

1

Tutorial on Evolutionary Computation in Bioinformatics: Part I

Gary B. Fogel

Vice President Natural Selection, Inc. 9330 Scranton Rd., Suite 150 San Diego, CA 92121 USA

Kay C. Wiese

School of Computing Science Simon Fraser University Canada Chair: IEEE CIS Bioinformatics and Bioengineering Technical Committee

Bioinformatics - Definition

Bioinformatics

- The field of science in which biology, computer science, and information technology merge to form a single discipline. The ultimate goal of the field is to enable the discovery of new biological insights as well as to create a global perspective from which unifying principles in biology can be discerned.
- □ Classically: storage and information retrieval of biological data

Computational Biology

- □ Use of computers to analyze and interpret biological data
- □ Typically nucleotide, RNA, protein sequences, structures
- Largely interchangeable in the literature
- New tools for data access and management
- New algorithms and statistics for pattern identification and prediction

Bioinformatics - History

- Revolutionary methods in molecular biology
 - □ DNA sequencing
 - Protein structure determination
 - Drug design and development
- Exponential growth of biological information
- Computational requirement for
 - Database storage of information
 - Organization of information
 - Tools for analysis of data
- The transition of biology from "wet-lab" to "drylab/information science"

Bioinformatics / Computational Biology

- The use of techniques from applied mathematics, informatics, statistics, and computer science to solve (typically noisy) biological problems
- Multiple sequence alignment
- Identification of functional regions or motifs
- Classification of data
- Phylogenetic analysis
- Molecular structure determination and folding
- Genetics
- Diagnostics and medical applications

Why is bioinformatics important?

- Modeling via bioinformatics may provide answers to questions related to human health and evolution
- Development of small molecule drugs to combat infection and disease
- Diagnosis and prognosis, leading to more effective medicine

http://www.ncbi.nlm.nih.gov/Genbank/index.html

Bioinformatics

The Knowledge Gap

Information

Function

A More Modern View...

What is DNA?

- Adenine (A)
- Thymine (T)
- Guanine (G)
- Cytosine (C)

A – T
G – C

Gene Organization

Enhancers and promoters affect the level of transcription and act as on-off switches (potentiometers)

Promoter Data

- Reese' promoters dataset:
- http://www.fruitfly.org/seq_tools/datasets/Human/promoter/
- Results for NNPP on promoters taken from the Eukaryotic Promoter Database, EPD and genes GenBank database.
- 300 promoter sequences of 51 bp each. (40bp upstream and 11 bp downstream from the known transcription start site)
- 3,000 non-promoter regions, also each of 51 bp, some from coding regions and some introns.

RNA

■ A – U

■ G – C

■ G – U

Adenine (A)
Uracil (U)
Guanine (G)
Cytosine (C)

>100 Gigabases of Information

- Over 100 Gigabases of DNA and RNA sequence information in GenBank, EMBL, and DDBJ as of 2005
 - (roughly the same order of magnitude as the number of nerve cells in a human brain)
 - □ individual genes
 - partial and complete genomes
 - □ over 165,000 organisms
 - □ Free access

http://www.nlm.nih.gov/news/press_releases/dna_rna_100_gig.html

Databases

GenBank

- National Institutes of Health
- □ 65 gigabases of sequence information

EMBL

European Molecular Biology Laboratory

DDBJ

DNA DataBank of Japan

Microarrays

Actual strand = 25 base pairs

RNA fragments with fluorescent tags from sample to be tested

Shining a laser light at GeneChip causes tagged DNA fragments that hybridized to glow

DeRisi JL, et al. (1997) Science 278(5338):680-6

F

Microarray Databases

Stanford Microarray Database □ Experiments : 66571 □ Public Experiments : 12596 □ Spots : 1983883115 □ Users : 1633 □ Labs : 319 \Box Organisms : 50 \Box Publications : 350

http://genome-www5.stanford.edu/statistics.html

Amino Acids			(nonpolar =	hydrophobi	c)
			Polarity		
Alanine	ala	Α	N		
Arginine	arg	R	+		
Aspargine	asn	Ν	Р		
Aspartic Acid	asp	D	· -		
Cysteine	cys	С	Р		
Glutamic Acid	glu	Е	· –		
Glutamine	gln	Q	Р		
Glycine	gly	G	N		
Histidine	his	н	+		
Isoleucine	ile	I	N		
Leucine	leu	L	N		
Lysine	lys	Κ	+		
Methionine	met	М	N	-	
Phenylanaline	\mathbf{phe}	F	N		
Proline	pro	Ρ	N	c	L
Serine	ser	S	Р	ō	
Threonine	thr	Т	Р	8	
Trytophan	trp	W	N	Ŭ	
Tyrosine	tyr	Y	Р	2.	1
Valine	val	v	N	ø	N

