 continuous EEG data files

355 Pain epochs (Class 1) and 355 No-Pain ones
(Class2)

168 fuzzy rules formed by eClass; rates
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Fermentation Processes
On-line Prediction ™
ML

> FIrst-principles model:

> eTS model:

4

A

t?a":;
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Concluding remarks /

Usable In , Intelligent sensors
Non-iterative (one-pass, incremental)
(comp very efficient)
(plus parameters)
enrich/adds and replaces =

simple ( )
changes ( , R+1)

starts (no a priori Info)

Number of applications 103
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