Evolutionary Multi-Objective Optimization (EMO)

<u>Fundamentals, State-of-the-art</u> <u>Methodologies, and Future Challenges</u>

Kalyanmoy Deb

Deva Raj Chair Professor Indian Institute of Technology Kanpur Kanpur, PIN 208016, INDIA

deb@iitk.ac.in

http://www.iitk.ac.in/kangal/deb.htm

Currently a Finnish Distinguished Professor at Helsinki School of Economics

Overview of Tutorial

- Part A: Introduction to EMO
 - Introduction to multi-objective optimization
 - Main classical methods
 - Philosophy of evolutionary methods
 - Early non-elitist EMO methods
 - Efficient elitist EMO methods
- Part B: Applications of EMO
 - Decision-making
 - Innovization: Innovation through EMO
 - Aiding in other problem-solving tasks
- Part C: Advanced EMO and future challenges
- Conclusions

EMO Books (Since 2001)

Kan GAL

Part A: Introduction to EMO

- Multi-objective optimization
- Definitions and theory
- Classical methods
- Difficulties with classical methods
- Early EMO methodologies
- State-of-the-art EMO
- Constraint handling in EMO

Multi-Objective Optimization

Really need no introduction

More Examples

A cheaper but inconvenient flight

A convenient but expensive flight

As a Mathematical Programming Problem

Multiple objectives, constraints, and variables

Min/Max
$$(f_1(\mathbf{x}), f_2(\mathbf{x}), \dots, f_M(\mathbf{x}))$$

Subject to $g_j(\mathbf{x}) \ge 0$
 $h_k(\mathbf{x}) = 0$
 $\mathbf{x}^{(L)} \le \mathbf{x} \le \mathbf{x}^{(U)}$

Optimality Condition

Fritz-John Necessary Condition:

Solution x^* satisfy

1.
$$\sum_{m=1}^{M} \lambda_m \nabla f_m(x^*) - \sum_{j=1}^{J} u_j \nabla g_j(x^*) = 0, \text{ and}$$

2.
$$u_j g_j(x^*) = 0$$
 for all $j = 1, 2, 3, \dots, J$

- 3. $u_j \ge 0$, $\lambda_j \ge 0$, for all j and $\lambda_j > 0$ for at least one j
- u_j's are Lagrange multipliers
- A necessary condition
- To use above conditions requires differentiable objectives and constraints

An Engineering Example

Minimize
$$f_1(d, l) = \rho \frac{\pi d^2}{4} l$$

Minimize
$$f_1(d, l) = \rho \frac{\pi d^2}{4} l$$

Minimize $f_2(d, l) = \delta = \frac{64Pl^3}{3E\pi d^4}$

subject to
$$\sigma_{\text{max}} \leq S_y$$

$$\delta \leq \delta_{\max}$$

Which Solutions are Optimal?

- Relates to the concept of domination
- \rightarrow $x^{(1)}$ dominates $x^{(2)}$, if
 - x⁽¹⁾ is no worse than x⁽²⁾ in all objectives
 - x⁽¹⁾ is strictly better than x⁽²⁾ in at least one objective
- Examples:
 - 3 dominates 2
 - 3 does not dominate 5

Pareto-Optimal Solutions

- P'=Nondominated(P)
 - Solutions which are not dominated by any member of the set P
- O(N log N) algorithms exist
- Pareto-Optimal set
 = Non-dominated(S)
- A number of solutions are optimal

Pareto-Optimal Fronts

- Depends on the type of objectives
- Always on the boundary of feasible region
- Higher dimensional Pareto-optimal front with more objectives

Local Versus Global Pareto-Optimal Fronts

Local Pareto-optimal Front: Domination check is restricted within a neighborhood (in decision space) of P

Some Terminologies

- Ideal point (z*)
 - nonexistent, lower bound on Paretooptimal set
- Utopian point (z**)
 - nonexistent
- Nadir point (z^{nad})
 - Upper bound on Pareto-optimal set

Normalization:

$$f_i^{\text{norm}} = \frac{f_i - z_i^*}{z_i^{\text{nad}} - z_i^*}$$

Differences with Single-Objective Optimization

- One optimum versus multiple optima
- Requires search and decision-making
- Two spaces of interest, instead of one

Preference-Based Methods

Classical Approaches

Miettinen (1999):

- No Preference methods (heuristic-based)
- Posteriori methods (generating solutions) discussed later
- A-priori methods (one preferred solution)
- Interactive methods (involving a decisionmaker)

Classical Approach: Weighted Sum Method

Construct a weighted sum of objectives and optimize

$$F(x) = \sum_{i=1}^{M} w_i f_i(x)$$

User supplies weight vector w

Difficulties with Weighted-Sum Method

- Need to know w
- Non-uniformity in Pareto-optimal solutions
- Inability to find some Pareto-optimal solutions (those in non-convex region)
- However, a solution of this approach is always Pareto-optimal

ε-Constraint Method

- Constrain all but one objective
- Need to know relevantε vectors
- Non-uniformity in Pareto-optimal solutions
- However, any Paretooptimal solution can be found with this approach

Minimize $f_{\mu}(\mathbf{x})$, subject to $f_{m}(\mathbf{x}) \leq \epsilon_{m}, \ m \neq \mu$;

Difficulties with Most Classical Approaches

- Need to run a singleobjective optimizer many times
- Expect a lot of problem knowledge
- Even then, good distribution is not guaranteed