GGUGCGCGUUAU

GARY

Ξ
<u>0</u>
õ
ō
<u>,</u> E
ő
ğ
Ω
ц,
<u> </u>

	U	C	Α	G				
U	Phe Phe Leu Leu	Ser Ser Ser Ser	Tyr Tyr STOP STOP	Cys Cys <mark>STOP</mark> Trp	U C A G			
С	Leu Leu Leu Leu	Pro Pro Pro Pro	His His Gln Gln	Arg Arg Arg Arg	U C A G			
Α	lle lle lle Met	Thr Thr Thr Thr Thr	Asn Asn Lys Lys	Ser Ser Arg Arg	U C A G			
G	Val Val Val Val	Ala Ala Ala Ala	Asp Asp Glu Glu	Gly Gly Gly Gly	UCAG			

2nd base in codon

3rd base in codon

Amino acids

Consists of a central carbon atom C_{α} which is bonded to an amino group and a carboxyl group and a side-chain

The backbone in proteins

The backbone is the sequence of amino groups, C_{α} , and carboxyl groups

Amino group

Ν

Η

Н

Н

Sidechain which determines

Proteins differ only in the number of amino acids linked together, and the sequential order in which these amino acids occur

Carboxyl group

O

Η

Protein

20 amino acid typesFolding

Image adapted from: National Human Genome Research Institute.

Protein Analysis

Broad area of bioinformatics includes:

- Sequence
- Structure
- Function
- Focus today on:
 - Finding Motifs
 - Classification
 - Prediction

Primary Data Sources

- Sequence pdb, swissProt
- Structure cath, dssp
- Function cath, scop
- Experimentally derived from a lab or group of labs (e.g. NMR data for membrane spanning proteins)

Quantitative Structure-Activity Relationships

- Molecule/activity set
- 10s-100s of features = (hydrophobicity, electronic effects, steric effects, etc.)
- Training / testing / validation sets
- Reduce the number of features
- Predictive model for future compound discovery
- Better understanding of true biological mechanism of action

Phylogenetics

- Determining the history of life on Earth using sequence information or other characteristics/features
- Develop a tree-like representation
- Factorial increase in the number of possible trees as the number of sequences/features increases
- Better search algorithms for the space of tree representations for resolution of a "true" tree

cyanobacteria

BACTERIA

heterotrophic

bacteria

chromists plants a animals fungi

alveolates chodophytes

EUKARYOTA

flagellates

basal protists

ARCHAEA halophiles thermophiles

32

Data Pitfalls

- Bias due to homology
- Dirty data due to unknowns
- Not enough examples to train from
- Outliers
- Out of date
- Garbage in, garbage out

Predictors and Classifiers

- Predictors given an unknown data sample provide a measure of confidence that it belongs to the set the model was constructed to represent
- Classifiers given a set of heterogeneous data separate the data into classes.
 - □ Supervised trained on a set of known examples
 - Unsupervised number of classes is not known in advance (also referred to as clustering)

Clustering

Clustering is the classification of similar objects into different groups

More precisely - the partitioning of a data set into subsets (clusters), so that the data in each subset (ideally) share some common trait - often proximity according to some defined distance measure.

