
Particle Swarm Optimization & Differential Evolution

Presenter: Assoc. Prof. P. N. Suganthan
School of Electrical and Electronic Engineering
Nanyang Technological University, Singapore.

Some Software Resources Available from:
http://www.ntu.edu.sg/home/epnsugan

CEC’07

25th Sept 2007

-2-

Outline of the Presentation
I. Benchmark Test Functions
II. Real Parameter Particle swarm optimization (PSO)

Basic PSO, its variants, Comprehensive learning PSO
(CLPSO), Dynamic multi-swarm PSO (DMS-PSO)

III. Real Parameter Differential evolution (DE)
DE, its variants, Self-adaptive differential evolution

IV. Constrained optimization
V. Multi-objective PSO / DE
VI. Multimodal optimization (niching)
VII. Binary / Discrete PSO & DE
VIII. Benchmarking results of CEC 2005, 2006, 2007.

Dynamic, Robust optimization – excluded.

-3-

I - Benchmark Test Functions

Resources available from
http://www.ntu.edu.sg/home/epnsugan

(limited to our own work)

From Prof Xin Yao’s group
http://www.cs.bham.ac.uk/research/projects/ecb/

Includes diverse problems.

-4-

Why do we require benchmark problems?

Why we need test functions?
To evaluate a novel optimization algorithm’s property on
different types of landscapes
Compare different optimization algorithms

Types of benchmarks
Bound constrained problems (real, binary, discrete,
mixed)
Constrained problems
Single / Multi-objective problems
Static / Dynamic optimization problems
Multimodal problems
Various combinations of the above

-5-

Shortcomings in Bound constrained Benchmarks

Some properties of benchmark functions may make them unrealistic
or may be exploited by some algorithms:

Global optimum having the same parameter values for different
variables / dimensions
Global optimum at the origin
Global optimum lying in the center of the search range
Global optimum on the bound
Local optima lying along the coordinate axes
no linkage among the variables / dimensions or the same linkages
over the whole search range
Repetitive landscape structure over the entire space

Do real-world problems possess these properties?
Liang et. al 2006c (Natural Computation) has more

details.

-6-

How to Solve?
Shift the global optimum to a random position to make the
global optimum to have different parameter values for
different dimensions

Rotate the functions as below:

where R is an orthogonal rotation matrix

Use different classes of benchmark functions, different
rotation matrices to compose a single test problem.

These Composition Functions mix different properties of
different basic test functions together to destroy repetitive
structures.

() (*)F f=x R x

-7-

Novel Composition Test Functions

Compose the standard benchmark functions to construct a
more challenging function with a randomly located global
optimum and several randomly located deep local optima
with different linkage properties over the search space.

Gaussian functions are used to combine these benchmark
functions and to blur individual functions’ structures mainly
around the transition regions.

More details in Liang, et al 2005, CEC 2005 special sessions
on benchmarking RP-EAs.

-8-

Novel Composition Test Functions

is.

-9-

Novel Composition Test Functions

-10-

Novel Composition Test Functions

define

These composition functions can also be used as
multimodal functions.

-11-

A couple of Examples

Many composition functions are available from our homepage

Composition Function 1 (F1):
Made of Sphere Functions

Composition Function 2 (F2):
Made of Griewank’s Functions

Similar analysis is needed for other benchmarks such
as the multi-objective, constrained, etc.

-12-

II - Particle Swarm Optimizer

Introduced by Kennedy and Eberhart in 1995
(Eberhart & Kennedy,1995; Kennedy & Eberhart,1995)
Emulates flocking behavior of birds, animals, insects, fish, etc. to
solve optimization problems
Each solution in the landscape is a particle
All particles have fitness values and velocities
The standard PSO does not have mutation, crossover,
selection ,etc.

-13-

Particle Swarm Optimizer
Two versions of PSO

Global version (May not be used alone to solve multimodal
problems): Learning from the personal best (pbest) and the
best position achieved by the whole population (gbest)

Local Version: Learning from the pbest and the best position
achieved in the particle's neighborhood population (lbest)

The random numbers (rand1 & rand2) should be
generated for each dimension of each particle in every
iteration.

1 2* 1 () * 2 ()← ∗ − + ∗ −

← +

d d d d d d d
i i i i i i

d d d
i i i

V c rand pbest X c rand gbest X

X X V

1 2* 1 () * 2 ()← ∗ − + ∗ −

← +

d d d d d d d
i i i i i k i

d d d
i i i

V c rand pbest X c rand lbest X

X X V

i – particle counter & d – dimension counter

lbest to be defined w. r. t. a neighborhood.

-14-

General parameters in PSO

and denote the acceleration constants usually set to ~2.
and are two uniform random numbers within the

range [0,1]
represents the position of the ith particle
represents the position changing rate

(velocity) of the ith particle
represents the best

previous position (the position giving the best objective
function value) of the ith particle

represents the best
previous position of the whole swarm

represents the best
previous position achieved by those particles within the
neighborhood of the ith particle

1c 2c

1 2(, ,...,)D
i i i ix x x=x

1 2(, ,...,)D
i i i ipbest pbest pbest=pbest

1 2(, ,...,)Dgbest gbest gbest=gbest

1 2(, ,...,)D
i i i iv v v=v

1 2(, ,...,)D
i i i ilbest lbest lbest=lbest

d
irand1 d

irand2

-15-

PSO variants
Modifying the Parameters

Inertia weight ω (Shi & Eberhart, 1998; Shi & Eberhart, 2001; Eberhart
& Shi, 2001, …)
Constriction coefficient (Clerc,1999; Clerc & Kennedy, 2002)
Time varying acceleration coefficients (Ratnaweera et al. 2004)
Linearly decreasing Vmax (Fan & Shi, 2001)
Tribes (Clerc 2006)

Using Topologies
Extensive experimental studies (Kennedy, 1999; Kennedy & Mendes,
2002, …)
Dynamic neighborhood (Suganthan,1999; Hu and Eberhart, 2002;
Peram et al. 2003)
Combine the global version and local version together (Parsopoulos
and Vrahatis, 2004) named as the unified PSO or UPSO.
Fully informed PSO or FIPS (Mendes & Kennedy 2004) and so on …

