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Fig. 10. Pole Locations of Plant #1.
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30 Years of Adaptive Neural Networks:

Perceptron, Madaline, and

Backpropagation

Bernard Widrow Michael A. Lehr

Stanford University Department of Electrical Engineering,
Stanford, CA 94305-4055

Abstract

Fundamental developments in feedforward artificial neural networks
from the past thirty years are reviewed. The central theme of this
paper is a description of the history, origination, operating character-
istics, and basic theory of several supervised neural network training
algorithms including the Perceptron rule, the LMS algorithm, three
Madaline rules, and the backpropagation technique. These methods
were developed independently, but with the perspective of history they
can all be related to each other., The concept which underlies these
algorithms is the “minimal disturbance principle,” which suggests that
during training it is advisable to inject new information into a network
in a manner which disturbs existing information to the smallest extent

possible.
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Principle of Minimal Disturbance

Adapt to reduce the output error for the current train-
ing pattern with manimal disturbance to the responses

already learned.



a-LMS Algorithm

€k é dk — W{Xk. (1)

Changing the weights yields a corresponding change in

the error:

Aeg = A(dy, — wixg) = —x% Awy. (2)

In accordance with the o-LMS rule, the weight change

1s as follows:
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Weight correction by the LMS rule
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Perceptron Rule

o If response is OK, do not adapt weights.

 Otherwise adapt weights by a fixed distance along the

X-Vector to reduce error

Good Features

e Guaranteed to converge to solution if problem is lin-

early separable

Bad Features

e Performs poorly if training set is not linearly separa-
ble.
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MRII of B. Widrow & R. Winter .

A2 Perturbation

+1,-1 output

Input
Vector

».

+1,-1 output;

For each laver, beginning with laver 1:

- Toggle output of neuron with sum closest to zero. If output Hamming error is
reduced, adapt nearon. Repeat for neuron whose sum is next closest to zero, etc.
Can also adapt two at a time, etc. Adaptation reduces Hamming error.
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Equation of nonlinear plant sUggested by K.S. Narendra |
(Narendra and Parthasarathy, IEEE Transactions on Neural Networks, March 1990.)
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Neurointerfaces

Bernard Widrow, Life Fellow, IEEE, and Marcelo Malini Lamego, Member, IEEE

Abstract—A neurcinterface is a nonlinear filtering systemn
based on neural networks (NNs) that serves as a coupler between
a human operator and a nonlinear system or plant that is to
be controfled or directed. The purpose of the coupler is to ease
the task of the human controller. The equations of the plant are
assumed to be known. If the plant is unstable, it must first be sta-
bilized by feedback. Using the plant equations, off-line automatic
learning algorithms are developed for training the weights of the
neurcinterface and the weights of an adaptive plant disturbance
canceller. Application of these ideas to backing a truck with two
trailers under human direction is described. The “truck backer”
has been successfully demonstrated by computer simulation and
by physical implementation with a small radio-controlled truck
and trailers. ‘

Index Terms—Adaptive control, man-machine interfaces,
neural networks (NNs).

1. INTRODUCTION

OR MANY tasks, productivity, safety, and liability con-

ditions require a considerable degree of skill from human
operators. In order to overcome lack of skill, special man-ma-
chine interfaces may be adopted. The basic idea is to change the
operational space through a neural network (NN) [1]-[4], al-
lowing the human operator to interact with the process through
less-specialized commands. Hence, the operator devotes his at-
tention to solving a less complex problem, directly at the task
level. The objective is to improve the productivity and safety
levels of such tasks even in the case of unskilled operators.

This paper intends to show how NNs can be applied to the
design of man-machine interfaces for practical real-time prob-
lems. The term *‘neurointerface” is chosen to emphasize the use
of NNs for the solution of man-machine interface problems.
Neurcinterfaces can be regarded as circuitries, algorithms, and
devices implementing NNs to facilitate the human operation of
complex systems.

