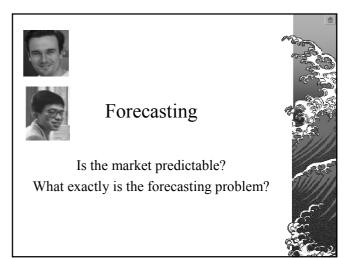
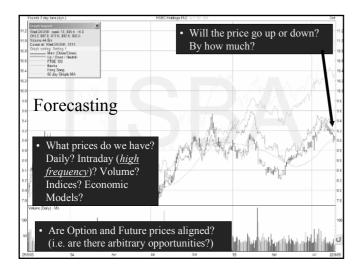
Computational Finance & Economics Edward Tsang Centre for Computational Finance and Economic Agents (CCFEA), University of Essex IEEE Technical Committee on Computational Finance and Economics

What Computational Finance?

- ◆ What is Artificial Intelligence?
 - Not easy to define
- Defined by the activities in the community
- Challenging fundamentals in Economics and Finance
 - Rationality
 - Efficient market

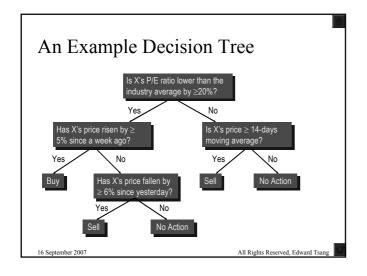

Why Computational Finance?

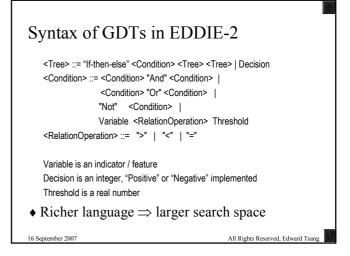

- Forecasting and Trading
 - Opportunities, Arbitrage
- ◆ Automated Trading
- Optimization
 - Portfolio optimization
- Understanding markets
 - Automated Bargaining
 - Artificial Markets for
 - · Evolving strategies
 - · Wind-tunnel testing

What are the challenges ahead?

All Rights Reserved, Edward Tsang

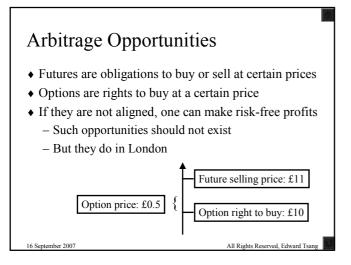
Why Computational Finance?			
What can be done now:	Enabling technology:		
Large scale simulation	Must faster machines		
Data warehouse	Much cheaper memory		
Building complex models	Agent-technology		
Efficient exploration of	Evolutionary computation		
models	(Multi-Obj) Optimisation		
Decision support	experimental game theory,		
	constraint satisfaction		

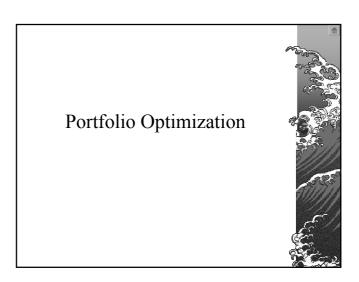


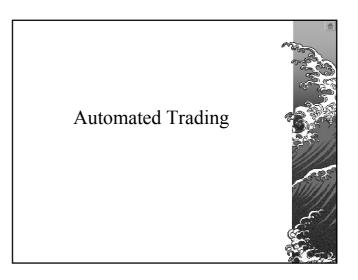


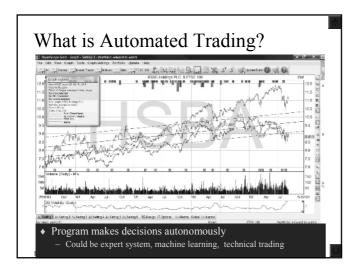
EDDIE adds value to user input

- ♦ User inputs *indicators*
 - e.g. moving average, volatility, predications
- ♦ EDDIE makes *selectors*
 - e.g. "50 days moving average > 89.76"
- ♦ EDDIE combines selectors into trees
 - by discovering interactions between selectors
- ➤ Finding thresholds (e.g. 89.76) and interactions by human experts is laborious