-16-

PSO variants and Applications
Hybrid PSO Algorithms

PSO + selection operator (Angeline,1998)
PSO + crossover operator (Lovbjerg, 2001)
PSO + mutation operator (Lovbjerg & Krink, 2002; Blackwell &
Bentley,2002; … …)
PSO + dimension-wise search (Bergh & Engelbrecht, 2004)
…

Various Optimization Scenarios & Applications
Binary Optimization (Kennedy & Eberhart, 1997; Agrafiotis et. al 2002;)
Constrained Optimization (Parsopoulos et al. 2002; Hu & Eberhart,
2002; …)
Multi-objective Optimization (Ray et. al 2002; Coello et al. 2002/04; …)
Dynamic Tracking (Eberhart & Shi 2001; …)
Yagi-Uda antenna (Baskar et al 2005b), Photonic FBG design (Baskar
et al 2005a), FBG sensor network design (Liang et al June 2006)

-17-

PSO with Momentum / Constriction

In PSO with momentum [SE98], a momentum term
ω is introduced to the original equation:

PSO with constriction factor [CK02]:

d
i

d
i

d
i

d
i

dd
i

d
i

d
i

d
i

d
i

d
i

vxx

xgbestrandcxpbestrandcvv

+←

−+−+←)(2)(1 21ω

0.7298. set to be can factor onConstricti

)](2)(1[21

χ

χ
d
i

d
i

d
i

d
i

dd
i

d
i

d
i

d
i

d
i

d
i

vxx

xgbestrandcxpbestrandcvv

+←

−+−+←

ω is usually reduced form 0.9 to 0.4

-18-

PSO Variants by Kennedy et. al

In fully informed particle swarm (FIPS) [KM06,
MKN04], each particle’s velocity is adjusted based on
contributions from pbest of all its neighbors.

Bare bones PSO [K03]: PSO without the velocity
term, i.e. with the social & cognitive terms only.

Essential Particle swarm [K06]: The velocity is
expressed as direction defined by the particle’s
position at time t and time (t-1), i.e. the persistence
and social influence.

Essential Particle Swarm is another realization of the
FIPS.

-19-

Comprehensive learning PSO (CLPSO)
CLPSO learning strategy:

denotes a set of particle indices with
respect to each dimension of the particle i. represents a
comprehensive exemplar with each dimension composed of the
value from the corresponding dimension of the pbest of
particle . These indices take the value i itself with the
probability Pci, referred to as the learning probability, which
takes different values with respect to different particles.

For each dimension of particle i, we generate a random number.
If this random number is larger than Pci, the corresponding
dimension of particle i will learn from its own pbest, otherwise it
will learn from the pbest of another randomly chosen particle.

() () ()[]Dffff iiii ,...,2 ,1=

if
pbest

()dfi

d
i

d
i

d
i vxx +←

()()d
i

d
df

d
i

d
i

d
i xpbestrandcvwv

i
−××+×←

-20-

Tournament selection with size 2 is used to choose the
index .

To ensure that a particle learns from good exemplars and to
minimize the time wasted on poor directions, we allow each
particle to learn from the exemplars until such particle stop to
improve for a certain number of generations, called the
refreshing gap m (7 generations).
After that, we re - assign for each particle i.

The detailed description and algorithmic implementation can be
found in [[LQSB06LQSB06]]. Matlab codes including CLPSO and several
state-of-the-art PSO variants are available for academic use.

CLPSO

()dfi

() () ()[]Dffff iiii ,...,2 ,1=

-21-

CLPSO
Three major differences between CLPSO and the conventional
PSO are highlighted:

Instead of using particle’s pbest and gbest as the exemplars, all
particles’ pbests can be used to guide a particle’s flying direction.

Instead of learning from the same exemplar for all dimensions,
different dimensions of a particle may learn from different exemplars
within certain generations. In other words, at one iteration, each
dimension of a particle may learn from the corresponding dimension of
different particle’s pbest.
Instead of learning from two exemplars (pbest and gbest) in every
generation, each dimension of a particle in CLPSO learns from just
one comprehensive exemplar within certain generations.

Experimental results [[LQSB06LQSB06]] over a suite of 16 numerical test
functions have demonstrated the promising performance of the
CLPSO to solve the multi-modal optimization problems in
comparison with 8 state-of-the-art PSO variants.

-22-

CLPSO with Probability Adaptation
Adaptive Self-Learning Strategy

Assume Pc normally distributed in a range with mean(Pc)
and a standard deviation of 0.1.
Initially, mean(Pc) is set at 0.5 and different Pc values
conforming to this normal distribution are generated for
each individual in the current population.
During every generation, the Pc values associated with
the particles which find new pbest are recorded.
The mean of normal distribution of Pc is recalculated
according to all the recorded Pc values corresponding to
successful movements during the last several generations.
As a result, the proper Pc value range for the current
problem can be learned to suit the particular problem.

-23-

Dynamic multi-swarm PSO (DMS-PSO)

The population is divided into several sub-swarms randomly.
Each sub-swarm utilizes its own particles to search for better solutions
and converge to some suboptimal solution.
The whole population is re-grouped into new sub-swarms periodically.
New sub-swarms continue the search procedure.
This process continues until a termination criterion is satisfied.

Regroup

DMS-PSO is constructed
based on the local version
of PSO with a novel
neighborhood topology
Two major characteristics
of the novel neighborhood
topology:

Small sized swarms
Randomized re-grouping
scheme

-24-

DMS-PSO learning strategy
Each particle i has an associated vector Pci. After every R
generations, an indicator vector keepidi will be updated according to
Pci: if randid is larger than or equal to Pci(d), keepidi(d) is set to 1
and the dth dimension of particle i will be set as the value of its own
pbesti(d), otherwise keepidi(d) is set to 0, and the dth dimension of
particle i will learn from its lbesti(d), and its own pbesti(d), as the
PSO with constriction coefficients:

m a x m a x

If _ 0

0 .7 2 9 1 .4 9 4 4 5 1 ()

 1 .4 9 4 4 5 2 ()

m in (, m a x (,))

O th e rw is e

d
i

d d d d d
i i i i i

d d d
i i i

d d d d
i i

d d d
i i i

d d
i i

k e e p id

v v r a n d p b e s t x

r a n d lb e s t x

v v v v

x x v

x p b e s t

=

← × + × × −

+ × × −

= −

← +

←

DMS-PSO

Somewhat similar to DE & CPSO

-25-

DMS-PSO
Parameter adaptation scheme

Assume Pci is normally distributed with mean mean_Pc and
standard deviation 0.1.
Initially, mean_Pc is set to 0.5 and a set of Pci vectors with
respect to each particle i in the current population are
generated according to such normal distribution.
At each generation, the Pci values associated with those
particles that find new pbests are recorded.
When sub-swarms are regrouped, mean_Pc is re-
calculated according to all the recorded successful Pci
values. The recorded successful Pci values will be cleared
when mean_Pc is recalculated.
As a result, a proper Pci distribution with respect to the
given problem can be evolved.

