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Lancaster University

One of the top 10% of the 
UK Universities
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InfoLab21

•The Comms Systems and Computing  Depts form 
an ICT force of 250 researchers
•Research project income from Industry (Nokia, 
Philips, BAE Systems, QInetiq, Ford), Government 
(DTI, EPSRC), EC, Royal Society etc. £15M
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DSP group

Research is focussed on the 
development of novel techniques in 

• system modelling/identification

fuzzy rule based systems

• Intelligent collaborative Systems

• speech/image enhancement, compression, 
analysis and synthesis

• information fusion 
• NOKIA Lab
• Intelligent Systems Lab
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Intelligent Systems Lab

Collaborative mobile 
robots (5 Pioneer-
3DX) with 
evolvable intelligence 
using embedded eTS 
systems for:
prediction, 
classification and 
control
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Outline

Models with Flexible Structure

Evolving Neuro-Fuzzy Models (eTS)

NOx emissions real-time modelling (DC)

Quality of crude oil distillation (CESPA)

Applications to speech processing (Nokia)

Autonomous vehicles (BAE, Qinetiq, J&S)

System on chip implementation (FPGA)
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Outline

Controllers with evolvable structure

Application to EEG signals 
classification

Classification of Carcinoma Kidney 
Tissue Status based on Protein 
Expression Data

Biotech process applications
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System Modeling

• predict object reactions;
• control it;
• detect faults;
• study process performance

A. Conventional Models
- First Principles Models
- Black-box models

B.  Fuzzy Models
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Fermentation Process
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A. First Principle Models

• Example: Fermentation 
process

transparent, close to 
nature (mass- and 
energy conservation in 
closed systems)
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linear
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Hidden layer

wij wrj

• Linear state-space models

• Polynomial models

• ARMA models

• ANN 
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Fuzzy Model Types

• Fuzzy parameters

• Fuzzy (in)equalities

• FRB models

• relational

• Mamdani

• Takagi-Sugeno or TSK
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TSK Models (1985)

• TSK systems – important tool for 
system modeling and identification

Computational efficiency (local linearity)

Universal approximators

Good transparency

Convenient for data-driven design
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TSK Fuzzy model of a 
Fermentation (concept)
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TSK in 2D Feature Space

• MIMO TSK  in a 2D feature space

• eClustering
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Data-driven learning

• Until 1990s fuzzy systems were 
designed based on ‘expert’ knowledge

• Data-driven design (’95) can include 
expert knowledge if it exists, but tries 
to extract knowledge from the data

• Recent tendency – data streams, on-
line, real-time processes
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The challenge
Systems that posses 
Computational Intelligence usually 
rely on fixed rule-bases or NN

Trained off-line, do not adapt to 
environment

They do not develop their 
structure (evolve)
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Example 1 current UAVs
Unmanned Aerial Vehicles (UAV):

• limited flexibility 

• limited control functions 

• do not learn the new environment

Herta-1A UAV

Flew 08/18/06 →

over Scotland
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Example 2 Mobile robots
Mobile robots:

• Pre-programmed logic
• Remotely controlled vehicles 
• Limited learning capabilities
• Do not capture new knowledge

the de-miner ELTA →



19

The challenge
The environment in which real 
systems (technological processes, 
robotic systems, transport vehicles) 
operate is (unpredictably) changing

The challenge - to develop systems 
capable of higher level adaptation to 
the environment and to internal 
changes (wearing, faults, regimes etc.)
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On-line identification

• What to do when new data do not fit
into the model with a chosen structure?

• Adaptive systems theory answer (’70s): 
adapt the parameters ONLY

• This may be an outlier

• Or it may bring new information
(knowledge) – about a different 
regime, operation point, change etc.

• Thus update the structure
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Evolving Systems
• Evolving systems – a possible solution

Evolving is adaptive in terms of both structure 
and parameters
Incremental evolution of the fuzzy rules
(clusters): update, replace, add new

What to evolve?
• Consequent parameters (parameters of linear 

sub-models);
• Premise parameters (centers and widths of the 

Gaussians);
• Rule-base (rules, fuzzy sets/linguistic terms);
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TSK MIMO model
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TSK MIMO model
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TSK model as a FBFN
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eTS systems (2002)

Adapt parameters and evolve structure;
eTS – eClustering (on-line version of the 
subtractive clustering) + a version of RLS

Applied so far to control, prediction, 
classification, speech error recovery etc.