16 September 2007




a.	Expert	More	Define
Given	adds:	input:	target:
Daily	50 days	Volat-	↑4% in
closing	m.a.	ility	21 days?
90	80	50	1
99	82	52	0
87	83	53	1
82	82	51	1
02	82	31	1


Our EDDIE/FGP Experience ◆ Patterns exist - Would they repeat themselves in the future? (EMH debated for decades) ◆ EDDIE has found patterns - Not in every series (we don't need to invest in every index / share) ◆ EDDIE extending user's capability - and give its user an edge over investors of the same caliber

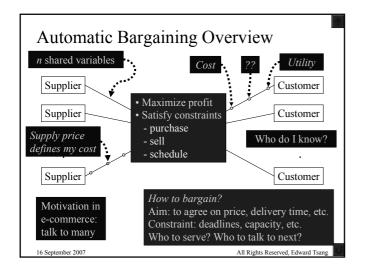
Portfolio Optimization • Typically: - High risk → high return - Diversification reduces risk • Task: find a portfolio - Maximize return, minimize risk • Difficulty: constraints, e.g. - No more than n stocks - Not too much on one stock - Not too much on one sector • Optimization problem - Note: how to measure risk? All Rights Reserved, Edward Tsang

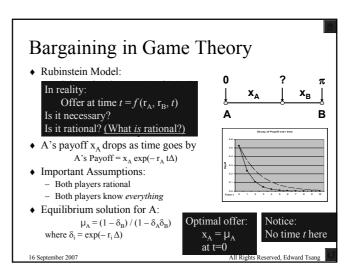
Computer vs Human Traders

- ◆ Programs work *day and night*, humans can't
- ◆ Programs can react in *miliseconds*, humans can't
- Programs can be *fully audited*, humans can't
- ◆ When programs make mistakes, one can *learn* and *change* the culprit codes
 - Human traders will simply change jobs
- Expertise in computer programs *accumulates*
 - Human traders leave with his/her experience

16 September 2007

All Rights Reserved, Edward Tsang

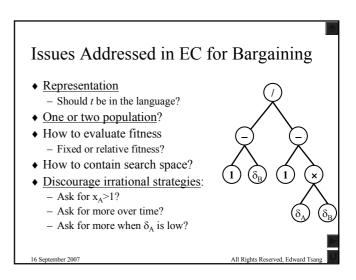

FAQ in Automated Trading


- ♦ How can you predict exceptional events?
 - No, we can't
 - Neither can human traders
- ♦ How can you be sure that your program works?
 - No, we can't
 - Neither did Nick Leeson at Barrings
 - If you can improve your odds from 50-50 to 60-40 in your favour, you should be happy
 - Codes can be verified

16 September 200

All Rights Reserved. Edward Tsang

Automated Bargaining



• Game theorists solved Rubinstein bargaining problem - Subgame Perfect Equilibrium (SPE) · Slight alterations to problem lead to different solutions Asymmetric / incomplete information

Evolutionary Rubinstein Bargaining, Overview

- Outside option
- ♦ Evolutionary computation
 - Succeeded in solving a wide range of problems
 - EC has found SPE in Rubinstein's problem
- Can EC find solutions close to unknown SPE?
- Co-evolution is an alternative approximation method to find game theoretical solutions
 - Less time for approximate SPEs
 - Less modifications for new problems

Representation of Strategies

- A tree represents a mathematical function g
- Terminal set: $\{1, \delta_A, \delta_B\}$
- Functional set: $\{+, -, \times, \div\}$
- Given g, player with discount rate r plays at time t

 $g \times (1-r)^t$

- ♦ Language can be enriched:
 - Could have included e or time t to terminal set
 - Could have included power ^ to function set
- ◆ Richer language → larger search space → harder search problem

Two populations – co-evolution ♦ We want to deal with asymmetric games - E.g. two players may have different information ♦ One population for training each player's strategies ♦ Co-evolution, using relative - Alternative: use absolute fitness Evolve over time