-26-

DMS-PSO with local search
Although we can achieve larger diversity using DMS-PSO,
the convergence rate may slow down. In order to alleviate
this problem, a local search procedure is incorporated:

Every L generations, pbests of five randomly chosen
particles will be used as the starting points and the Quasi-
Newton method is applied to conduct the local search with
maximum function evaluations L_FEs.

At the end of the DMS-PSO search, particles in each sub-
swarm are grouped into a whole swarm to perform the
global PSO. The best solution achieved so far is refined
using the Quasi-Newton method every L generations with
the 5×L_FEs as the maximum search step.

If local search results in improvements, the nearest pbest
is replaced.

-27-

III - Outline of Presentation on DE

Motivation for Differential Evolution (DE)

Classical DE

DE Variants

Self-adaptive DE (SaDE)

-28-

Motivation for DE
DE, proposed by Price and Storn in 1995 [PS95], was motivated by the attempts

to use Genetic Annealing [P94] to solve the Chebychev polynomial fitting
problem.

Genetic annealing is a population-based, combinatorial optimization algorithm
that implements a thermodynamic annealing criterion via thresholds. Although
successfully applied to solve many combinatorial tasks, genetic annealing could
not solve the Chebychev problem satisfactorily.

Price modified genetic annealing by using floating-point encoding instead of
bit-string one, arithmetic operations instead of logical ones, population-driven
differential mutation instead of bit-inversion mutation and removed the annealing
criterion. Storn suggested creating separate parent and children populations.
Eventually, Chebychev problem can be solved effectively.

DE is closely related to many other multi-point derivative free search methods
[PSL05] such as evolutionary strategies, genetic algorithms, Nelder and Mead
direct search and controlled random search.

-29-

DE at a glance
Characteristics

Population-based stochastic direct search
Self-referential mutation
Simple but powerful
Reliable, robust and efficient
Easy parallelization
Floating-point encoding

Basic components
Initialization
Trial vector generation

Mutation
Recombination

Replacement

-30-

Initialization
A population Px,0 of Np D-dimensional parameter vectors xi,0=[x1,i,0,…,xD,i,0],
i=1,…,Np is randomly generated within the prescribed lower and upper bound bL=
[b1,L,…,bD,L] and bU=[b1,U,…,bD,U]

Insight into classical DE (DE/rand/1/bin)

Trial vector generation

Example: the initial value (at generation g=0) of the jth parameter of the ith vector is
generated by: xj,i,0 = randj[0,1] ·(bj,U-bj,L) + bj,L, j=1,…,D, i=1,…,Np

At the At the ggthth generation, a trial population generation, a trial population PPuu,,gg consisting of consisting of NpNp DD--dimensional trial dimensional trial
vectors vectors vvi,gi,g=[=[vv1,1,i,gi,g,,……vvDD,,i,gi,g] is generated via mutation and recombination operations] is generated via mutation and recombination operations
applied to the current population applied to the current population PPxx,,gg

Differential mutation: with respect to each vector xi,g in the current population,
called target vector, a mutant vector vi,g is generated by adding a scaled, randomly
sampled, vector difference to a basis vector randomly selected from the current
population

-31-

Insight into classical DE (DE/rand/1/bin)

Replacement

Example: at the gth generation, the ith mutant vector vi,g with respect to ith target
vector xi,g in the current population is generated by vi,g = xr0,g + F·(xr1,g-xr2,g),
i≠r0≠r1≠r2, mutation scale factor F∈(0,1+)

Discrete recombination: with respect to each target vector xi,g in the current
population, a trial vector ui,g is generated by crossing the target vector xi,g with the
corresponding mutant vector vi,g under a pre-specified crossover rate Cr∈[0,1]

Example: at the gth generation, the ith trial vector ui,g with respect to ith target
vector xi,g in the current population is generated by:

vj,i,g if randj[0,1]≤Cr or j=jrand

xj,i,g otherwiseuj,i,g=

If the trial vector ui,g has equal or better objective function value than that of its
corresponding target vector xi,g, it replaces the target vector in the (g+1)th

generation; otherwise the target vector remains in the (g+1)th generation

-32-

Illustration of classical DE

x2

x1

Illustration of classic DE

-33-

xi,g

xr1,g

xr2,g

xr0,g

x2

x1

Target vector

Base vector Two randomly
selected vectors

Illustration of classic DE

Illustration of classical DE

-34-

xi,g

xr1,g

xr2,g

xr0,g

x2

x1

Four operating vectors in 2D continuous space

Illustration of classical DE

-35-

xi,g

xr1,g

xr2,g

xr0,g

F·(xr1,g-xr2,g)

vi,g

x2

x1

Trial vector after Mutation

Illustration of classical DE

-36-

xi,g

xr1,g

xr2,g

xr0,g

F·(xr1,g-xr2,g)

vi,g ui,g

x2

x1

Trial vector after Crossover

Illustration of classical DE

-37-

Replacement of target vector by the trial vector

xi,g

xr1,g

xr2,g

xr0,g

xi,g+1

x2

x1

Illustration of classical DE

-38-

Differential vector distribution

Most important characteristics of DE: self-referential mutation!