Fuzzy rules and linguistic terms are not 
fixed and learning can start ‘from scratch’
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eTS systems (2002)
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Basic Principle

The approach can be summarised as:

Decomposition of the complex data 
space into overlapping local regions 
eClustering.avi

Joint identification of local (simpler) 
sub-systems in real-time

Forming the output of the system as a 
fuzzy blending of local outputs
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The concept of Potential

Key notion – spatial proximity in the 
input/output data space 
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Potential update

Recursively calculated

Centers’ scatter up-date:
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Rule-base evolution

Form new rule:

Modify the rule:

Remove – based on similarity

PzP kk >)(

2
min *

1

i
j

j

i
k

N

i
xx

σ
<−

=



31

 
 

 

 

 

  

 

 

 

Input                          Output     

  Data                         Data 

 

 

Real-time update 
(potential-based) 

Rule-base

Rule-base evolution



32

Learning 

Identification criteria: 
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Parameters learning

• Weighted RLS

)( 1

^

1

^^

−− −+= k
T
kkkkkk yC θψψθθ

kk
T
k

k
T
kkk

kk C
CCCC
ψψ

ψψ

1

11
1 1 −

−−
− +
−=



34

Basic procedure

1. First data - first rule center 

2. Collect new data in real-time

3. Calculate Snew

4. Recursively up-date S*

5. Up-grade or modify the Rule-base

6. Estimate Consequent parameters

7. Form the final output
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Flow-Chart – part 1

Initialization; k←1; θ1←0; λ1←1; P*1←1

Begin

Get the input, xk

Generate yk

k ← k+1

Get the real output, yk
real

Generate potential, Pk (xk, yk
real)

Update the potential of the 
focal points, Pk

12
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Flow-Chart – part 2

Update parameters θk

yes

no

Replace the rule x*i← xk

Initialize the
replaced rule

Form new cluster/ rule/ 
neuron/ x*(N+1) ← xk

Initialize it; θ(N+1);P*(N+1)

no

yes
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eTS Systems Analysis

• Single algorithmic parameter – cluster 
radius

• evolutionary (inherits previous model 
structure), changes are gradual

• extracts accumulated spatial proximity
information from the data;

• it is very robust and naturally excludes 
outliers, because their S is high
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Applications: Modeling

NOx emissions real-time modelling 
(Daimler-Chrysler)

Quality modelling of crude oil distillation 
(CESPA)

Lost packets estimation in VoIP (Nokia)

Autonomous systems (BAE, Qinetiq, J&S)

Fermentation processes on-line modeling

System on chip implementation (FPGA)
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Daimler Chrysler

NOx emissions modeling for a 
car engine (Daimler-Chrysler 
test engines, Dr. E. Lughofer)

NOx – 4s ahead prediction

667 training+824 testing samples 
at 1 Hz
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NOx: variables

4 input attributes:
• N - engine rotation speed, rpm
• P2 - pressure offset in cylinders, bar
• Te - engine output torque, Nm
• Nd – speed of the dynamometer
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Data, Nk-4 and P2k-5



42

Data, Tek-5 and Ndk-6
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Data, Nk-6 and NOxk
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NOx accuracy (correlation)
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NOx Prediction
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eTS parameters
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Fuzzy Sets
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Fuzzy Rules

R1: IF( 4−kN  is Medium) AND ( 52 −k
offsetP  is Low) AND ( 5−kTe is High) AND ( 6−kNd is …) AND ( 6−kN is Medium) 
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R1: IF( 4−kN  is Low) AND ( 52 −k
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Local model parameters

R\par a0 a1 a2 a3 a4 a5

R1
0.62122 0.57316 -0.79908 -0.10607 -3.8705 3.6797

R2
0.25019 0.24239 -0.29438 0.46455 -1.533 1.4712

R3
0.77561 0.12709 0.37604 0.078215 0.45054 -0.2973

R4
0.29341 0.45984 0.38647 0.27322 -0.55073 -0.30107

R5
-0.27591 0.033233 -0.22574 0.44712 0.45803 0.46113

R6
0.42849 0.47549 -1.9812 -1.1318 -2.7612 -0.22697

R7
-0.43818 0.6626 1.0395 2.8411 -0.0079526 -0.071655
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Rule Base Evolution
Number of ADDED    rules : 7