Incentive Method: Constrained Fitness Function

- ♦ No magic in evolutionary computation
 - Larger search space → less chance to succeed
- Constraints are heuristics to focus a search
 - Focus on space where promising solutions may lie
- Incentives for the following properties in the function returned:
 - The function returns a value in (0, 1)
 - Everything else being equal, lower δ_A \rightarrow smaller share
 - Everything else being equal, lower $\delta_B \rightarrow$ larger share

Note: this is the key to our search effectiveness

16 September 2007

All Rights Reserved, Edward Tsang

Models with known equilibriums

Complete Information

- ◆ Rubinstein 82 model:
 - Alternative offering, both A and B know δ_A & δ_B
- Evolved solutions approximates theoretical
- ◆ Working on a model with outside option Incomplete Information
- Rubinstein 85 model:
 - B knows δ_A & δ_B
 - A knows δ_A and δ_B^{weak} & δ_B^{strong} with probability Ω_{weak}
- Evolved solutions approximates theoretical

16 September 2007

All Rights Reserved. Edward Tsans

Models with unknown equilibriums

- ♦ Modified Rubinstein 85 models
- ◆ Incomplete knowledge
 - B knows δ_B but not δ_A ; A knows δ_A but not δ_B
- Asymmetric knowledge
 - B knows δ_A & δ_B ; A knows δ_A but not δ_B
- Asymmetric, limited knowledge
 - B knows δ_A & δ_B
 - A knows δ_A and a normal distribution of δ_B
- ♦ Working on limited knowledge, outside option
- Future work: new bargaining procedures

16 September 2007

All Rights Reserved, Edward Tsang

Evolutionary Bargaining, Conclusions

- Demonstrated GP's flexibility
 - Models with known and unknown solutions
 - Outside option
 - Incomplete, asymmetric and limited information
- ◆ Co-evolution is an *alternative approximation* method to find game theoretical solutions
 - Relatively quick for approximate solutions
 - Relatively easy to modify for new models
- Genetic Programming with incentive / constraints
 - Constraints used to focus the search in promising spaces

16 September 200

All Rights Reserved, Edward Tsang

Artificial Market

Markets are efficient in the long run
How does the market become efficient?

Do all agents converge in their opinions?

Wind-tunnel testing for new markets

Evolving Agents

Should agents adapt to the environment?

Co-evolution

The Red Queen Thesis

In this place it takes all the running you can do, to keep in the same place.

- ♦ Chen & Yeh:
 - Endogenous prices
 - Agents are GPs
 - "Peer pressure" (relative wealth) lead to agents retraining themselves
 - Retraining is done by "visiting the business school"
- Markose, Martinez & Tsang:
 - CCFEA work in progress
 - Wealth exhibits Power Law
 - Wealth drives retraining
 - Retraining is done by EDDIE

16 September 200

All Rights Reserved, Edward Tsang

Evolving Agents

- ◆ Sunders, Cliff:
 - Zero intelligence agents
 - Market efficiency can be obtained by zerointelligence agents as long as the market rules are properly set.
 - This result challenges the neoclassical models regarding the utility maximization behaviour of economic agents
- ◆ Schulenburg & Ross
 - Heterogenous agents (agents may have different knowledge)
 - Agents modelled by classifier systems
 - Exogenous prices
 - Beat buy-and-hold, trend follower and random walk agents

16 September 2007

All Rights Reserved, Edward Tsans

Conclusions

Computational Finance & Economics

- Computing has changed the landscape of finance and economics research
 - We can do what we couldn't in the past
- ♦ Evolutionary computation plays major roles in
 - Forecasting investment opportunities
 - Approximating subgame equilibrium in bargaining
 - Understanding markets
 - Wind-tunnel testing new market mechanism

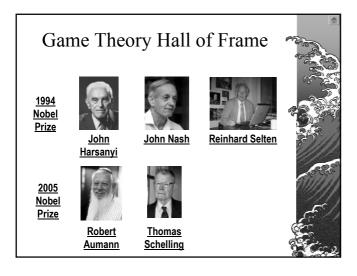
16 September 2007

All Rights Reserved, Edward T

Questions & Comments?