Multi-objective optimization as an application of singleobjective optimization

Classical Generating Methods

- One-at-a-time and repeat
- Population approaches
 - Timmel's method
 - Schaffler's method
- Absence of parallel search is a drawback
- EMO finds multiple solutions with an implicit parallel search

Classical Methods for Finding Multiple Points

- Timmel's (1980) population approach (in German)
 - Start with a population of solutions A^(t)
 - From each point i, move a step s^(t) in direction

$$d_i^{(t)} = -\sum_{j=1}^M u_j \nabla f(x_i)$$

 u_i is a random number

- ► Keep non-dominated solutions from $A^{(t)} \cup A^{(t+1)}$ in $A^{(t+1)}$
- Asymptotic convergence proof for a suitable s^(t) sequence
- Need to choose a proper step length

Timmel's Population Approach

- Shukla and Deb (EMO, 2005)
- ▶ 100,000 evaluations

 Works on simpler problems, gets stuck at a local P-O frontier on a difficult problem

A Stochastic Method

- Schaffler et al. (2002) JOTA article
 - Start with a point x^(t)
 - Find a descent direction $q(x^{(t)}) = \sum_{i=1}^{M} \alpha_i \nabla f_i(x^{(t)})$ which solves

$$\sum_{\alpha=1}^{\min} \left\| \sum_{i=1}^{M} \alpha_i \nabla f_i(x^{(t)}) \right\| \quad \text{such that} \quad \sum_{i=1}^{M} \alpha_i = 1$$

- Update the point: $dx^{(t)} = -qx^{(t)}dt + \varepsilon dB^{(t)}$
- ▶ B(t) is a *n*-dimensional Browinian motion
- A numerical iterative algorithm suggested
- Reaches the P-O frontier and then spreads

Schaffler et al.'s Point Approach

- Shukla and Deb (EMO, 2005)
- ▶ 100,000 evaluations
- Slower than TPM

Ideal Multi-Objective Optimization

Step 1:

Find a set of Pareto-optimal solutions

Step 2:

Choose one from the set

A More Holistic Approach for Optimization

- Decision-making becomes easier and less subjective
- Single-objective optimization is a degenerate case of multi-objective optimization
 - Step 1 finds a single solution
 - No need for Step 2
- Multi-modal optimization possible
- Demonstrate an omni-optimizer later

Two Goals in Ideal Multi-Objective Optimization

- Converge to the Pareto-optimal front
- Maintain as diverse a distribution as possible

Evolutionary Multi-Objective Optimization (EMO)

Principle:

- Find multiple Pareto-optimal solutions simultaneously
- Two main reasons:
 - Help in choosing a particular solution
 - Unveil salient optimality properties of solutions
 - Assist in other problem solving

Why Use Evolutionary Algorithms?

- Population approach suits well to find multiple solutions
- Niche-preservation methods can be exploited to find diverse solutions
- Implicit parallelism helps provide a parallel search
- Multiple applications of classical methods do not constitute a parallel search

History of Evolutionary Multi-Objective Optimization (EMO)

- Early penalty-based approaches
- VEGA (1984)
- Goldberg's (1989) suggestion
- MOGA, NSGA, NPGA (1993-95) used Goldberg's suggestion
- Elitist EMO (SPEA, NSGA-II, PAES, MOMGA etc.) (1998 -- Present)

What to Change in a Simple GA?

- Modify the fitness computation
- Emphasize nondominated solutions for convergence
- Emphasize lesscrowded solutions for diversity

Identifying Non-Dominated Set

- **Step 1** Set i = 1 and create an empty set P'.
- **Step 2** For a solution $j \in P$ (but $j \neq i$), check if solution j dominates solution i. If yes, go to Step 4.
- **Step 3** If more solutions are left in P, increment j by one and go to Step 2; otherwise, set $P' = P' \cup \{i\}$.
- **Step 4** Increment i by one. If $i \leq N$, go to Step 2; otherwise stop and declare P' as the non-dominated set.
 - O(MN²) computational complexity

Kung et al.'s (1975) Approach

Step 1 Sort the population in descending order of importance of f_1

Step 2, Front(P) If |P| = 1, return P as the output of Front(P). Otherwise, $T = \text{Front}(P^{(1)} - -P^{(|P|/2)})$ and $B = \text{Front}(P^{(|P|/2+1)} - -P^{(|P|)})$. If the *i*-th solution of B is not dominated by any solution of T, create a merged set $M = T \cup \{i\}$. Return M as the output of Front(P).

 $O\left(N(\log N)^{M-2}\right)$ for $M \ge 4$ and $O(N\log N)$ for M = 2 and 3

Non-Dominated Sorting: A Naive Approach

- Identify the best nondominated set
- Discard them from population
- Identify the next-best nondominated set
- Continue till all solutions are classified

A Fast Non-Dominated Sorting

- Calculate (n_i,S_i) for each solution i
- n_i: Number of solutions dominating i
- S_i: Set of solutions dominated by I
- Follow an iterative procedure
- A faster procedure later in Lecture L6

Which are Less-Crowded Solutions?

 Crowding can be in decision variable space or in objective space

Non-Elitist EMO Procedures

- Vector evaluated GA (VEGA) (Schaffer, 1984)
- Vector optimized EA (VOES) (Kursawe, 1990)
- Weight based GA (WBGA) (Hajela and Lin, 1993)
- Multiple objective GA (MOGA) (Fonseca and Fleming, 1993)
- Non-dominated sorting GA (NSGA) (Srinivas and Deb, 1994)
- Niched Pareto GA (NPGA) (Horn et al., 1994)
- Predator-prey ES (Laumanns et al., 1998)
- Other methods: Distributed sharing GA, neighborhood constrained GA, Nash GA etc.