Number of MODIFIED rules : 6

Samples that originate new rules : 

1  3  5  8  12  21  588  

Final position of the focal points : 

1  4  5  311  12  21  588  

MODIFIED rules formed around samples : 

2  4  41  53  57  311  

Time of calculations (CPU): 1.0469 S

Variance Accounted For (VAF): 85.034

PERFORMANCE MEASURES
Correlation 0.92213
MSE  0.0037546 
RMSE 0.061275 
NDEI 0.38991
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Quality of crude oil

• CESPA oil refinery, Tenerfie, Spain

• 80000 bb/d

• Products: heavy naphta, kerosene, 
GOL

• Parameters: T95%; Pensky-Martens 
(inflammability analysis)

• Off-line, once a day lab test
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Quality of crude oil

The aim is to predict daily:
• Temperature of the heavy Naphtha when it 

evaporates 95% liquid volume, ASTM D96

• Temperature of the kerosene when it 
evaporates 95% liquid, ASTM D96

• Pensky Martens inflammability analysis of the 
Kerosene

• Temperature of the GOL when it evaporates 
85% liquid, ASTM D96
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T of heavy naphtha

Temperature of the heavy Naphtha when it 
evaporates 95% liquid volume In a 
distillation tower, mainly depends on

• The pressure of the tower

• Amount of product taking off

• Density of the crude

• Temperature of the column overhead

• Temperature of the Naphtha Extraction
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T of kerosene

Temperature of kerosene when it 
evaporates 95% liq. vol. depends on:

• The pressure of the tower
• Amount of product taking off, Naphtha and KNO
• Density of the crude
• Temperature of the column overhead
• Steam introduced in GOL stripper ratio to KNO
• Temperature of the Kerosene Extraction
• Temperature of the Naphtha Extraction
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Pensky-Martens 

Inflammability analysis of the Kerosene concern 
the light part of the kerosene, and therefore it 
depends mainly in the Naphtha above and 
the steam injected in the kerosene stripper.

• The pressure of the tower
• Amount of product taking off
• Density of the crude
• Temperature of the column overhead
• Temperature of the Naphtha Extraction
• Steam introduced in Kerosene stripper, ratio to KNO
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T of gas oil

Temperature of GOL when it evaporates 
95% depends on:

• The pressure of the tower
• Amount of product taking off, Naphtha and KNO
• Density of the crude
• Temperature of the column overhead
• Steam introduced in GOM stripper, ratio to GOM
• Temperature of the GOL Extraction
• Temperature of the Kerosene Extraction
• Temperature of the Naphtha Extraction
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Fuzzy sets, Heavy naphtha
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Fuzzy sets, Heavy naphtha
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Prediction of Thn

• Error in the order of 2-3oC (the Thn is in 
the range of 100-160oC. 

• The precision is comparable with the 
precision of the laboratory off-line test 
and can be done in real-time.
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QoS improvement in VoIP

• Voice communication using Packet based
communication networks is becoming 
common place (e.g Internet)
⇒ The future is Mobile IP based Comms

• GSM Air interface is hostile environment:
due to urban, multi-path interference 
error rates/packet losses can be high



61

QoS improvement in VoIP

• QoS requires error concealment 
• Approach – real-time novel error 

concealment approach using eTS
models suitable for VoIP over GSM with 
“severe” packet losses (100 to 200 mS
of Speech, getting towards word loss 
level) that

• minimise transmission bandwidth
• minimise system delays
• maximise speech quality (QoS)
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Speech processing coders

• Modern Speech commissions digitise 
analog speech signal & use speech 
coding techniques to reduce the 
transmission bandwidths (reduced 
operator fixed costs)

• speech Coding applies DSP techniques to 
speech segments (~20 mS) in order to 

• identify and isolate “perceptually” important 
characteristics of the voice signal

• then digitize and quantize them 
• Transmit the quantized/digital values.
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LPC parameters

• Vocoder are a class of parametric coder 
that use a parametric model of the vocal 
tract

• Linear Prediction coding is a widely used 
method for representing the frequency 
shaping attributes of the vocal tract

• The short term spectral envelop is modeled 
by all pole Linear Predicting Filter

• This yields a small number of parameters 
(10)
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The approach