Measuring Performance

- TP(t), FP(t), TN(t), FN(t), where t = threshold
- Specificity
 TN/(TN+FP)
- Sensitivity
 TP/(TP+FN)
- False Positive Rate
 - \Box 1-specificity = FP / (FP + TN)
Measuring Performance

Correlation coefficient (TP x TN – FP x FN)/ Sqrt((TP+FN) x (TP+FP) x (TN+FP) x (TN+FN))

- Receiver operating characteristic
 - Sensitivity/specificity
 plot for an experiment
 - Measure the area under the curve

When to Employ an Evolutionary Algorithm

- Large search space with many local optima
- Neither exact algorithms nor approximation algorithms feasible
- Applications where current solutions rely on heuristics
- Dynamic processes
- Examples in bioinformatics:
 - multiple sequence alignment
 - □ structure prediction
 - clustering expression data
 - phylogeny (using parsimony)
 - parameter estimation in hidden Markov models
 - □ finding gene networks

Problem Dependent Application

Each problem requires its own

- Representation
 - Particularly important in bioinformatics
- □ Variation operators
- □ Rates of mutation/recombination
- □ Performance index

Gene Expression

Class prediction through evolved classifiers

which genes are most correlated with known cell types/disease phenotype

- Class discovery through evolutionary computation
 - how many cell types are truly represented in the gene expression data?

Optimizing Neural Networks Using Evolutionary Computation

Gehlhaar et al. (1995) Current Biol. 2:317-324.

Strategy for Broad-Spectrum Drug Discovery

Search nucleotide sequences for conserved RNA structures/drug targets with broad spectrum anti-bacterial or antiviral activity

Macke *et al.*, *Nuc. Acids Res.* **29**, 4724-4735 (2001) Fogel *et al.*, *Nucl. Acids. Res.* **30**, 5310-5317 (2002)

Signal Recognition Particle – Domain IV

- SRP targets signal peptidecontaining proteins to plasma membranes (prokaryotes) or endoplasmic reticulum (eukaryotes)
- Domain IV is essential, known binding site for protein component of SRP
- Highly conserved, found over a wide phylogenetic distance

4-6 3 3-5 3-5	3-5	3-10 3-5 3-10	4-6 3-10 0-5 0-5 3-10	0-5	0 3-10 0-5 3-10	4-6 3 4-5 4-5 3	
Experiment	1	2	3	4	5	6	
Organis m							
H. sapiens A. fulgidus B. subtilis E. coli M. voltae S. pyogenes S. aureus	20 15 12 14 11 -	136 69 62 45 30 -	418 200 374 258 121 -	903 724 520 523 315 -	903 724 520 523 315 57295 -	903 724 520 523 315 - 13591	
Total	72	342	1371	2985	60280	16576	

Signal Recognition Particle – Domain IV

Exp.	Possible Bins	Р	0	G	Time (min.)	Fraction Evaluated
1	$5.5 imes10^5$	80	40	3	2	1.7 × 10 ⁻²
2	$7.9 imes10^8$	80	40	7	4	$2.8 imes 10^{-5}$
3	$9.8 imes 10^{11}$	80	40	27	13	8.8 × 10 ⁻⁸
4	$5.6 imes 10^{13}$	80	40	27	12	$5.9 imes 10^{-11}$
5	$3.2 imes 10^{18}$	200	100	25	90	$1.5 imes 10^{-13}$
6	$7.6 imes 10^{17}$	200	100	13	41	$3.4 imes10^{-13}$

Experiments 1-4

gi	38795	192	24	gcc	cagg	CCC	ggaa	ggg	agca	ggc
gi	216348	153	24	tgt	cagg	tcc	ggaa	gga	agca	gca
gi	42758	204	24	ggt	cagg	tcc	ggaa	gga	agca	gcc
gi	177793	308	24	gcc	cagg	tcg	gaaa	cgg	agca	ggt
gi	150042	310	26	ccg	ccagg	CCC	ggaa	ggg	agcaa	cgg

Signal Recognition Particle – Domain IV

Experiment 5

gb	AE004092	190360	24	ggt	cagg	gga	ggaa	tcc	agca	gcc
gi	150042	310	26	ccg	ccagg	CCC	ggaa	ggg	agcaa	cgg
gi	177793	308	24	gcc	cagg	tcg	gaaa	cgg	agca	ggt
gi	42758	204	24	ggt	cagg	tcc	ggaa	gga	agca	gcc
gi	216348	153	24	tgt	cagg	tcc	ggaa	gga	agca	gca
gi	38795	192	24	gcc	cagg	CCC	ggaa	ggg	agca	ggc