The design of neurointerfaces involves the training of NNs,
which are incorporated in nonlinear adaptive filters. This work
applies the inverse modeling technigue to designing neuroint-
erfaces. In the past, many works have described training pro-
cedures and design techniques for inverse modeling using NNs
(see [5], [6], and references therein), This study will apply the
inverse modeling technigue to the design of man-machine in-
terfaces for complex dynamic systems.
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In the work of Narendra and Parthasarathy [7], NNs were
proposed for the identification and control of nonlinear dy-
namic systems. As a result, a considerable number of papers
have appeared on the general subject of control with NNs.
Training schemes based on the backpropagation algorithm [8]
and its variations were proposed and applied to NN control.

This work applies dynamic optimization [9], [10] to the
training of a multilayer NN with a tapped delay line (neuroin-
terface) cascaded with the plant model. The neurointerface
training is formulated as a constrained optimization problem
and is solved through dynamic optimization. The technique
assumes the nonlinear plant is continuous, minimum phase,
and controllable with bounded states (Lagrangian stability). If
the plant is unstable, it must first be stabilized by feedback. The
backpropagation algorithm is used in one of the steps of the
netrointerface training method, For the interested reader, the
application of dynamic optimization to state-feedback control
with NNs can be found in the works of Lamego [11], Shen
[12], ang Plumer {13].

The neurointerface training is done off-line. This is mainly
because the dynamic optimization algorithm is computation-
ally very expensive and it also needs the plant model. In ad-
dition, depending on the system (plant mode! plus neurointer-
face) under study, the time of convergence may be too lengthy
for real-time adaptive schemes. Nonetheless, the neurointerface
design can be often extended to integrated off-line schemes,
wherein a system identification algorithm obtains a continuous
representation of the plant model (probably, using an NN) from
on-line acquired data. Then, the dynamic optimization algo-
rithm uses the plant mode! for training the neurointerface, which
in turn controls the plant. The processes of plant identification
and neurointerface training can be repeated periodically using
real-time acquired data.

In order to keep the neurcinterface training description
simple, this paper focus solely on pure off-line training. Once
the basic concepts related to plant inversion and dynamic
optimization applied to NNs are understood, extensions to
real-time learning schemes can be readily made.

A neurointerface is used to fucilitate the backing of a truck
connected to a double-trailer configuration under human
steering control. The steering commands of the human driver
are fed to the neurointerface whose output controls the steering
angle of the front wheels of the vruck.

II. WHAT 1S & NEUROINTERFACE?

A neurcinterface may be theught of as a form of inverse of
the plant to be controlled. The desired plant response can be
realized by driving the plant with an inverse controller whose
input consists of simple command signals applied by a human

1063-6536/02$17.00 © 2002 IEEE
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Truck model connected to double-trailer configuration.
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*STORES SENSORY PATTERNS (VISUAL, AUDITORY, TACTILE; RADAR,
SONAR, ETC.)

*STORES PATTERNS WHEREVER SPACE IS AVAILABLE, NOT IN SPECIFIED
MEMORY LOCATIONS

*STORES SIMULTANEQUSLY SENSED INPUT PATTERNS IN THE SAME

FOLDER
(e.g. SIMULTANEOUS VISUAL AND AUDITORY PATTERNS ARE STORED

TOGETHER)

‘DATA RECOVERY IS IN RESPONSE TO “PROMPT” INPUT PATTERNS
(e.g. A VISUAL OR AUDITORY INPUT PATTERN WOULD TRIGGER RECALL)

*AUTOASSOCIATIVE NEURAL NETWORKS ARE USED IN THE DATA
RETRIEVAL SYSTEM



GOALS

*DEVELOP AND REF INE COGNITIVE MEMORY CONCEPT
*RELATE TO HUMAN MEMORY
*DETERMINE MEMORY CAPACITY
*OPTIMIZE DESIGN OF AUTOASSOCIATIVE NEURAL NETWORKS

*DEVELOP APPLICATIONS FOR COGNITIVE MEMORY

‘DEVELOP HARDWARE PLATFORM FOR HIGH-SPEED AND HIGH-
CAPACITY COGNITIVE MEMORY



*WE HAVE SIMULATED A WORKING COGNITIVE MEMORY THAT
EMULATES CERTAIN CHARACTERISTICS OF HUMAN MEMORY

*WE HAVE MADE PRELIMINARY STUDIES OF CAPACITY AND SPEED

*WE HAVE DEVELOPED FOUR PRELIMINARY APPLICATIONS FOR THE
COGNITIVE MEMORY

*WE ARE DEVELOPING A DESIGN FOR THE AUTOASSOCIATIVE
NEURAL NETWORK BASED ON FPGA TECHNOLOGY THAT WOULD
ALLOW VERY HIGH-SPEED OPERATION