Edward Tsang
http://www.bracil.net/finance
http://edward.bracil.net/
(or just search for Edward Tsang)

Supplementary Information



Joseph Stiglitz

- ♦ Nobel Economic Prize 2001
- Senior VP and Chief Economist, World Bank, 1997-2000
- ♦ Critical view on globalization
- Founder, The Initiative for Policy Dialogue, to:
 - Explore policy alternatives
 - Enable wider civic participation in economic policymaking

16 September 2007

Future of Computational Finance

Opportunities and Challenges in CF&E

- Wide varieties of financial applications
- ♦ Different types of learning mechanism
- ♦ Different markets to simulate
- ♦ Wind-tunnel tests will become the norm
 - Yet to be developed
- ♦ Challenges:
 - Large number of parameters to tune
 - What can the simulations tell us?

16 September 2007

All Rights Reserved, Edward Tsang

The Computational Finance Community

- Conferences:
 - IEEE International Conference on Computational Ineelligence for Financial Engineering
 - Annual Workshop on Economics with Heterogenous Interacting Agents (WEHIA 2005 at Essex, Markose, Sunders, Dempster)
 - International Conference on Computing in Economics and Finance
 - International Joint Conference on Autonomous Agents and Multi-Agent Systems
- Useful web sites:
 - Tesfatsion's Agent-based Computational Economics
 - Chen's AI-ECON Research Centre
- IEEE Network on Computational Finance and Economic
- ◆ IEEE Technical Committee on Computational Finance and Economics

16 September 2007

All Rights Reserved, Edward Tsang

Rationality

Rationality is the assumption behind many economic theories
What does being rational mean?
Are we rational?
The CIDER Theory

What is Rationality?

- ♦ Are we all logical?
- ♦ What if *Computation* is involved?
- ◆ Does *Consequential Closure* hold?
 - If we know P is true and P \rightarrow Q, then we know Q is true
 - We know all the rules in Chess, but not the optimal moves
- "Rationality" depends on computation power!
 - Think faster → "more rational"

16 September 2007

"Bounded Rationality"

CIDER: Computational Intelligence Determines Effective Rationality (1)

- ♦ You have a product to sell.
- One customer offers £10
- ♦ Another offers £20
- Who should you sell to?
- Obvious choice for a rational seller

16 September 2007

All Rights Reserved, Edward Tsang

CIDER: Computational Intelligence Determines Effective Rationality (2)

- You are offered two choices:
 - to pay £100 now, or
 - to pay £10 per month for 12 months
- ◆ Given cost of capital, and basic mathematical training
- Not a difficult choice

16 September 2007

All Rights Reserved, Edward Tsan

CIDER: Computational Intelligence Determines Effective Rationality (3)

- ◆ Task
 - You need to visit 50 customers.
 - You want to minimize travelling cost.
 - Customers have different time availability.
- ◆ In what order should you visit them?

- ♦ This is a very hard problem
- Some could make wiser decisions than others

16 September 2007

All Rights Reserved, Edward Tsang

The CIDER Theory

- ◆ Rationality involves Computation
- ◆ Computation has limits
- ♦ Herbert Simon: Bounded Rationality
- <u>Rubinstein</u>: model bounded rationality by explicitly specifying decision making procedures
- Decision procedures involves algorithms + heuristics
- Computational intelligence determines effective rationality
- Where do decision procedures come from?
 - Designed? Evolved?

16 September 200

All Rights Reserved, Edward Tsang

1978 Nobel Economic Prize Winner

- ◆ Artificial intelligence
- "For his pioneering research into the decisionmaking process within economic organizations"
- "The social sciences, I thought, needed the same kind of rigor and the same mathematical underpinnings that had made the "hard" sciences so brilliantly successful."
- ♦ Bounded Rationality
 - A Behavioral model of Rational Choice 1957

Herbert Simon (CMU)

Artificial intelligence

 $Sources: \underline{http://nobelprize.org/economics/laureates/1978/} \\ http://nobelprize.org/economics/laureates/1978/simon-autobio.htm. \\ \underline{http://nobelprize.org/economics/laureates/1978/simon-autobio.htm.} \\ \underline{http://nobelprize.org/economics/laureates/1978/simon-autobio.htm.}$

16 September 2007

All Rights Reserved, Edward Tsang

"Bounded Rationality"

- ♦ Herbert Simon:
 - Most people are only partly rational, and are in fact emotional/irrational in part of their actions
- ◆ "Boundedly" rational agents behave in a manner that is nearly as optimal with respect to its goals as its resources will allow
 - Resources include processing power, algorithm and time available
- ◆ Quantifiable definition needed?