Schaffer's (1984) Vector-Evaluated GA (VEGA)

- Divide population into M equal blocks
- Each block is reproduced with one objective function
- Complete population participates in crossover and mutation
- Bias towards to individual best objective solutions
- A non-dominated selection: Non-dominated solutions are assigned more copies
- Mate selection: Two distant (in parameter space) solutions are mated
- Both necessary aspects missing in one algorithm

VEGA Results

Srinivas and Deb's (1995) Non-dominated Sorting GA (NSGA)

- Niching in parameter space
- Non-dominated solutions are emphasized
- Diversity among them is maintained

	f_1	f_2		Fitness	
\boldsymbol{x}			Front	before	after
-1.50	2.25	12.25	2	3.00	3.00
0.70	0.49	1.69	1	6.00	6.00
4.20	17.64	4.84	2	3.00	3.00
2.00	4.00	0.00	1	6.00	3.43
1.75	3.06	0.06	1	6.00	3.43
-3.00	9.00	25.00	3	2.00	2.00

Example:

$$f_1(x)=x^2$$

 $f_2(x)=(x-2)^2$

NSGA Results

Another Test Problem

NSGA and VEGA

Fonseca and Fleming's (1993) Multi-Objective GA (MOGA)

- Count the number of dominated solutions (say n)
- ▶ Fitness: F=n+1
- A fitness ranking adjustment
- Niching in fitness space
- Rest all are similar to NSGA

Example:

	F	Asgn.	Fit.
1	2	3	2.5
2	1	6	5.0
3	2	2	2.5
4	1	5	5.0
5	1	4	5.0
6	3	1	1.0

Horn et al.'s (1995) Niched Pareto GA (NPGA)

- Tournament within a small subpopulation (t_{dom})
- If one dominated and other non-dominated, select second
- If both non-dominated or both dominated, choose the one with smaller niche count in the subpopulation
- Algorithm depends on t_{dom}
- Nevertheless, it has both necessary components

NPGA (cont.)

Shortcomings of Non-Elitist EMO Procedures

- Elite-preservation is missing
- Elite-preservation is important for proper convergence in single-objective EAs
- Same is true in EMO procedures
- Three tasks
 - Elite preservation
 - Progress towards the Pareto-optimal front
 - Maintain diversity among solutions

Elitist EMOs

- Distance-based Pareto GA (DPGA) (Osyczka and Kundu, 1995)
- Thermodynamical GA (TDGA) (Kita et al., 1996)
- Strength Pareto EA (SPEA) (Zitzler and Thiele, 1998)
- Non-dominated sorting GA-II (NSGA-II) (Deb et al., 1999)
- Pareto-archived ES (PAES) (Knowles and Corne, 1999)
- Multi-objective Messy GA (MOMGA) (Veldhuizen and Lamont, 1999)
- Other methods: Pareto-converging GA, multiobjective micro-GA, elitist MOGA with co-evolutionary sharing

Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II)

- NSGA-II can extract Pareto-optimal frontier
- And find a welldistributed set of solutions
- Adopted by iSIGHT and ModeFrontier
- Code downloadable http://www.iitk.ac.in/kangal/soft.htm

IEEE TEC paper awarded 'Fast Breaking Paper in Engg. by ISI Web of Sc.

NSGA-II Procedure

Elites are preserved Non-dominated solutions are emphasized

NSGA-II (cont.)

Diversity is maintained

Overall Complexity $O(N \log^{M-1} N)$

Improve diversity by

- k-mean clustering
- Euclidean distance measure
- Other techniques

One Iteration of NSGA-II

- Six parents and six offspring
- Parents after one iteration: (a,3,1,e,5,b)

NSGA-II on Test Problems

(Min)
$$f_1(x) = x_1$$
 (Min)
$$f_2(x) = g \left[1 - \left(\frac{f_1}{g} \right)^2 \right]$$
 Where
$$g(x) = 1 + \frac{9}{n-1} \sum_{i=2}^n x_i$$

(Min)
$$f_1(x) = x_1$$
(Min)
$$f_2(x) = g \left[1 - \sqrt{\frac{f_1}{g}} - \frac{f_1}{g} \sin(10\pi f_1) \right]$$
Where
$$g(x) = 1 + \frac{9}{n-1} \sum_{i=2}^n x_i$$

Zitzler and Thiele's (1999) Strength Pareto EA (SPEA)

- Stores non-dominated solutions externally
- Pareto-dominance to assign fitness
- External members: Assign number of dominated solutions in population (smaller -> better)
- Population members: Assign sum of fitness of external dominating members (smaller->better)
- Tournament selection and recombination applied to combined population
- A clustering technique to maintain diversity in updated external population, when size increases a limit

Fitness Assignment and Clustering in SPEA

- ► SPEA:
 - ▶ O(MN³) operation
- ► SPEA2
 - Improved clustering for not losing boundary points

$$k = \sqrt{N + \overline{N}}$$

- Fixed archive size
- Mating within archive members
- Dominating points use different fitness

Pareto Archived ES (PAES)

- A point-by-point approach
- Parent p_t and child c_t are compared with an external archive A_t
- Child can enter the archive and can become a parent