ES: fixed probability distribution function with adaptive step-size

DE: adaptive distribution of difference vectors with fixed step-size

A population of 5 vectors 20 generated difference vectors

-39-

DE variants
Modification of different components of DE can result in many DEModification of different components of DE can result in many DE
variantsvariants:

Initialization
Uniform distribution and Gaussian distribution

Trial vector generation
Choices in base vector selection

Random selection without replacement: r0=ceil(randi[0,1]·Np)

Permutation selection: r0=permute[i]

Random offset selection: r0=(i+rg)%Np (e.g. rg=2)

Biased selection: global best, local best or tournament

-40-

DE variants
Differential mutation

One difference vector: F·(xr1- xr2)
Two difference vector: F·(xr1- xr2)+F·(xr3- xr4)
Mutation scale factor F

Crucial role: balance exploration and exploitation
Dimension dependence?: jitter, if yes (rotation variant) and

dither, if no (rotation invariant).
Randomization: different distributions of F

DE/rand/1:
DE/best/1:
DE/current-to-best/1:
DE/rand/2:
DE/best/2:

()GrGrGrGi F ,,,, 321
XXXV −⋅+=

()GrGrGbestGi F ,,,, 21
XXXV −⋅+=

() ()GrGrGiGbestGiGi FF ,,,,,, 21
XXXXXV −⋅+−⋅+=

()GrGrGrGrGrGi F ,,,,,, 54321
XXXXXV −+−⋅+=

()GrGrGrGrGbestGi F ,,,,,, 4321
XXXXXV −+−⋅+=

-41-

DE variants
Recombination

Discrete recombination (crossover) (rotation variant)
One point and multi-point
Exponential (somewhat comparable to two-point)
Binominal (uniform)

Arithmetic recombination
Line recombination (rotation invariant, vector operation)
Intermediate recombination (rotation variant, dimension-wise)
Extended intermediate recombination (rotation variant)

x1

x2 xb

xa

line

discrete

discrete

intermediate

x 1x 2

-42-

Motivation for self-adaptation in DE
The performance of DE on different problems depends on:

Population size
Strategy and the associated parameter setting to generate trial vectors
Replacement scheme

It is hard to choose a unique combination to successfully solve any problem at
hand

Population size usually depends on the problem scale and complexity
During evolution, different strategies coupled with specific parameter settings
may be effective for different search stages.
Replacement schemes influence the population diversity
Trial and error scheme may be a waste of computational time & resources

Automatically adapt the configuration in DE so as to generate efAutomatically adapt the configuration in DE so as to generate effective fective
trial vectors during evolutiontrial vectors during evolution

-43-

Related works
Practical guideline [SP95], [SP97], [CDG99], [BO04], [PSL05],[GMK02]: for
example, Np∈[5D,10D]; Initial choice of F=0.5 and CR=0.1/0.9; Increase NP and/or F
if premature convergence happens. Conflicting conclusions with respect to different Conflicting conclusions with respect to different
test functions.test functions.

Fuzzy adaptive DE [LL02]: use fuzzy logical controllers whose inputs incorporate the
relative function values and individuals of successive generations to adapt the mutation
and crossover parameters.

Self-adaptive Pareto DE [A02]: encode crossover rate in each individual, which is
simultaneously evolved with other parameters. Mutation scale factor is generated for
each variable according to Gaussian distribution N(0,1).

Zaharie [Z02]: theoretically study the DE behavior so as to adapt the control
parameters of DE according to the evolution of population diversity.

Self-adaptive DE (1) [OSE05]: encode mutation scale factor in each individual, which
is simultaneously evolved with other parameters. Crossover rate is generated for each
variable according to Gaussian distribution N(0.5,0.15).

DE with self-adaptive population [T06]: population size, mutation scale factor and
crossover rate are all encoded into each individual.

-44-

Self-Adapting Control Parameters in DE

[BGBMZ06] jDE algorithm encodes mutation scale
factor F and crossover rate CR in each individual.

New values for F & CR are assigned to each
individual from a set of values and the assignment
is performed randomly with respect to pre-specified
2 parameter values.

jDE2 algorithm [BBG06] introduces re-initialization of
poorly performing individuals to the jDE algorithm.

-45-

Steps:
1. Initialize selection probability pi=1/num_st, i=1,…,num_st for each strategy
2. According to the current probabilities, we employ stochastic universal

selection to assign one strategy to each target vector in the current population
3. For each strategy, define vectors nsi and nfi, i=1,…num_st to store the number

of trial vectors successfully entering the next generation or discarded by
applying such strategy, respectively, within a specified number of generations,
called “learning period (LP)”

4. Once the current number of generations is over LP, the first element of nsi and
nfi with respect to the earliest generation will be removed and the behavior in
current generation will update nsi and nfi

Self-adaptive DE (SaDE)

Strategy adaptation: select one strategy from a pool of candidate
strategies with the probability proportional to its previous successful rate
to generate effective trial vectors during a certain learning period

DE with strategy and parameter self-adaptation [QS05, HQS06]

-46-

Self-adaptive DE (SaDE)

Parameter adaptation
Mutation scale factor (F): for each target vector in the current population, we
randomly generate F value according to a normal distribution N(0.5,0.3). Therefore,
99% F values fall within the range of [–0.4,1.4]

Crossover rate (CRj): when applying strategy j with respect to a target vector, the
corresponding CRj value is generated according to an assumed distribution, and those
CRj values that have generated trial vectors successfully entering the next generation
are recorded and updated every LP generations so as to update the parameters of the
CRj distribution. We hereby assume that each CRj, j=1,…,num_st is normally
distributed with its mean and standard deviation initialized to 0.5 and 0.1, respectively

5. The selection probability pi is updated by:

nsnum_st(L)…ns1(L)

…

nsnum_st(1)…ns1(1)

nsnum_st(L+1)…ns1(L+1)

…

nsnum_st(2)…ns1(2)

nsnum_st(L+2)…ns1(L+2)

…
nsnum_st(3)…ns1(3)

…

()∑+∑∑ iii nfnsns . Go to 2nd step

-47-

Instantiations

In CEC’05, we use 2 strategies:

In CEC’06, we employ 4 strategies:

()GrGrGrGi F ,,,, 321
XXXV −⋅+=

DE/rand/1/bin:

DE/rand/2/bin:

DE/current-to-best/2/bin:

DE/current-to-rand/1:

()GrGrGrGi F
,321 ,,, XXXV −⋅+=

() ()GrGrGrGrGiGbestGiGi FF ,,,,,,,, 4321
XXXXXXXV −+−⋅+−⋅+=

()GrGrGrGrGrGi F
,54,321 ,,,, XXXXXV −+−⋅+=

DE/rand/1/bin:

DE/current-to-best/2/bin: () ()GrGrGrGrGiGbestGiGi FF ,,,,,,,, 4321
XXXXXXXV −+−⋅+−⋅+=

() ()GrGrGiGrGiGi FF ,,,,,, 321
XXXXXV −⋅+−⋅+=

LP = 50

LP = 50

-48-

Local search enhancement

To improve convergence speed,To improve convergence speed, we apply a local search we apply a local search
procedure every 500 generations:procedure every 500 generations:

To apply local search, we choose n = 0.05·Np individuals,
which include the individual having the best objective function
value and the n-1 individuals randomly selected from the top 50%
individuals in the current population

We perform the local search by applying the Quasi-Newton
method to the selected n individuals

-49-

Overview of DE research trends

Digital Filter Design

Multiprocessor synthesis

Neural network learning

Diffraction grating design

Crystallographic characterization

Beam weight optimization in
radiotherapy

Heat transfer parameter estimation
in a trickle bed reactor

Electricity market simulation

Scenario-Integrated Optimization of
Dynamic Systems

Optimal Design of Shell-and-Tube Heat
Exchangers

Optimization of an Alkylation's Reaction

Optimization of Thermal Cracker Operation

Optimization of Non-Linear Chemical
Processes

Optimum planning of cropping patterns

Optimization of Water Pumping System

Optimal Design of Gas Transmission Network

Differential Evolution for Multi-Objective
Optimization

Bioinformatics

DE Applications

-50-

IV - Constrained Optimization

Optimization of constrained problems is an important
area in the optimization field.
In general, the constrained problems can be
transformed into the following form:

Minimize
subjected to:

q is the number of inequality constraints and m-q is the
number of equality constraints.

1 2(), [, ,...,]Df x x x=x x

() 0, 1,...,jh j q m= = +x

() 0, 1,...,ig i q≤ =x

-51-

Constrained Optimization
For convenience, the equality constraints can be transformed into
inequality form:

where is the allowed tolerance.

Then, the constrained problems can be expressed as
Minimize

subjected to

If we denote with the feasible region and the whole search
space, if and all constraints are satisfied. In this case,
x is a feasible solution.

| () | 0jh ε− ≤x

ε

F∈x S∈x
F S

1 2(), [, ,...,]Df x x x=x x

1,..., 1,... 1,..., 1,...

() 0, 1,..., ,

() (), () () ε+ +

≤ =

= = −

j

q q q m q m

G j m

G g G h

x

x x x x

-52-

Constraint-Handling (CH) Techniques

Penalty Functions:
Static Penalties (Homaifar et al.,1994;…)
Dynamic Penalty (Joines & Houck,1994; Michalewicz&
Attia,1994;…)
Adaptive Penalty (Eiben et al. 1998; Coello, 1999; Tessema &
Gary Yen 2006, Smith & Tate 1993…)
…

Superiority of feasible solutions
Start with a population of feasible individuals (Michalewicz,
1992; Hu & Eberhart, 2002; …)
Feasible favored comparing criterion (Ray, 2002; Takahama &
Sakai, 2005; …)
Specially designed operators (Michalewicz, 1992; …)
…

-53-

Constraint-Handling (CH) Techniques

Separation of objective and constraints
Stochastic Ranking (Runarsson & Yao, TEC, Sept 2000)
Co-evolution methods (Coello, 2000a)
Multi-objective optimization techniques (Coello, 2000b;
Mezura-Montes & Coello, 2002;…)
Feasible solution search followed by optimization of
objective (Venkatraman & Gary Yen, 2005)
…

While most CH techniques are modular (i.e. we can pick one CH
technique and one search method independently), there are also
CH techniques embedded as an integral part of the EA.

-54-

DMS-PSO for Constrained Optimization

Novel Constraint-Handling Mechanism
Suppose that there are m constraints, the population is
divided into n sub-swarms with sn members in each sub-
swarm and the population size is ps (ps=n*sn). n is a
positive integer and ‘n=m’ is not required.

The objective and constraints are assigned to the sub-
swarms adaptively according to the difficulties of the
constraints.

By this way, it is expected to have population of feasible
individuals with high fitness values.

-55-

DMS-PSO’s Constraint-Handling Mechanism

How to assign the objective and constraints to each sub-swarm?

Define

Thus 1 21 , [, ,...,]mfp p p p= − =p p

1
0

if a b
a b

if a b
>⎧

> = ⎨ ≤⎩

1

(() 0)
, 1, 2,...,

ps

i j
j

i

g
p i m

ps
=

>
= =
∑ x

1
(/) 1

m

i
i

fp p m
=

+ =∑

p

-56-

DMS-PSO’s Constraint-Handling Mechanism

For each sub-swarm,
Using roulette selection according to fp and to assign the
objective function or a single constraint as its target.
If sub-swarm i is assigned to improve constraint j, set obj(i)=j and if
sub-swarm i is assigned to improve the objective function, set
obj(i)=0.

Assigning swarm member for this sub-swarm: Sort the unassigned
particles according to obj(i), and assign the best and sn-1 worst
particles to sub-swarm i.

/ip m

-57-

DMS-PSO’s Comparison Criteria

1. If obj(i) = obj(j) = k (particle i and j handling the same constraint k),
particle i wins if

2. If obj(i) = obj(j) = 0 (particle i and j handling f(x)) or obj(i) ≠ obj(j) (i
and j handling different objectives), particle i wins if

 () () with () 0

 () () & (), () 0

 () () & () ()

< >

< ≤

< ==

k i k j k j

i j k i k j

i j i j

G G G

or V V G G

or f f V V

x x x

x x x x

x x x x

 () ()

 () () & () ()

<

< ==
i j

i j i j

V V

or f f V V

x x

x x x x

1
() (() (() 0))

=

= ⋅ ⋅ ≥∑
m

i i i
i

V weight G Gx x x

1

1/ max
, 1, 2,...

(1/ max)
=

= =

∑
i

i m

i
i

G
weight i m

G

-58-

DMS-PSO for Constrained Optimization

Step 1: Initialization -
Initialize ps particles (position X and velocity V), calculate f(X), Gj(X)
(j=1,2...,m) for each particle.