16 September 2007

Modelling Bounded Rationality (1998)

Ariel Rubinstein New York University

- Rational decisions are optimal decisions
 - But decisions makers often try to satisfy constraints
 - Rather than finding optimality
- Rationality comes from decision making procedures
 - Procedures should be specified explicitly
 - This put the study of procedures on the research agenda

16 September 2007

All Rights Reserved. Edward Tsans

Efficient Market Hypothesis

- ◆ Financial assets (e.g. shares) pricing:
 - All available information is fully reflected in current prices
- ◆ If EMH holds, forecasting is impossible
 - Random walk hypothesis
- ♦ Assumptions:
 - Efficient markets (one can buy/sell quickly)
 - Perfect information flow
 - Rational traders

16 September 2007

All Rights Reserved, Edward Tsang

Does the EMH Hold?

- ♦ It holds for the long term
- ♦ "Fat Tail" observation:
 - big changes today often followed by big changes (either + or –) tomorrow
- ◆ How fast can one adjust asset prices given a new piece of information?
 - Faster machines certainly help
 - So should faster algorithms (CIDER)

16 September 2007

All Rights Reserved, Edward Tsang

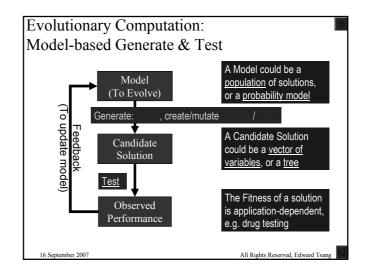
Test: Syntax – GDTs in EDDIE-2

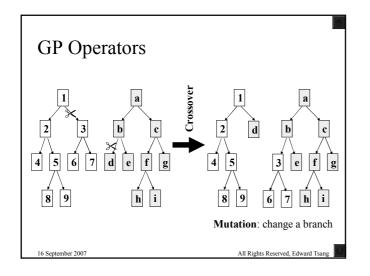
<Tree> ::= "If-then-else" <Condition> <Tree> <Tree> | Decision
 <Condition> ::= <Condition> "And" <Condition> |
 <Condition> "Or" <Condition> |

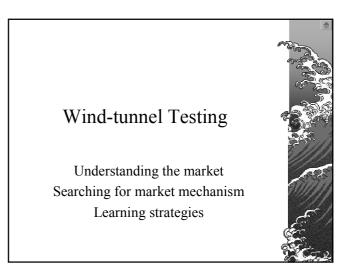
"Not" <Condition> | Variable <RelationOperation> Threshold

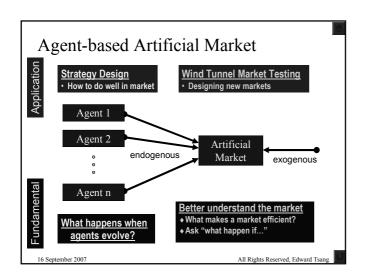
<RelationOperation> ::= ">" | "<" | "="</pre>

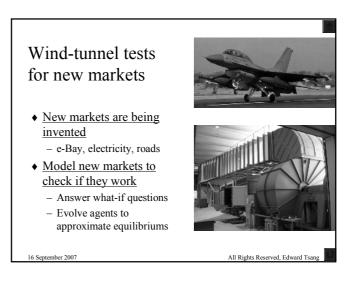
Variable is an indicator / feature

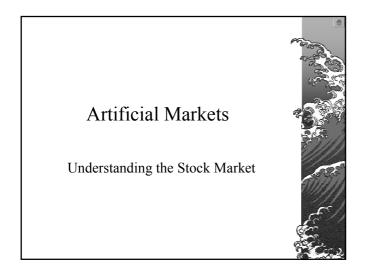

Decision is an integer, "Positive" or "Negative" implemented Threshold is a real number