Comparative Results: Convergence

Algorithm	SCH	FON	POL	KUR	IEEE TEC
NSGA-II	0.003391	0.001931	0.015553	0.028964	(2002) By
	0	0	0.000001	0.000018	Deb et al
SPEA	0.003403	0.125692	0.037812	0.045617	
	0	0.000038	0.000088	0.00005	
PAES	0.001313	0.151263	0.030864	0.057323	
PAES	0.000003	0.000905	0.000431	0.011989	
Algorithm	ZDT1	ZDT2	ZDT3	ZDT4	ZDT6
NSGA-II	0.033482	0.072391	0.114500	0.513053	0.296564
	0.004750	0.031689	0.007940	0.118460	0.013135
SPEA	0.001799	0.001339	0.047517	7.340299	0.221138
	0.000001	0	0.000047	6.572516	0.000449
DAEC	0.00000	0.126276	0.023872	0.854816	0.085469
PAES	0.082085	0.120270	0.023012	0.054010	0.005405

Comparative Results: Diversity

Algorithm	SCH	FON	POL	KUR	
NSGA-II	0.477899	0.378065	0.452150	0.411477	
	0.003471	0.000639	0.002868	0.000992	
SPEA	1.021110	0.792352	0.972783	0.852990	
SPEA	0.004372	0.005546	0.008475	0.002619	
PAES	1.063288	1.162528	1.020007	1.079838	
PAES	0.002868	0.008945	0	0.013772	
Algorithm	ZDT1	ZDT2	ZDT3	ZDT4	ZDT6
	ZDT1 0.390307	ZDT2 0.430776	ZDT3 0.738540	ZDT4 0.702612	ZDT6 0.668025
Algorithm NSGA-II					
NSGA-II	0.390307	0.430776	0.738540	0.702612	0.668025
	0.390307 0.001876	0.430776 0.004721	0.738540 0.019706	0.702612 0.064648	0.668025 0.009923
NSGA-II	0.390307 0.001876 0.784525	0.430776 0.004721 0.755148	0.738540 0.019706 0.672938	0.702612 0.064648 0.798463	0.668025 0.009923 0.849389

Constrained Handling

Penalty function approach

$$F_{m} = f_{m} + R_{m} \Omega \begin{pmatrix} \rightarrow \\ g \end{pmatrix}$$

- Explicit procedures to handle infeasible solutions
 - Jimenez's approach
 - Ray-Tang-Seow's approach
- Modified definition of domination
 - Fonseca and Fleming's approach
 - Deb et al.'s approach

Constraint-Domination Principle

A solution *i* constraintdominates a solution *j*, if any is true:

- 1. *i* is feasible and *j* is not
- 2. *i* and *j* are both infeasible, but *i* has a smaller overall constraint violation
- 3. *i* and *j* are feasible and *i* dominates *j*

Constrained NSGA-II Simulation Results

Minimize
$$f_1(x) = x_1$$
 $f_2(x) = \frac{1 + x_2}{x_1}$ Where $x_2 + 9x_1 \ge 6$ $-x_2 + 9x_1 \ge 1$

Simulation on TNK

Simulation on CTP5

Achieving Confidence in NSGA-II Solutions

- NSGA-II is a numerical method
- Verify with ε-constraint method
- Verify the extreme solutions
- Verify by other means (NBI, NC, etc.)
- Verify by lower-dimensional solutions
- Cluster the frontier
 - Check to see if they are KKT points
 - Norm of gradient expression is close to zero

Advantages of EMO

- Shape of Pareto-optimal front is not a matter
 - Discontinuity, disconnectedness, nonconvexity etc.
- No need to rediscover important common properties

Shortcomings of EMO

- No proof of convergence in a finite time
- Diversity preservation prohibits such a proof
- Can never tell proximity to Pareto-optimal front
- Defining diversity in higher dimensions difficult
- Large number of points to represent a largedimensional Pareto-optimal front

Conclusions of Part A

- EMO procedures can find multiple Paretooptimal solutions in one simulation run
 - Parallel search
 - Computationally faster approach than classical generating methods
- An optimal front provides an idea of objective interactions
 - Decision-making better and easier
 - Not possible before
- Part B discusses scope of EMO application

Part B: Application Studies in EMO

- EMO Applications in three directions
 - Better decision-making
 - Unveiling common principles
 - Solving other optimization problems

Look for a new book on different uses of EMO (Springer, December, 2007)

Decision-Making Easier

- Existence of multiple tradeoff solutions
 - Provide trade-off information
 - A better idea of the nature of Pareto-optimal front
 - An idea of range of solutions
- Weighted scheme with 70-30
 - Always wonder what if
 - ▶ 69-31 or 71-29?

For a Better Decision-Making

- Spacecraft trajectory optimization (Coverstone-Carroll et al. (2000) with JPL Pasadena)
- Three objectives for inter-planetary trajectory design
 - Minimize time of flight
 - Maximize payload delivered at destination
 - Maximize heliocentric revolutions around the Sun
- NSGA invoked with SEPTOP software for evaluation

Earth-Mars Rendezvous

Innovization:

Discovery of Innovative design principles through optimization

- Understand important design principles in a routine design scenario
- Example: Electric motor design with varying ratings, say 1 to 10 kW
 - Each will vary in size and power
 - Armature size, number of turns etc.
- How do solutions vary?
 - Any common principles!