• LPC is typically 10th Order
• 10 LPC filter coefficients are generated 

per frame (20mS speech segments) 
• LPC Filter Coefficients are usually 

transformed into the Line Spectral 
Frequencies (LSP) before quantization

• modelling different aspects of speech\
language but in the parameter domain
(not necessarily the time domain)
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Source speech LSP
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Preliminary results 

eTS is able replace 
around 100 mS of lost 
unquantized speech 
with small losses (state 
of art is currently 
around 40mS)
eTS when continuously 
executed ( always 
replace the LSP) can 
improve the overall 
speech quality of low 
bit rate codec

Un quantised
LSPs

Predictor

VPredLSP

VLSP

Rest of Decoding

Quantised LSPs

10

10

Ypre
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link
error
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QoS for VoIP, NOKIA

• Real speech, female speaker
• MOS 2.6 insignificant drop
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QoS for VoIP, NOKIA

• Real speech, female speaker
• MOS 2.6 insignificant drop
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Distributed co-eClass
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Agent 2

Agent 3

Agent 1

Agent 4

Unrecognized 
agent

Environment

Cooperative Rule-base

Co-operation in 
autonomous detection
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Underwater target 
recognition, J&S Marine

Object
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Area I Area II

Agents 
exchange 
new rule 
info
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Underwater target 
classification- scenario 2
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Our Pioneer3-DX Robots

• Onboard Computer (PIII CPU,256M RAM)

• Camera, Digital Compass, Sonar, bumpers, Laser

• Controller (embedded microprocessor ARCOS)

• A team of 5 robots with

WIFI connection

for collaborative tasks
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Novelty detection and land mark 
recognition by eClustering

• Explore unknown environment

• No communication link (no GPS, maps…)

• Simple landmark (corner) recognition

• Fully unsupervised 

(no pre-training

no model structure

assumed)
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Novelty detection and landmark 
recognition by eClustering

Novelty Detection

• The ability to differentiate between 
common sensory stimuli and 
perceptions never experienced before

Landmark Recognition

• With Novelty Detection, robot can 
select aspects of the environment that 
are unusual and therefore can be 
used as landmarks for self-localization
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Novelty detection and landmark 
recognition by eClustering

• Reference Nehmzow, 1991
• SOM (50 neurons, supervised, off-line

pre-training, fixed structure)
• Off-line Pre-training
• Evolving SOM (Kasabov, 2000)– too 

relaxed – based on a 
threshold, not robust 
enough to avoid noise
becoming cluster centres
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Novelty detection and landmark 
recognition by eClass
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Our experiment (B-69, InfoLab21)

bb.mpg
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Novelty detection and landmark 
recognition by eClass

demo corner detectiondemo corner detection

Recursive calculation  → less 
computing  power required → real-
time 

Extend to image-based (CASPIA)
R1: IF (φ is close to ¾) AND (d  is close to 0.3000) THEN (Corner is 1)
R2: IF (φ is close to ¾) AND (d  is close to 0.1268) THEN (Corner is 2 )
R3: IF (φ is close to ¼) AND (d  is close to 0.0648) THEN (Corner is 3 )
R4: IF (φ is close to ¾) AND (d  is close to 0.2357) THEN (Corner is 4 )
R5: IF (φ is close to ¾) AND (d  is close to 0.0792) THEN (Corner is 5)
R6: IF (φ is close to ¼) AND (d  is close to 0.1744) THEN (Corner is 6)
R7: IF (φ is close to ¾) AND (d  is close to 0.0371) THEN (Corner is 8)
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Results
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Results analysis

Unsupervised  → fully automatic

Learning from scratch → no pre-training

Cluster (fuzzy rules/neurons) number is not 
predetermined, defined by data only → structure is flexible 
and evolving

Recursive calculation  → less computing power required for 
real-time execution
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eTS on FPGA - XtremeDSP
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eTS on FPGA - XtremeDSP
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Applications: 
Classification and Control

Controllers with evolvable structure

Application to EEG signals classification

Classification of Carcinoma Kidney Tissue 
Status based on Protein Expression Data

Biotech process applications
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Indirect learning (Psaltis et.al, 1988)
Adaptive control (incl. controller structure)
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Evolving Controllers
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eController - example
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eController - example