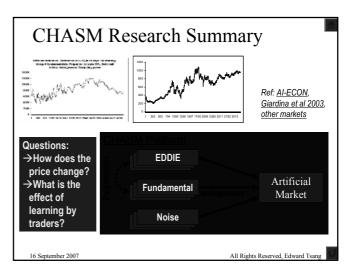

◆ Richer language ⇒ larger search space

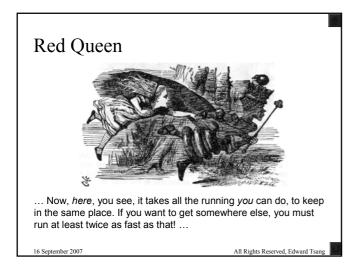

16 September 2007

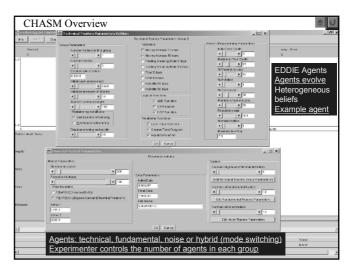

All Rights Reserved, Edward Tsang


Evolutionary Computation A very brief introduction Genetic Programming









Artificial Finance Market Conclusions

- ♦ Platform supports wide range of experiments
- ◆ Conditions for stylized facts identified in endogenous, realistic market
- ◆ Agents must be competent and realistic
 - Some must observe fundamental values
- ◆ Learning agents (EDDIE-based):
 - Statistical properties of returns and wealth distribution changed
 - No need for fundamental trader!

6 September 200

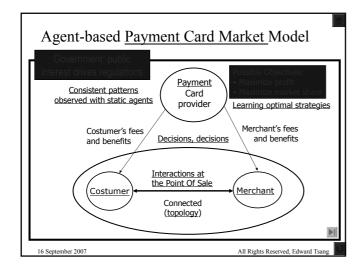
All Rights Reserved, Edward Tsa

Credit Card Payment Market

An Agent-based approach

Why Modelling?

- ◆ Scientific Approach
 - Modelling allows scientific studies.
 - Human expert opinions are valuable,
 - But best supported by scientific evidences
- ◆ Multiple Expertise
 - models can be built by multiple experts at the same time
 - The resulting model will have the expertise that no single expertise can have.
- Models are investments
 - Models will never leave the institute as experts do.
 - Investments can be accumulated

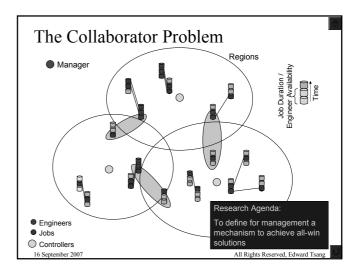

16 September 200

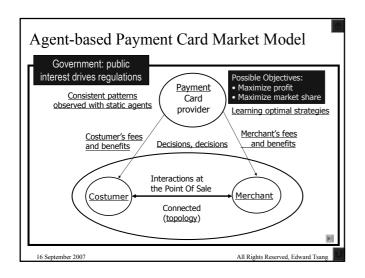
All Rights Reserved, Edward Tsang

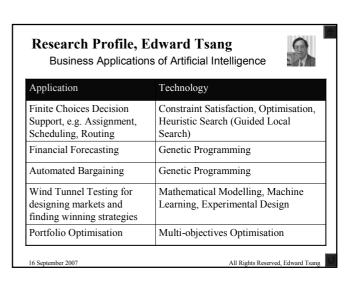
Why Agent Modelling

- ◆ Agent modelling allows
 - Heterogeneity
 - Geographical distribution
 - Micro-behaviour to be modelled
- ◆ Representative models don't allow these
- ♦ Micro-behaviour makes the market

16 September 2007




Conclusion, Credit Card Payment Analysis


- ◆ Market behavior is complex and hard to analyze
- APCM is useful for studying the card market
 - It is a good model of consumers and merchants behavior
 - Could be used to predict demands
- GPBIL could be used for searching strategies under certain requirements
- ♦ Observation: rich results... e.g.
 - Market info determines outcomes
 - More information → less dominance

ember 2007 All Rights Res