Single versus Multiple Objectives

Say, a cantilever beam design for minimum weight

Minimize
$$f_1(d,l) = \rho \frac{\pi d^2}{4} l$$

subject to $\frac{32Pl}{\pi d^3} \leq S_y$
 $0.01 \leq d \leq 0.05$
 $0.2 \leq l \leq 1.0$

- Optimal design:
 - ▶ d=18.94 mm, l=200 mm, defl. = 2 mm
- Want defl.=1 mm, what design?
- Redo optimization with a constraint
- Turns out: d=22.52 mm, l=200 mm

Knowledge Discovery

- Minimize (weight, defl.)
- ▶ Try if *l*=*c* is true
- Innovization:
 - Set I = c = 0.2m to be optimal
 - Range of d: (18.94,50) mm
- Knowledge discovery!
- How do systemize the procedure?

Innovization Procedure

- Choose two or more conflicting objectives (e.g., size and power)
 - Usually, a small sized solution is less powered
- Obtain Pareto-optimal solutions using an EMO
- Investigate for any common properties manually or automatically
- Why would there be common properties?
 - Recall, Pareto-optimal solutions are all optimal!

In Search of Common Optimality Properties

Fritz-John Necessary Condition:

Solution x^* satisfy

1.
$$\sum_{m=1}^{M} \lambda_m \nabla f_m(x^*) - \sum_{j=1}^{J} u_j \nabla g_j(x^*) = 0, \text{ and}$$

2.
$$u_j g_j(x^*) = 0$$
 for all $j = 1, 2, 3, \dots, J$

- 3. $u_j \ge 0$, $\lambda_j \ge 0$, for all j and $\lambda_j > 0$ for at least one j
- ► To use above conditions requires differentiable objectives and constraints
- Yet, it lurks existence of some properties among Pareto-optimal solutions

Revealing Salient Insights: Truss Structure Design

(Deb, Khan and Jindal, 2000)

Revealing Salient Insights:

A Cantilever Plate Design

Base Plate

(Deb and Chaudhuri, 2003)

Eight trade-off solutions are chosen

Trade-Off Solutions

Symmetry in solutions about mid-plane, discovery of stiffener

A Connecting Rod

Innovized Principles

- Mid-line symmetry
- Straight arms to reach load is minimum-weight strategy
- Two ways to increase stiffness
 - Thickening of arms
 - Use of a stiffener
 - Additional stiffening by a combination
- Chamfering of corners helpful

Gear-box Design

- A multi-spindle gear-box design (Deb and Jain, 2003)
- 28 variables (integer, discrete, real-valued)
- 101 non-linear constraints

Important insights obtained

(larger module for more power)

Innovized Principles

- Module varies proportional to square-root of power
- Keep other 27 variables more or less the same

Overhead Crane Maneuvering

- Minimize time of operation
- Minimize operating energy

Simulation Results

629.62 | 1111111110010001

110111010010001

γ	Force (N)	Pattern	
2.98	149.26	111111110010001000000000000	000000000000000000000000000000000000000
3.00	187.76	111111110010001000000000000000000000000	
3.00	238.56	111111110010001000000000000000000000000	
3.00	327.86	1111101100100110000000000000)
2.98	427.93	111110110010011000000	7000
3.00	544.94	11111111001000100	6000 NSGA-I

NSGA-II finds trade-off and interesting properties

818.99

2.87

2.88

Innovative Principles

- For optimum operation:
 - Lower load suddenly at the end
 - Spend energy only at the beginning
- Fast unloading demands more energy
 - ▶ For fixed θ , E ∞ I
 - Delay lowering for saving energy

$$E = mg(1 - \cos\theta)l$$

Epoxy Polymerization

- Three ingredients added hourly
- 54 ODEs solved for a 7-hour simulation
- Maximize chain length (Mn)
- Minimize polydispersity index (PDI)
- Total 3x7 or 21 variables
- (Deb et al., 2004)

A non-convex frontier

Epoxy Polymerization (cont.)

- Some patterns emerge among obtained solutions
- Chemical significance unveiled

Innovized Principles: An Optimal Operating Chart

Multi-Objectivity in Other Optimization Tasks

- Constrained handling
 - Constraint violations as additional objectives
- Find partial front near zero-CV
- May provide a flexible search

Goal Programming and Others

- Goal programming to find multiple solutions
- Avoids fixing a weight vector (Deb, 2001)

- Reducing the chance of getting trapped in local optima (Knowles et al., 2001)
- Use secondary objectives for maintaining diversity (Abbass and Deb, 2003, Jensen, 2003)

Reducing Bloating in GP

- Bleuler et al., (2001)
- Find small-sized programs with small error
- Minimization of Size of Program as second objective

Keep and optimize small trees (potential building blocks)

Conclusions of Part B

- Two kinds of applications
 - For decision making
 - For learning the problem at hand
- Other optimization problem-solving
 - Constraint handling
 - Introducing diversity
 - Clustering (smaller intra-distance, larger inter-distance)
- Part C discusses advanced issues

Part C: Advanced Studies in EMO

- Scalable test problem design
- ε-domination based EMO techniques
- Finding a partial frontier
- Distributed computing of the Pareto-optimal frontier
- Performance metrics and comparative studies
- Dynamic EMO
- Robustness and Reliability based EMO
- Interactive EMO

Scalable Test Problems

- Step 1 Define Paretooptimal front mathematically
- Step 2 Build the objective search space using it
- Step 3 Map variable space to objective space
- Scalable DTLZ problems suggested

Deb et al. (CEC-2002)

Two-Objective Test Problems

- Pareto-optimal front is controllable and known
- ZDT problems:

Min.
$$f_1(\mathbf{x}) = f_1(\mathbf{x}_I)$$
,
Min. $f_2(\mathbf{x}) = g(\mathbf{x}_{II})h(f_1, g)$.