*WE ARE CONTINUING RESEARCH IN ALL THESE AREAS
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Diced aerial photo of Simi Valley, CA
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Shooting the ground
through a telescope to find
airplane’s position



Circular airplane track over Simi Valley, CA
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VICTOR ELIASHBERG,
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SENSING




TRAINING (LOW RESOLUTION, 20x20 pixel images)

*ONE IMAGE OF A PERSON’S FACE WAS TRAINED IN

*THAT IMAGE WAS ADJUSTED BY
*ROTATION (2 DEGREE INCREMENTS, 7 ANGLES) _
*TRANSLATION (LEFT/RIGHT, UP/DOWN, 1 PIXEL INCREMENTS, 9 POSITIONS)
*BRIGHTNESS (5 LEVELS OF INTENSITY)

*TOTAL NUMBER OF TRAINING PATTERNS =315

_ -TRAININGVTIM.E 2 HOURS ON AMD 64 BIT ATHLON 2.6 GHZ
COMPUTER FOR 0.25 PERCENT MSE



SENSING (LOW RESOLUTION, 20x20 pixel images)

*EACH INPUT PATTERN WAS ADJUSTED BY
*SCALING (6 WINDOW SIZES)
*TRANSLATION (90 PIXEL INCREMENTS)

‘ERRORS WITH BACKGROUND WERE ABOUT 8X GREATER THAN
WITH A PERSON’S FACE

*60 PATTERNS PER SECOND THROUGH NEURAL NETWORK

*AUTOASSOCIATIVE NEURAL NETWORK HAD A TOTAL OF 1100
NEURONS DISTRIBUTED OVER 3 LAYERS

400 NEURONS, 400 WEIGHTS PER NEURON, FIRST LAYER

300 NEURONS, 400 WEIGHTS PER NEURON, SECOND LAYER

-400 NEURONS, 300 WEIGHTS PER NEURON, THIRD LAYER



TRAINING (HIGH RESOLUTION, 50x50 pixel images)

*ALL THREE IMAGES OF WIDROW’S FACE WERE TRAINED IN

‘EACH IMAGE WAS ADJUSTED BY
*ROTATION (2 DEGREE INCREMENTS, 7 ANGLES)
*TRANSLATION (LEFT/RIGHT, UP/DOWN, 1 PIXEL INCREMENTS, 25 POSITIONS)
*SCALING (3 WINDOW SIZES)

*TOTAL NUMBER OF TRAINING PATTERNS = 1575

*TRAINING TIME 26 HOURS ON AMD 64 BIT ATHLON 2.6 GHZ
COMPUTER FOR 0.25 PERCENT MSE



SENSING (HIGH RESOLUTION, 50x50 pixel images)

*EACH INPUT PATTERN WAS ADJUSTED BY
*SCALING (6 WINDOW SI1ZES)
*TRANSLATION (2 PIXEL INCREMENTS, 25 POSITIONS)
*BRIGHTNESS (6 LEVELS OF INTENSITY)

*OPTIMIZATION WAS DONE FOR EACH DETECTED FACE

‘ERRORS WITH UNIDENTIFIED FACES WERE ABOUT 4X GREATER
THAN WITH DR. WIDROW’S FACE

S PATTERNS PER SECOND THROQUGH NEURAL NETWORK

*AUTOASSOCIATIVE NEURAL NETWORK
+1800 NEURONS, 2500 WEIGHTS PER NEURON, FIRST LAYER
*1500 NEURONS, 1800 WEIGHTS PER NEURON, SECOND LAYER
+2500 NEURONS, 1500 WEIGHTS PER NEURON, THIRD LAYER
*TOTAL 5800 NEURONS, 10,950,000 WEIGHTS '



COGNITIVE MEMORY DEMONSTRATION
FACE RECOGNITION
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