Cooling coil

Air Inlet Temperature

           Sensor

Air Flow Direction

Water Inlet Temperature

             Sensor

Chilled Water Suppy

Control Valve

Set Point

Controller
Control Signal

Supply Air Temperature

              Sensor

Volumetric Air Flow Rate

               Sensor

Fan
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eController - results
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eController - results
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• Controller structure

• new rule:   

• modified rule:

R1: IF ( amb
kT is Low) AND ( out

kT 1+ is High) AND ( out
kT is High) THEN ( ku is Low) 

R2: IF ( amb
kT is High) AND ( out

kT 1+ is Medium) AND ( out
kT is Medium) THEN ( ku is High) 

R3 IF ( amb
kT is Very Low) AND ( out

kT 1+ is High) AND ( out
kT is High) THEN ( ku is Very Low) 

R4: IF ( amb
kT is Medium) AND ( out

kT 1+ is Low) AND ( out
kT is Low) THEN ( ku is Medium)  

R5: IF ( amb
kT is Medium) AND ( out

kT 1+ is Relatively High) AND ( out
kT is Medium) THEN ( ku is Medium) 

eController - results
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eController - results
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Off-line vs on-line: real data 
(air-conditioning system)
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EEG signal classification 
procedure eClass

1) Establish the first EEG signal as the first 
prototype. Its S=0

2) Starting from the next the Scatter of each 
new EEG signal is calculated recursively

3) The Scatter of the existing prototypes are 
recursively updated

4) Scatter of new EEG signal is compared to 
updated scatter of the existing prototypes 
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eClass: Procedure

5) If Snew < S* then the new EEG signal is
added as a new prototype and a new 
rule is formed (R := R+1)

6) If in addition to 5) the new EEG signal is 
close to an old prototype then the new 
EEG signal replaces this prototype

The condition to have lower S is a very 
strong one, which restricts excessively 
large rule base to be formed
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eClass

Class1 Classm

EEG signal 
selected as 
a prototype 
for Class1

EEG 
signal 
selected as 
a prototype 
for Classm

Classification result

........

Overall 
Rule-base

EEG vector
x∈RnxL

*
1
j

*j
nRulej: IF (EEG1 is EEG ) AND …AND (EEGn is EEG    )

THEN (Class is Pain/NoPain)
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EEG, Experimental set-up

• Hope Hospital, Liverpool, UK

• Female volunteer

• 64 electrode cap
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Prototype EEG signals
‘No Pain’ class
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Prototype EEG signals
‘Pain’ class
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eClass: EEG - results
• The subject was a healthy female

• EEG data were recorded on 8th and 15th June 
2000, and 2nd August 2000

• On each of these days, three EEG recordings 
were taken during “painful” laser stimulation of 
the right arm

• In total, 9 continuous EEG data files

• 355 Pain epochs (Class 1) and 355 No-Pain ones 
(Class2)

• 168 fuzzy rules formed by eClass; 79.45% rate
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First-principles model:

eTS model:

),,(1 kkkXk DOSXX μ=+ k= 0 ,...,N -1

),,(1 kkkSk DOSXqS =+

),,(1 kkkDOk DOSXqDO =+

R1: IF (S is Very High) AND (DO is Very High) THEN DOaSaaX 1
2

1
1

1
0 ++=

R2: IF (S is Very Low) AND (DO is Very Low) THEN DOaSaaX 2
2

2
1

2
0 ++=

R3: IF (S is High) AND (DO is High) THEN DOaSaaX 3
2

3
1

3
0 ++=

R4: IF (S is Low) AND (DO is Low) THEN DOaSaaX 4
2

4
1

4
0 ++=

R5: IF (S is Very Medium) AND (DO is Medium) THEN DOaSaaX 5
2

5
1

5
0 ++=

R6: IF (S is Extremely High) AND (DO is Extremely High) THEN DOaSaaX 6
2

6
1

6
0 ++=

R7: IF (S is Extremely Low) AND (DO is Extremely Low) THEN DOaSaaX 7
2

7
1

7
0 ++= )

Fermentation Processes 
On-line Prediction
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BioProcess Modeling



102

eTS model of a fermentation
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Concluding remarks

• Usable in real-time, intelligent sensors
• Non-iterative (one-pass, incremental)
• Recursive (comp very efficient)
• adapts the structure (plus parameters)
• enrich/adds and replaces = evolves
• simple (locally linear, no search)
• gradual changes (inheritance, R+1)
• starts from scratch (no a priori info)
• Number of applications
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