Choose f₁(), g() and h() to introduce various difficulties

Zitzler-Deb-Thiele's Test Problems

Zitzler-Deb-Thiele's Test Problems

ZDT3 $f_{1} = x_{1},$ $g = 1 + \frac{9}{n-1} \sum_{i=2}^{n} x_{i},$ $h = 1 - \sqrt{f_{1}/g} - (f_{1}/g) \sin(10\pi f_{1}).$

Zitzler-Deb-Thiele's Test Problems

ZDT5

$$f_1 = 1 + u(x_1), \ g = \sum_{i=2}^{11} v(u(x_i))$$

$$v = \begin{cases} 2 + u(x_i) & \text{if } u(x_i) < 5, \\ 1 & \text{if } u(x_i) = 5, \end{cases}$$

$$h = 1/f_1(\mathbf{x})$$

ZDT6

$$f_1 = 1 - \exp(-4x_1)\sin^6(6\pi x_1),$$

$$g = 1 + 9\left[\left(\sum_{i=2}^{10} x_i\right)/9\right]^{0.25},$$

$$h = 1 - \left(f_1/g\right)^2.$$

Constraint Surface Approach

- Step 1: Define a rectangular hyper-box
- Step 2: Chop off regions using constraints
- Adv: Easy to construct
- Disadv: Difficult to define Pareto-optimal front

Constrained Test Problem Generator

- Some test problems in Veldhuizen (1999)
- More controllable test problems are called for

Minimize
$$f_1(\mathbf{x}) = x_1$$
Minimize
$$f_2(\mathbf{x}) = g(\mathbf{x}) \left(1 - \frac{f_1(\mathbf{x})}{g(\mathbf{x})} \right)$$
Subject to
$$c(\mathbf{x}) = \cos(\theta) (f_2(\mathbf{x}) - e) - \sin(\theta) f_1(\mathbf{x}) \ge$$

$$a \left| \sin \left(b\pi \left(\sin(\theta) (f_2(\mathbf{x}) - e) + \cos(\theta) f_1(\mathbf{x}) \right)^c \right) \right|^d$$

Various Parameter Settings

CTP2: $\theta = -0.2\pi$, a = 2, b = 10, c = 1, d = 6, e = 1

CTP7: $\theta = -0.05\pi$, a = 40, b = 5, c = 1, d = 6, e = 0

ε-MOEA: Using ε-Dominance

- EA and archive populations evolve
- One EA and one archive member are mated
- Archive update using ε-dominance
- EA update using usual dominance

EΑ Archive Crossover usual E-dom Offspring

Deb, Mohan & Mishra (ECJ-2005)

Comparative Study on Three-Obj. DTLZ Functions

Convertence meeting			naít.	77/20	- (ana)	
	Convergence measure Sparsity		· -	 	e (sec)	
EMO	Average	Std. Dev.	Average	Std. Dev.	Average	Std. Dev.
			DTLZ2			
NSGA-II	0.0137186	0.0020145	0.931111	0.0124474	17.16	0.196
C-NSGA-II	0.0107455	0.0008424	0.999778	0.0004968	7837.42	81.254
PESA	0.0106292	0.0025483	0.945778	0.0309657	88.01	12.901
SPEA2	0.0126622	0.0009540	0.998889	0.0007855	2164.42	19.858
ε-MOEA	0.0108443	0.0002823	0.999104	0.0009316	2.01	0.032
			DTLZ3			
NSGA-II	0.0149156	0.01028	0.839228	0.02961	136.45	31.080
C-NSGA-II	0.0202315	0.00898	0.995521	0.00613	24046.03	4690.032
PESA	0.0130633	0.00449	0.722296	0.02785	89.49	12.527
SPEA2	0.0122429	0.00194	0.999771	0.00031	9080.81	963.723
ε-MOEA	0.0122190	0.00223	0.993207	0.00974	9.42	2.180
	DTLZ5					
NSGA-II	0.00208342	11.976e-05	0.953778	0.00992	11.49	0.036
C-NSGA-II	0.00256138	30.905e-05	0.996667	0.00314	1689.16	81.365
PESA	0.00094626	11.427e-05	0.772110	0.02269	53.27	11.836
SPEA2	0.00197846	16.437e-05	1.000000	0.00000	633.60	14.082
ε-MOEA	0.000953623	4.892e-05	0.980867	0.01279	1.45	0.051

Test Problem DTLZ2

Finding a Partial Pareto Frontier

- Using a DM's preference (not a solution but a region)
- Guided domination principle: Biased niching approach
- Weighted domination approach

Distributed Computing of Pareto-Optimal Set

Deb, Zope & Jain (EMO-2003)

- Guided domination concept to search different parts of Pareto-optimal region
- Distributed computing of different parts

Distributed computing: A Three-Objective Problem

Spatial computing, not temporal

Theory

NSGA-II Simulations

Performance Metrics

- A recent study by
 Zitzler et al. suggests
 at least metrics
- Two essential metrics (functionally)
 - Convergence measure
 - Diversity measure