Experiment 6

gi	15922990	525890	24	tgt	cagg	tcc	tgac	gga	agca	gca
gi	150042	310	26	ccg	ccagg	CCC	ggaa	ggg	agcaa	cgg
gi	177793	308	24	gcc	cagg	tcg	gaaa	cgg	agca	ggt
gi	42758	204	24	ggt	cagg	tcc	ggaa	gga	agca	gcc
gi	216348	153	24	tgt	cagg	tcc	ggaa	gga	agca	gca
gi	38795	192	24	gcc	cagg	CCC	ggaa	aaa	agca	ggc

Transcription Factor Binding Site (TFBS) Discovery

- Use evolutionary computation to search for TFBSs of co-expressed genes
- Identify known TFBS motifs as well as putative, previously unknown motifs that serve as promoters or enhancers
- Follow up with experimental validation

Discovery of TFBSs using EC

ATGCAAAT ATGTAAAT ATGTAAAT ATGCAAAT ATGCAAAG ATGTAAAA

Identify putative TFBS Based on sequence similarity and complexity

Fogel et al. (2004) Nucl. Acids Res. 32(13):3826-3835

References – Bioinformatics Books

- Mount, DW Bioinformatics: Sequence and Genome Analysis, Cold Spring Harbor Laboratory Press, 2001.
- Draghici, S Data Analysis Tools for DNA Microarrays, Chapman and Hall/CRC Press, 2003.
- Baldi, P and Brunak S *Bioinformatics: The Machine Learning Approach*, second ed., MIT Press, 2001.
- Westhead DR et al., *Bioinformatics*, BIOS Scientific Publishers Ltd., 2002.
- Gibas C and Jambeck P Developing Bioinformatics Computer Skills, O'Reilly, 2001.
- Augen, J Bioinformatics in the Post-Genomic Era: Genome, Transcriptome, Proteome, and Information-Based Medicine, Addison-Wesley, 2005.
- Branden C and Tooze J Introduction to Protein Structure, Garland Publishing, Inc. 1991.
- Jones NC and Pevzner PA An Introduction to Bioinformatics Algorithms, MIT Press, 2004.

References

- Fogel GB and Corne DW Evolutionary Computation in Bioinformatics, Morgan Kauffman, 2003.
- Fogel GB "Microarray Data Mining with Evolutionary Computation," in Evolutionary Computation in Data Mining, (A. Ghosh and LC Jain eds.) Springer, 2005
- Dybowski R and Gant V Clinical Applications of Artificial Neural Networks, Cambridge Univ. Press, 2001.
- Gehlhaar et al. (1995) *Current Biol.* 2:317-324
- Macke et al. (2001) *Nuc. Acids Res.* 29:4724-4735
- Fogel et al. (2002) *Nuc. Acids Res.* 30:5310-5317
- Weekes and Fogel (2003) *BioSystems* 72:149-158.
- Fogel et al. (2004) *Nuc. Acids Res.* 32:3826-3835
- DeRisi et al. (1997) Science 278:680-686

Tutorial on Evolutionary Computation in Bioinformatics: Part II

Kay C. Wiese School of Computing Science Simon Fraser University Canada Chair: IEEE CIS Bioinformatics and Bioengineering Technical Committee

Gary B. Fogel

Vice President Natural Selection, Inc. 9330 Scranton Rd., Suite 150 San Diego, CA 92121 USA

Overview

- Computational Intelligence (CI) in Bioinformatics
- RNA Structure and Prediction
- Designing Algorithms Inspired by Nature: Evolutionary Computation – Successes in the RNA Domain with *RnaPredict*
- A comparison with known structures and mfold
- *jViz.Rna* A Dynamic RNA Visualization Tool
- Conclusions

Computational and Design Methods Used in Bioinformatics

Algorithm Design including:

- Dynamic Programming
- Heuristic Search
- Computational Intelligence Methods: Evolutionary Computation, Simulated Annealing, Neural Networks, Fuzzy Systems
- Graphics and Visualization
 - Designing models for sequence or structure information
 - □ 2D and 3D visualization of structures
 - □ Systems design for input, output and manipulation
 - Design of interactive input and output technology

Successful Applications of CI in Bioinformatics

- Sequence Alignment
 - SAGA: An Evolutionary Algorithm (EA) for Sequence Alignment (Notredame et al.)
- RNA Structure Prediction
 - Evolutionary Algorithms (*RnaPredict* and *PRnaPredict* (Wiese et al., Shapiro et al., vanBatenburg et al.)
 - □ Simulated Annealing

Successful Applications of CI in Bioinformatics, cont.