Step 2: Divide the population into sub-swarms and assign obj for
each sub-swarm using the novel constraint-handling mechanism,
calculate the mean value of Pc (except in the first generation,
mean(Pc)=0.5), calculate Pc for each particle. Then empty Pc.

Step 3: Update the particles according to their objectives; update
pbest and gbest of each particle according to the same
comparison criteria, record the Pc value if pbest is updated.

-59-

Step 5: Local Search-
Every L generations, randomly choose 5 particles’ pbest and start local
search with Sequential Quadratic Programming (SQP) method using
these solutions as start points (fmincon(…,…,…) function in Matlab is
employed). The maximum fitness evaluations for each local search is
L_FEs.

Step 6: If FEs≤0.7*Max_FEs, go to Step 3. Otherwise go to Step 7.

Step 7: Merge the sub-swarms into one swarm and continue PSO
(Global Single Swarm). Every L generations, start local search using
gbest as start points using 5*L_FEs as the Max FEs. Stop search if
FEs≥Max_FEs

DMS-PSO for Constrained Optimization

-60-

SaDE for Constrained Optimization

Strategy Adaptation
Probabilistically select one out of several available learning
strategies to apply for each individual in the current population

DE/Rand/1:

DE/Current to best/2:

DE/Rand/2:

DE/Current-to-rand/1:

()GrGrGrGi F
,321 ,,, XXXV −⋅+=

() ()GrGrGrGrGiGbestGiGi FF
,43,21 ,,,,,, XXXXXXXV −+−⋅+−⋅+=

() ()GrGrGrGrGrGi FF
,54,321 ,,,, XXXXXV −⋅+−⋅+=

() ()1 3 1 2,, , , , ,i G r G r G i G r G r GU K F= + ⋅ − + ⋅ −X X X X X

-61-

Self-adaptive Differential Evolution

Initial probabilities p1=p2=p3=p4=0.25

According to the probability, we apply Stochastic Universal
Selection to select the strategy for each individual in the current
population.

nsi (nfi), i=1,2,3,4: the accumulated number of trial vectors,
successfully entering (discarded) the next generation while
generated by each strategy

nsi and nfi are accumulated within a specified number of
generations, called the “learning period (LP)”. The probability
pi is updated as:

nfns
nsp
i

i
i +
=

-62-

Self-adaptive Differential Evolution

F: different random values normrnd(0.5,0.3) in the range (0,2]
for different individuals

CR: accumulating the previous learning experience within a certain
generational interval so as to dynamically adapt the value of CR

to a suitable range

Parameters adaptation

IF REM (G, LP)=0
CRm=mean(CRpool)

END IF

IF REM (G, 5)=0
FOR i =1 to NP

CRi=normrand(CRm,0.1)
END FOR

END IF

-63-

Extend SaDE to Handle Constraints

Selection procedure
The trial vector Ui,G is compared to its corresponding
target vector Xi,G in the current population considering
both the fitness value and constraints.

Ui,G will replace Xi,G if any of the following conditions is true
1. Ui,G is feasible, Xi,G is not.
2. Ui,G and Xi,G are both feasible, and Ui,G has smaller or

equal fitness value (for minimization problem) than Xi,G .
3. Ui,G and Xi,G are both infeasible, but Ui,G has a smaller

overall constrain violation.

-64-

Local Search

To speed up the convergence, we apply a local search
procedure once every 500 generations

n=5% of NP individuals

DE_gbest + randomly selected n-1 individuals from the best 50%
individuals in the current population

We employ the Sequential Quadratic Programming (SQP)
method as the local search method.

-65-

V - Multi-objective Problems [D01]
Many real-world problems involve multiple, conflicting objectives

Applications: [CVL02][CVL02], [SP05][SP05], [MB06][MB06], [TLL05][TLL05]

Robotics and control engineering
Transport engineering
Scheduling
Finance
Bioinformatics
Pattern recognition
PID design
Non-dominated solutions: In a set of

solutions P, the non-dominated set of
solutions P′ are those that are not
dominated by any member of the set P .

Pareto-optimality: When the set P is
the entire search space, the resulting P′
is called the Pareto-optimal set.

-66-

Multi-Objective Optimization

Mathematically, we can use the following formula to
express the multi-objective optimization problems (MOP):

The objective of multi-objective optimization is to find a
set of solutions which can represent the Pareto-optimal
set well, thus there are two goals for the optimization:

1) Convergence to the Pareto-optimal set
2) Diversity of solutions in the Pareto-optimal set

1 2Minimize () ((), (), , ()) [,]
subject to () 0, 1,...,

 () 0, 1,...,

m

j

k

f f f f
g j z

h k q m

= = ∈
≤ =

= = +

y x x x x x Xmin Xmax
x

x

K

-67-

Representative MOEAs [CJKO01][CJKO01][D01][D01][ZLT01][ZLT01][CVL02][AJG05][TKL05][CVL02][AJG05][TKL05]

Non-elitist MOEAs
Weight based GA (WBGA)

Multiple objective GA (MOGA)

Niched Pareto GA

Non-dominated sorting GA(NSGA)

Elitist MOEAs
Distance-based Pareto GA (DPGA)

Strength Pareto GA (SPEA), SPEA-II

Non-dominated GA-II (NSGA-II)

Pareto-archived ES (PAES),

Pareto envelope-based selection algorithm (PESA), PESA-II

Multi-objective messy GA (MOMGA)

-68-

From PSO to MOPSO

Mainly used techniques:
External archive for the non-dominated solution set.
How to update pbest and gbest (or lbest)

Execute non-domination comparison with pbest or gbest
Execute non-domination comparison among all particles’
pbests and their offspring in the entire population

How to choose gbest (or lbest)
Choose gbest (or lbest) from the recorded non-dominated
solutions
Choose good local guides

How to keep diversity
Crowding distance sorting
Subpopulation

-69-

From CLPSO and DMS-PSO to MOPSOs

Combine an external archive which is used to record the
non-dominated solutions found so far.

Use Non-dominated Sorting and Crowding distance Sorting
which have been used in NSGAII (Deb et al., 2002) to sort
the members in the external archive.