Metrics for Convergence

Error ratio:

$$ER = \frac{\sum_{i=1}^{|Q|} e_i}{|Q|}$$

Set Coverage:

$$C(A,B) = \frac{|\{b \in B \mid \exists a \in A : a \circ b\}|}{|B|}$$

Generational distance:

$$GD = \frac{(\sum_{i=1}^{|Q|} d_i^p)^{1/p}}{|Q|}$$

Metrics for Diversity

Spacing:

$$S = \sqrt{\frac{1}{|Q|} \sum_{i=1}^{|Q|} (d_i - \overline{d})^2}$$

Spread:

$$\Delta = \frac{\sum_{m=1}^{M} d_{m}^{e} + \sum_{i=1}^{|Q|} |d_{i} - \overline{d}|}{\sum_{m=1}^{M} d_{m}^{e} + |Q| \overline{d}}$$

Chi-square like deviation measure

Metrics for Diversity (Cont.)

Distance from P*

Entropy Measure

Metrics for Convergence and Diversity

Hypervolume

Attainment Surface Method

Higher-order Attainment Surfaces

Positive and negative relationships

10¹ u_{rms} Taken from Carlos Fonseca

Running Metrics

Deb and Jain (SEAL-2002)

Performance metric changes with generation

Running Metrics (cont.)

Quantitative comparison of two or more algorithms

Indicator-Based EMO

- Zitzler et al. (2004)
- Move point A so as to make weaklydominated with B
- Positive if reduction in hypervolume
- Negative, otherwise

$$I_{\epsilon+}(A,B) = \min_{\epsilon} \{ \forall \boldsymbol{x}^2 \in B \ \exists \boldsymbol{x}^1 \in A : f_i(\boldsymbol{x}^1) - \epsilon \leq f_i(\boldsymbol{x}^2) \text{ for } i \in \{1,\ldots,n\} \}$$

IBEA (cont.)

Develop a single-objective EA with indicator functions

$$F(\boldsymbol{x}^1) = \sum_{\boldsymbol{x}^2 \in P \setminus \{\boldsymbol{x}^1\}} -e^{-I(\{\boldsymbol{x}^2\}, \{\boldsymbol{x}^1\})/\kappa}$$

Theorem 1. Let I be a binary quality indicator. If I is dominance preserving, then it holds that $\mathbf{x}^1 \succ \mathbf{x}^2 \Rightarrow F(\mathbf{x}^1) > F(\mathbf{x}^2)$.

- Smaller the fitness F, worse is the solution
- Some niche preservation is needed
- Better solutions reported

Dynamic Optimization

Deb, Rao, Karthik (EMO 2007)

- Assume a statis in problem for a time step
- Find a critical frequency of change
- FDA2 test problem

NSGA-II Simulations

- Problems change as NSGA-II runs
- Elitism is eliminated from NSGA-II

Simulations

Hydro-Thermal Power Dispatch

$$\begin{aligned} & \text{Minimize} & & f_1(\mathbf{x}) = \sum_{m=1}^M \sum_{s=1}^{N_s} t_m [a_s + b_s P^{\mathbf{s}}_{sm} + c_s (P^{\mathbf{s}}_{sm})^2 + |d_s \sin(e_s (P^{\mathbf{s}}_{s,\min} - P^{\mathbf{s}}_{sm}))|], \\ & \text{Minimize} & & f_2(\mathbf{x}) = \sum_{m=1}^N \sum_{s=1}^N t_m [\alpha_s + \beta_s P^{\mathbf{s}}_{sm} + \gamma_s (P^{\mathbf{s}}_{sm})^2 + \eta_s \exp(\delta_s P^{\mathbf{s}}_{sm})], \\ & \text{subject to} & & \sum_{s=1}^{N_s} P^{\mathbf{s}}_{sm} + \sum_{h=1}^{N_h} P^{\mathbf{h}}_{hm} - P_{Dm} - P_{Lm} = 0, \quad m = 1, 2, \dots, M, \\ & & \sum_{m=1}^M t_m (a_{0h} + a_{1h} P^{\mathbf{h}}_{hm} + a_{2h} (P^{\mathbf{h}}_{hm})^2) - W_h = 0, \quad h = 1, 2, \dots, N_h. \\ & & & P^{\mathbf{h}}_{h,\min} \leq P_{hm} \leq P^{\mathbf{h}}_{h,\max}, \quad h = 1, 2, \dots, N_h, m = 1, 2, \dots, M, \\ & & & P^{\mathbf{s}}_{s,\min} \leq P_{sm} \leq P^{\mathbf{s}}_{s,\max}, \quad s = 1, 2, \dots, N_s, m = 1, 2, \dots, M. \end{aligned}$$

- Minimize Cost and NOx emission
- Power balance and water head limits
- Dynamic due to change in power demand with time

Dynamic Hydro-Thermal Power Scheduling

- Addition of random or mutated points at changes
- ▶ 30-min change found satisfactory

Dynamic EMO with Decision-Making

- Needs a fast decision-making
- Use an automatic procedure
 - Utility function, pseudo-weight etc.