- Protein Structure Prediction (Searching the Protein Conformational Space)
 - Evolutionary Algorithms
 - Simulated Annealing
 - Knowledge Based Methods
- Protein-Protein Interaction
 - Do two proteins interact? Where? How?
 - Searching Conformational Space for Docking (EAs)

Successful Applications of CI in Bioinformatics, cont.

- Identify Coding Regions in DNA
 - Evolved Artificial Neural Network for Gene Identification (Fogel et al.)
- Excellent Overview of EA approaches in Bioinformatics
 - Evolutionary Computation in Bioinformatics, Gary B.
 Fogel and David W. Corne, Morgan Kaufmann
 Publishers (2003)
 - Computational Intelligence in Bioinformatics, Fogel et al., IEEE Press (due Dec, 2007)

RNA Folding – A case study

- RNA is involved in transcription and translation: making proteins
- Other roles include regulatory, catalytic and structural roles, also in combination with proteins
- RNA sequences are determined using high throughput sequencing machines

RNA Folding: Why should we care?

- Why study/predict RNA structure?
- The structure of RNA molecules largely determines their function in the cell.
- Preservation of structure can be used to understand evolutionary processes.
- Knowing the structure or shape can be used to understand genetic diseases and to design new drugs.
- RNA secondary structure is formed by a natural folding process in which chemical bonds between certain so called canonical base pairs are formed.

RNA Folding

The canonical base pairs are GC, AU, GU, and mirrors CG, UA, UG

Finding all canonical base pairs is simple, but which ones will actually form bonds ?

While the sequence "folds" back onto itself it forms the secondary structure

RNA Secondary Structure Elements

Note: the same sequence may produce many different, overlapping helices

RNA Double Helix Model

- A helix consists of at least three consecutive canonical base pairs.
- The helix can only form if the sequence or loop connecting the two strands is at least 3 nucleotides long.

Which helices are possible?

Which helices are possible?

RNA Folding by Energy Minimization

- RNA molecules are stabilized by the formation of these helices (through base pair bonds).
- How do we know which helices will form?
- RNA molecules will fold into a *minimum energy* state. This minimum can be a local one.
- The free energy of a structure is determined by evaluating the thermodynamic model that is associated with the current structure.

RNA Thermodynamics

- Energies for various RNA substructures can be determined experimentally and are associated with thermodynamic parameters.
- Thermodynamic models can consider bonding energies, stacking energies, and looping energies.

Our work employs two stacking energy models

- Individual Nearest Neighbor (INN) (Borer, Freier, Sugimoto, He)
- Individual Nearest Neighbor Hydrogen Bond (INN-HB) (Xia et al. 1998)

Free Energy Minimization Stacking Energies

- Free energy (∆G) is reduced as base pairs are formed
- Two helices with same base pairs can have different ΔG
- ΔG contribution of a base pair depends on
 - Position in helix
 - Proximity to other base pairs
- Both INN and INN-HB model nearestneighbors, terminal mismatches, dangling ends, helix initiation, and helix symmetry

Stacking Energies (INN and INN-HB)

Energy Minimization

• The free energy $\Delta G(S)$ of the entire structure is given by:

$$\Delta G(S) = \sum_{h \in S} \Delta G(h)$$

where $\Delta G(h)$ is the free energy of an individual helix according to the thermodynamic model in use.
Approach - Find All Pairs

- 1. Find all canonical base pairs
- 2. Attempt to grow each pair(i,j) into a helix by "stacking" pairs
- 3. Add helix to set H of all potential helices

- 1. Find all canonical base pairs
- 2. Attempt to grow each pair(i,j) into a helix by "stacking" pairs
- 3. Add helix to set H of all potential helices

- 1. Find all canonical base pairs
- 2. Attempt to grow each pair(i,j) into a helix by "stacking" pairs
- 3. Add helix to set H of all potential helices.

- 1. Find all canonical base pairs
- 2. Attempt to grow each pair(i,j) into a helix by "stacking" pairs
- 3. Add helix to set H of all potential helices

- 1. Find all canonical base pairs
- 2. Attempt to grow each pair(i,j) into a helix by "stacking" pairs
- 3. Add helix to set H of all potential helices.