Choose exemplars (CLPSO) or lbest (DMS-PSO) from the
non-dominated solutions recorded in the external archive.

Experiments show that MO-CLPSO and DMS-MO-PSO are
both capable of converging to the true Pareto optimal front
and maintaining a good diversity along the Pareto front.

-70-

Selection of pbest, gbest in MO-CLPSO [HSL06]

Selection of gbest in MOCLPSO
all the non-dominated solutions are good individuals

Randomly choose a particle from the non-dominated solutions.

Other alternatives would be to form grids in the objective space and to select
representatives from each cells, or to select more from less crowded cells, etc.

Selection of pbest

-71-

MO-CLPSO Algorithm

1) Initialize
Randomly initialize particle positions, Initialize particle velocities
Evaluate the fitness values of particles, initialize the external archive.
2) Optimize
WHILE stopping criterion is not satisfied

DO
For i=1 to NP
Select gbest from external archive

Assign each dimension to learn from gbest, pbest of this particle and
pbests of other particles,

-72-

MO-CLPSO Algorithm (cont.)

Update particle velocity

Update particle position

Evaluate the fitness values of particle
Update pbest if current position is better than pbest
End For
Update the external archive
Increment the generation count
END WHILE

()

() 1
() () () (() ())
() 1

() () () (() ())

() () () (() ())

i

i k i i

i

i k i fi d i

i k i i i

if a d
V d V d rand gbest d X d

if b d
V d V d rand pbest d X d

else
V d V d rand pbest d X d

ω

ω

ω

==⎧
⎪ = ∗ + ∗ −⎪
⎪ ==⎪
⎨ = ∗ + ∗ −⎪
⎪
⎪

= ∗ + ∗ −⎪⎩

() () ()i i iX d X d V d= +

-73-

MO-DMS-PSO Algorithm

The solutions in the external archive are sorted based on one
randomly chosen objective and then partitioned into n groups where
n is the number of sub-swarms.
Each sub-swarm randomly selects one representative as the gbest
from each partition of the external archive.

-74-

MOSaDE

MOSaDE is an extension of SaDE to optimize
problems with multiple objectives.
Similar to SaDE, the MOSaDE algorithm
automatically adapts the trial vector generation
strategies and their associated parameters
according to their previous experience of
generating promising or inferior individuals.
However, when extending the single-objective
algorithm to multi-objective domain, the
evaluation criteria of promising or inferior
individuals must be changed.

-75-

MOSaDE

We use the following:
Individual A is better than individual B, if
(1) individual A dominates B, or
(2) individual A and individual B are non-

dominated with each other, but A is less crowded
than individual B.
Therefore, in case that the trial vector is better
than the target vector according to this criterion,
we will record the associated parameter and
strategy.

-76-

MOSaDE
The strategies incorporated into our proposed MOSaDE
algorithm are ‘rand/1/bin’ and ‘best/2/bin’.
The Xbest in ‘best/2/bin’ is randomly selected from external
archive.

MOSaDE Algorithm
Step 1. Randomly initialize a population of NP individuals. Initialize
strategy probability (pk, k=1,…,K, K is the no. of available
strategies), the median value of CR(CRmk) for each strategy,
learning period (LP=50) .
Step 2. Evaluate the individuals in the population, and fill the external
archive with these individuals.

-77-

MOSaDE Algorithm

Step 3.Repeat
(1) Calculate strategy probability pk: the percentage of the success rate of trial

vectors generated by each strategy during the learning period.
(2) Assign trial vector generation strategy and parameters to each target vector

Xi

(a) Use stochastic universal sampling to select one strategy k for each
target vector Xi

(b) Assign control parameters F and CR
F: Generate the F values under Normrnd(0.3,0.1)
CR: After the first LP generation, calculate CRmk according to the recorded
CR values. Generate the CR values under Normrnd(CRmk,0.1)

(3) Generate a new population where each trial vector is generated according
to associated trial vector generation strategy k and parameter F and CR in
(2).

(4) Selection:

-78-

FOR i=1:NP
(a) Evaluate the trial vector , and compare with the target vector Xn(i)
nearest to the trial vector in the solution space.

IF Xn(i) dominates , discard .
ELSE

IF dominates Xn(i) ,replace Xn(i) with ;
IF non-dominated with each other, choose less crowded one to be

the new target vector;
will enter the external archive if (i) dominates some

individual(s) of the archive (the dominated individuals in the archive are
deleted); or (ii) is nondominated with archived individuals

END IF
(b) If trial vector is better than Xn(i), record the associated parameter CR

and flag strategy k as successful strategy. Otherwise, flag strategy k as
failed strategy.

(c) When the external archive exceeds the maximum specified size, we
select the less crowded individuals based on harmonic average
distance to keep the archive size.

END FOR

k
iU

k
iU

k
iU

k
iU

k
iU

k
iU k

iU

k
iU

-79-

Local search

Use local search to further improve solutions
found by the MOSaDE algorithm.
Employ the Quasi-Newton method as the local
search method, considering only one objective
randomly selected each time.
The local search procedure is applied once every
200 generations, on 10 individuals randomly
selected among the non-dominated solutions that
were not applied local search previously.

-80-

VI - Niching Methods [SD-06]: Fitness sharing

Fitness sharing [GR-87] modifies the search landscape by reducing the fitness of
individuals in densely-populated regions. A sharing radius σs is used to determine
whether two individuals share the same niche.
Reducing an individual’s fitness is controlled by two operations, a similarity
function and a sharing function. The shared fitness fi’ is given by the formula as
below:

where fi denotes the original fitness of the individual i, N the population size, and dij the
distance between the individual i and the individual j. α is a constant parameter
which regulates the shape of the sharing function sh (typically α=1).

The effect of this scheme is to encourage search in unexplored regions. The
weakness of this method lies in the fact that it requires a priori knowledge about
the distance between the peaks in the search space.

-81-

k-means clustering based

K-means clustering algorithm is used to divide the population into niches [YG-93].
The fitness is calculated based on the distance dic between the individual and its
niche centroid.
The final fitness of an individual is calculated by the relation:

nc is the number of individuals in the niche containing individual i, dmax is the maximum
distance allowed between an individual and its niche centroid, and α is a constant.
The formation of the niches is based on the adaptive K-mean algorithm. The
algorithm begins with a fixed number (k) of seed points taken as the best k
individuals.
Using a minimum allowable distance dmin between niche centroids, a few clusters
are formed from the seed points.
The remaining population members are then added to these existing clusters or are
used to form new clusters based on dmin and dmax. These computations are
performed in each generation.