Case	Cost	Emission
50-50%	74239.07	25314.44
100 - 0%	69354.73	27689.08
0-100%	87196.50	23916.09

Robust Optimization Handling uncertainties in variables

- Parameters are uncertain and sensitive to implementation
 - ▶ Tolerances in manufacturing
 - Material properties are uncertain
 - ▶ Loading is uncertain
- Who wants a sensitive optimum solution?
- Single-objective robust EAs exist

Deb and Gupta (EMO 2005)

Multi-Objective Robust Solutions

- Solutions are averaged in δ-neighborhood
- Not all Paretooptimal points may be robust
- A is robust, but B is not
- Decision-makers will be interested in knowing robust part of the front

Multi-Objective Robust Solutions of Type I and II

Similar to single-objective robust solution of type I

Minimize
$$(f_1^{\text{eff}}(\mathbf{x}), f_2^{\text{eff}}(\mathbf{x}), \dots, f_M^{\text{eff}}(\mathbf{x})),$$

subject to $\mathbf{x} \in \mathcal{S},$

Type II

Minimize
$$\mathbf{f}(\mathbf{x}) = (f_1(\mathbf{x}), f_2(\mathbf{x}), \dots, f_M(\mathbf{x})),$$

subject to $\frac{\|\mathbf{f}^{p}(\mathbf{x}) - \mathbf{f}(\mathbf{x})\|}{\|\mathbf{f}(\mathbf{x})\|} \leq \eta,$
 $\mathbf{x} \in \mathcal{S}.$

Robust Frontier for Two Objectives

- Identify robust region
- Allows a control on desired robustness

Reliability-Based Optimization:

Making designs safe against failures

- Deterministic optimum is not usually reliable
- Reliable solution is an interior point
- Chance constraints with a given reliability

Minimize $\mu_f + k\sigma_f$ Subject to $Pr(g_j(x) \ge 0) \ge \beta_j$ β_j is user-supplied

Deb et al. (EMO 2005)

Statistical Procedure: Check if a solution is reliable

Minimize $G_i(\mathbf{U})$, Subject to $||U|| = \beta_i^r$,

PMA approach RIA approach

Minimize $\|\mathbf{U}\|$, Subject to $G_i(\mathbf{U}) = 0$.

Multiple Reliability Solutions: A Get a better insight

Relationship

99%

99.99%

Multi-Objective Reliability-Based Optimization

- Reliable fronts show rate of movement
- What remains unchanged and what gets changed!

Handling Many Objectives

Iter.1

Iter. 1 : PCA-1 (58.83 % variance)		f_7		f_{10}
PCA-2 (28.26 % variance)	f_1			
PCA-3 (06.53 % variance)			f_8	
PCA-4 (03.27 % variance)			f_8	

Identify redundant objectives

10-objective DTLZ5 problem

	f_1	f_7	f_8	f_{10}
f_1	+	-	+	-
f_7	1	+	+	-
f_8	+	+	+	-
f_{10}	-	-	-	+

EMO+PCA in iterations

— .	πer.	2:	PCA-I	(;
Iter.2			PCA-2	(4

2 : PCA-1 (94.58 % variance)	f_7 f_{10}
PCA-2 (4.28 % variance)	f_8

	f_7	f_8	f_{10}
f_7	+	+	-
f_8	+	+	-
f_{10}	-	-	+

	e1:0.9458	e2:0.0428	
f_7	+0.543	-0.275	c7=0.5253
f_8	+0.457	+0.672	c8=0.4610
	PCA1	PCA2	

Saxena and Deb (CEC-2006, EMO-2007, CEC-2007)

EAs with Theoretical Confidence (Deb et al., CEC 2007)

- EA solution(s) improved with local search (classical or hill-climbing)
- If derivative exists, verify the solution to be a KKT point
- For every point, calculate a norm stating extent of KKT condition satisfaction

Kan GAL

 $\lambda_i X \nabla f_i = \sum \mu_i \nabla g_i + \sum \mu_k \nabla h_k$ Error<=0.01 Error>0.01 1.5 Generation=10 Generation=50 0.5 0.1 Median. 0.01 0.001 le-04 20 40 80 100

Generation Number

Norm can be used as termination criteria

CEC'07 Tutorial on EMO (K. Singapore (25 September,

EMO and Decision-Making

- Finding a P-O set (using EMO) is half the story
- How to choose one solution (MCDM)
- First EMO, then MCDM
- EMO+MCDM all along
 - Use where multiple, repetitive applications are sought
 - Use where, instead of a point, a trade-off region is sought
 - Use for finding points with specific properties (nadir point, knee point, etc.)
 - Use for robust, reliable or other fronts
- Use EMO for an idea of the front, then decisionmaking (I-MODE)

More forthcoming through a Springer book in Early 2008, derived from Dagstuhl seminars (2004, 2006)

Making Decisions: Current Focus

Ranking based on closeness to each reference point or a reference direction

Deb and Sundar (GECCO 2006)

Deb and Kumar (GECCO-2007)

Finding Knee Solutions

(Branke et al., 2004)

Find only the knee or near-knee solutions

I-MODE Software Developed Deb and Chaudhuri, EMO-07

at KanGAL

Double C, cap_K, P, Dmax, G Character

Conclusions of Part C

- EMO is a fast-growing field of research and application
- Practical applications and challenges surfacing
- EMO+MCDM, EMO+Math optimization
- Commercial softwares available
 - iSIGHT and modeFrontier
- Computer codes freely downloadable

Regular EMO Activities

- A dedicated two-yearly conference (EMO):
 EMO-01 (Zurich),
 EMO-03 (Faro),
 EMO-05 (Guanajuato),
 EMO-07 (Sendai)
- Next one in Nantes, France (EMO-09)
- Other major EA conferences (EMO tracks)
- Special issues of journals
- 150+ PhD theses so far since 1993