- 1. Find all canonical base pairs
- 2. Attempt to grow each pair(i,j) into a helix by "stacking" pairs
- 3. Add helix to set H of all potential helices

Add New Helix

- 1. Find all canonical base pairs
- Attempt to grow each pair(i,j) into a helix by "stacking" pairs
- 3. Add helix to set H of all potential helices

RNA Helices

- Must have at least 3 "stacked" base pairs
- Sequence or loop connecting the two strands must be at least 3 nucleotides long
- Store this new helix in a set H

AUCUCUAGGAUC

j-4

i+4

Assembling a Structure S

From the set H of all helices, select a subset S such that:

- □ Sum of free energies of all h in S is minimized
- □ No helices h in S share bases

Approach, cont.

The energy function E is determined by the current thermodynamic model and minimized

$$\sum_{h\in S}\Delta G(h) = \min$$

- Challenge: There are 2^{|H|} sub-sets of H
- Solution: Probabilistic Approaches, such as Evolutionary Algorithms, Monte Carlo, Simulated Annealing

Objectives

- To design a novel Evolutionary Algorithm to predict secondary RNA structure (RnaPredict)
- To evaluate the algorithm including convergence behavior and population dynamics
- To suggest several improvements to the algorithm
- To study the effect of different selection and reproduction techniques on the EA
- To compare the outcome (predicted structures) with known structures and other approaches such as Nussinov and *mfold*

High Level Evolutionary Algorithm

Initialize a population of chromosomes; Evaluate the chromosomes in the population;

while (stopping criteria not reached) do for i=1 to size_of(population)/2 do select 2 parent chromosomes; apply crossover operator to them; apply mutation operator to them; evaluate the new chromosomes; insert them into g_{next} ; i = i + 1; endfor update stopping criteria; endwhile

Representing Structure S in the Algorithm

A permutation P of set H is used to represent the structure in the EA

Decoding the Permutation

When an individual is decoded, each helix in the permutation is iterated through

Only helices which do not conflict are scored and placed in the final structure

Experiments and Results

- Tested several sequences with both known and unknown structures
- 4 selection/replacement strategies
- 2 representations and 9 X-over operators
- over 100 combinations of P_c and P_m
- Population size = 700
- 30 independent runs with different random seeds
- 785 nt human mRNA ...

Results – Roulette Wheel Selection

785 nt human mRNA, 10480 Possible Helices, P_m=5%, P_c=70%, pop_size = 700, CX, STDS, no elitism

Results: Keep-Best Reproduction

- Faster convergence
- Better solution quality
- Works well with smaller population sizes
- Very robust over a wide range of operator probabilities

Results – KBR, cont.

785 nt human mRNA, 10480 Possible Helices, P_m=80%, P_c=70% pop_size = 700, CX, KBR, 1-elitism

What about the structures?

- So far we have focused on understanding the factors that control:
 - □ the convergence speed of the algorithm
 - the effectiveness of the algorithm to find low energy structures
- What about the actual structures?
 - Need to know how close our predicted structures match real structures in nature

Predicted Structures vs. Real Structures

Haloarcula marismortui – 122nt						
Correctly predicted base pairs	Bonding Model	Stacking Model (INN-HB)				
Best	<30%	71.1%				
Best canonical base pairs only	41.3%	93.1%				

What about the quality of the structures?

How much does the previous quantitative measure (base pair overlap) tell us?

What do the structures look like?

Visualization of RNA secondary structure – *jViz.Rna*

- We have developed a tool (*jViz.Rna*) to visualize RNA that could:
 - □ Be separate from the prediction tool
 - Handle and display pseudo-knots
 - Have dynamic output for further manipulation by the user
 - □ Allow for easy comparison of two structures
 - □ Allow for quantitative comparison of two structures
 - Allow for saving the output as high quality graphics in a standard format (.gif)

jViz.Rna – Feynman diagram Known Structure

Saccharomyces cerevisiae (Baker's Yeast) 118 nt

jViz.Rna – Predicted Structure

Saccharomyces cerevisiae (Baker's Yeast) 118 nt

jViz.Rna – Comparison of Predicted vs. Known Structure

Saccharomyces cerevisiae (Baker's Yeast) 118 nt

jViz.Rna – Dot Plot

RNA Base Pairing

Canonical

Non-canonical

- G-CA-U
- **G**-U

G-A
A-A
C-U
U-U
and others...

Quantitative Overlap (known vs. predicted structure)

- Known structure of Baker's Yeast has a total of 37 bps
- Our method *RnaPredict* predicts 33 of those (89.2%)
- Known structure contains 2 C-U pairs which cannot be predicted with the current model: 33/35 were found (94.3%)
- Without the C-U pairs the existing helix of size 3 would only be size 2 and could thus not be predicted
- Of the bps and helices that our model can predict, it found 100%, hence the search engine has a very high accuracy

A comparison with Nussinov DPA

- Nussinov is a simplistic DPA for RNA secondary structure prediction that works on the principle of base pair maximization
- Modifications made to emulate bp weights at G-C = 3, A-U = 2, and G-U = 1

Used as a base line for our comparisons

S. cerevisiae via Nussinov

Overlap

Best Nussinov vs. best Correct BP EA run

Sequence	Sequence Total BP	DPA over- pred.	EA over- pred.	DPA Corr. BPs	EA Corr. BPs	DPA Corr. BP %	EA Corr. BP %
S. cerevisiae	37	17	6	28	33	75.7%	89.2%
H. marismortui	38	37	17	8	16	21.1%	71.1%
H. rubra	138	174	88	31	71	22.5%	51.4%
D. virilis	233	291	168	29	66	12.4%	28.3%
X. laevis	251	286	158	47	100	18.7%	39.8%

Best Nussinov vs. best Correct BP EA run

Sequence	Sequence Total BP	DPA over- pred.	EA over- pred.	DPA Corr. BPs	EA Corr. BPs	DPA Corr. BP %	EA Corr. BP %
A. lagunensis	113	142	59	30	73	26.5%	64.6%
A. griffini	131	166	78	48	79	36.6%	60.3%
C. elegans	189	281	146	26	56	13.8%	29.6%
H. sapiens	266	309	135	33	92	12.4%	34.6%
S. acidocaldarius	468	395	288	187	159	40.0%	34.0%

A comparison with *mfold*

- *mfold* is the most cited and widely used RNA secondary structure prediction algorithm (based on DP)
- Developed by Zuker et al.
- Basic algorithm first introduced in 1981
- Since then refined continually until today (newest version published in 2003)
- Considered the gold standard of RNA secondary structure prediction
Overall Best Correct BP mfold vs. EA result

Sequence	Sequence Total BP	DPA over pred.	EA over- pred.	DPA Corr. BPs	EA Corr. BPs	DPA Corr. BP %	EA Corr. BP %
S.cerevisiae	37	8	6	33	33	89.2%	89.2%
H.marismortui	38	5	17	29	27	76.3%	71.1%
H.rubra	138	127	88	49	71	35.5%	51.4%
D.virilis	233	199	168	37	66	15.9%	28.3%
X.laevis	251	157	158	92	100	36.7%	39.8%

Overall Best Correct BP mfold vs. EA result

Sequence	Sequence Total BP	DPA over- pred.	EA over- pred.	DPA Corr. BPs	EA Corr. BPs	DPA Corr. BP %	EA Corr. BP %
A. lagunensis	113	68	59	60	73	53.1%	64.6%
A. griffini	131	105	78	67	79	51.1%	60.3%
C. elegans	189	177	146	40	56	21.2%	29.6%
H. sapiens	266	163	135	95	92	35.7%	34.6%
S. acidocaldarius	468	233	288	261	159	55.8%	34.0%

RnaPredict vs. mfold, cont.

2 extra base pairs predicted by *mfold*

Pseudo-knots

- 2 base pairs (i, j) and (i', j') are pseudoknotted if i < i' < j < j'... a 3D interaction.</p>
- Occurrence of pseudo-knots is rather rare, but structurally significant
- Typically, longer sequences have a higher probability of having pseudo-knots
- How can we display them?
 - Arc and circular diagrams can display pseudo-knots but do not work well for longer sequences
 - Classical structure? Existing tools such as *RnaViz* do a poor job, example...

Conclusions – RNA Folding

- Excellent convergence behavior of EA
- Best results achieved with Keep-Best Reproduction (both efficiency and quality of structures increase substantially)
- Very high accuracy of prediction for shorter sequences
- EA is able to work with the "fuzziness" of the noisy thermodynamic model

Conclusion – RNA Folding cont.

- Outperforms Nussinov DP in all but one case by a wide margin
- Outperforms *mfold* on several sequences, despite *mfold*'s use of a very sophisticated thermodynamic model
- *mfold* also cannot predict non-canonical base pairs

Conclusion – jViz.Rna

- *jViz.Rna* is a platform independent visualization tool for RNA structure
- *jViz.Rna* applications include:

study RNA structure

evaluation of RNA folding algorithms

Venues of Interest

- IEEE Symposium on Computational Intelligence in Bioinformatics and Comp. Biology (CIBCB) – www.cibcb.org
- Special Session on EC in Bioinformatics and Comp. Biology at IEEE Congress on Evolutionary Computation.
- IEEE/ACM Transactions on Comp. Biology and Bioinformatics
- IEEE Transactions on NanoBioscience
- IEEE Transactions on Evolutionary Computation

Acknowledgements

- Simon Fraser University
- Natural Science and Engineering Research Council of Canada
- Canada Foundation for Innovation
- Andrew Hendriks Presentation, Research and Programming
- Edward Glen Visualization of structures
- Alain Deschenes Research and Programming

- Natural Selection, Inc.
- National Science Foundation
- National Institutes of Health
- Dana Weekes, Mars Cheung Research and Programming
- Institute of Electrical and Electronics Engineers IEEE and IEEE/CIS
- L. Gwenn Volkert, Dan Ashlock, Clare Bates Congdon

Questions?

References

- Dandekar, T. and Argos, P. (1996), "Ab initio tertiary-fold prediction of helical and non-helical protein chains using a genetic algorithm", *International Journal* of Biological Macromolecules, 18, pp. 1-4.
- Fogel, Gary B., and Corne David W. (2003), Evolutionary Computation in Bioinformatics, Morgan Kaufmann Publishers.
- Gultyaev AP, van Batenburg FHD, and Pleij CWA (1998), "RNA folding dynamics: Computer simulations by a genetic algorithm", *Molecular Modeling of Nucleic Acids, ACS Symposium Series*, 682, pp. 229-245
- Konig, Rainer and Dandekar, Thomas (1999), "Improving genetic algorithms for protein folding simulations by systematic crossover", *BioSystems* 50, pp. 17-25.
- Notredame, C. (2003), "Using Genetic Algorithms for Pairwise and Multiple Sequence Alignments", in *Evolutionary Computation in Bioinformatics* (Gary B. Fogel and David W. Corn Eds.), Morgan Kaufmann Publishers, pp. 87 – 111.
- Pedersen, Jan T. and Moult, John (1996), "Genetic algorithms for protein structure prediction", *Current Opinion in Structural Biology*, 6 (2), 227-231
- Shapiro, B. A. and Navetta, J. (1994), A massively parallel genetic algorithm for RNA secondary structure prediction. *The Journal of Supercomputing* 8: 195-207.

References, cont.

- Shapiro, B. A. and Wu, J. C. (1996) An annealing mutation operator in the genetic algorithms for RNA folding. <u>Comput. Appl. Biosci</u>. 12(3): 171-180.
- VanBatenburg F.H.D., Gultyaev A.P., and Pleij C.W.A. (1995), "An APL-programmed Genetic Algorithm for the Prediction of RNA Secondary Structure", *Journal of theoretical Biology*, 174(3), pp. 269-280.
- Wiese, Kay C. and Goodwin, Scott D. (2001), "Keep Best Reproduction: A Local Family Competition Selection Strategy and the Environment it Flourishes in", *Constraints*, 6, p. 399-422.
- Wiese Kay C. and Hendriks Andrew G. (2006), "Comparison of P-RnaPredict and mfold - Algorithms for RNA Secondary Structure Prediction", *Bioinformatics*, doi:10.1093/bioinformatics/btl043.
- Wiese, Kay C., Glen, E. and Vasudevan, A. (2005). "jViz.Rna A Java Tool for RNA Secondary Structure Visualization", *IEEE Transactions on NanoBioscience*, Vol 4(3), pp. 212-218.
- Michael Zuker: <u>http://bioinfo.math.rpi.edu</u>