-82-

Deterministic crowding (DC)

Deterministic crowding [M-95] is an extension of a technique first used by De Jong
to help promote diverse populations [D-75]. After crossover and mutation, the
offspring then replace their closest parent if it has a better fitness.
Calculate the distances between p1 and c1, p2 and c2, p1 and c2, p2 and c1, and name
them d1, d2, d3, d4 respectively.

If d1+d2 <= d3+d4, then
If the fitness of c1 is higher than the fitness of p1, replace p1 with c1;
If the fitness of c2 is higher than the fitness of p2, replace p2 with c2.

Else
If the fitness of c2 is higher than the fitness of p1, replace p1 with c2;
If the fitness of c1 is higher than the fitness of p2, replace p2 with c1.

Deterministic crowding uses a distance measure to determine similarity between
individuals. As, DC does not require the use of a similarity radius, this relaxes the
requirement of a priori domain knowledge and makes DC more suitable for
difficult problems than fitness sharing. DC is an elitist niching method. This means
that once a peak is discovered, it is never lost from the population.

-83-

Restricted tournament selection (RTS)

RTS [H-94] adapts tournament selection for multimodal
optimization. It initially selects two elements from the
population to undergo crossover and mutation. Then a
random sample of w individuals is taken from the population
to be compared with each offspring created, and the most
similar (or the closest) individual is chosen to compete with
the offspring. If the offspring wins, it is allowed to enter the
population.

-84-

Clearing

Clearing [P-96] is best described
as a variant of the sharing
technique.

Instead of sharing resources
between all individuals of a same
niche as in the fitness sharing
scheme, clearing attributes them
only to the best few members of
the niche and removes the
inferior individuals. The
remaining individuals form the
mating pool and generate
offspring.

-85-

K-means Clustering-based Niched PSO

Kennedy proposed the niched
PSO using K-means
clustering [K-00].
The gbest / pbest / lbest were
replaced by cluster centers or
the best particle of each
cluster to obtain several
variants.
Clustering-based variants
performed better than the
original PSO.

-86-

Deflection, Stretching, Repulsion based Niched PSO

Parsopoulos [PV04b] et. al
made use of deflection,
stretching, repulsion, etc.
to locate as many optima
as possible.
These techniques
transform the objective
function to make
previously obtained local
optima to have high
function values (or low
fitness).

-87-

NichePSO [BEB07]

-88-

VII - BINARY PSO ALGORITHM

Binary PSO (K&E97)
Sigmoid function

Force the real values between 0 and 1
Velocity is updated with traditional equation
Sigmoid function is used to squash them to be within [0,1]

s(vij)=1/(1+exp(-vij))
Xij=1 if r ≤ s(vij)
Xij=0 if r > s(vij)
r=uniform random number

-89-

Angle Modulated PSO / DE [PFE05, PEF06]

•a, b, c and d are real valued variables to be optimized by
the PSO or DE.

•If there are 10 binary variables, x takes 10 different values,
for example, from 1 to 10.

•For every solution of “a, b, c and d” binary bits are
generated by sign(g(x)) operation (as x runs from
1 to 10 in the case 10 bit problem.

-90-

VIII - Benchmarking Evolutionary Algorithms

CEC05 comparison results (Single obj. + bound
const.)

CEC06 comparison results (Single obj + general
const.)

Experimental Results on MOPSOs
CEC07 comparison results on MOEAs

CEC benchmarking resources available from
http://www.ntu.edu.sg/home/epnsugan/

-91-

CEC’05 Comparison Results
Algorithms involved in the comparison:

BLX-GL50 (Garcia-Martinez & Lozano, 2005): Hybrid Real-Coded Genetic
Algorithms with Female and Male Differentiation
BLX-MA (Molina et al., 2005): Adaptive Local Search Parameters for Real-Coded
Memetic Algorithms
CoEVO (Posik, 2005): Mutation Step Co-evolution
DE (Ronkkonen et al.,2005):Differential Evolution
DMS-L-PSO: Dynamic Multi-Swarm Particle Swarm Optimizer with Local Search
EDA (Yuan & Gallagher, 2005): Estimation of Distribution Algorithm
G-CMA-ES (Auger & Hansen, 2005): A restart Covariance Matrix Adaptation
Evolution Strategy with increasing population size
K-PCX (Sinha et al., 2005): A Population-based, Steady-State real-parameter
optimization algorithm with parent-centric recombination operator, a polynomial
mutation operator and a niched -selection operation.
L-CMA-ES (Auger & Hansen, 2005): A restart local search Covariance Matrix
Adaptation Evolution Strategy
L-SaDE (Qin & Suganthan, 2005): Self-adaptive Differential Evolution algorithm
with Local Search
SPC-PNX (Ballester et al.,2005): A steady-state real-parameter GA with PNX
crossover operator

-92-

CEC’05 Comparison Results

Problems: 25 minimization problems (Suganthan et al. 2005)
Dimensions: D=10, 30
Runs / problem: 25
Max_FES: 10000*D (Max_FES_10D= 100000; for 30D=300000; for
50D=500000)
Initialization: Uniform random initialization within the search space, except
for problems 7 and 25, for which initialization ranges are specified. The
same initializations are used for the comparison pairs (problems 1, 2, 3 & 4,
problems 9 & 10, problems 15, 16 & 17, problems 18, 19 & 20, problems 21,
22 & 23, problems 24 & 25).
Global Optimum: All problems, except 7 and 25, have the global optimum
within the given bounds and there is no need to perform search outside of
the given bounds for these problems. 7 & 25 are exceptions without a
search range and with the global optimum outside of the specified
initialization ranges.

-93-

CEC’05 Comparison Results

Termination: Terminate before reaching Max_FES if the error in the
function value is 10-8 or less.
Ter_Err: 10-8 (termination error value)
Successful Run: A run during which the algorithm achieves the fixed
accuracy level within the Max_FES for the particular dimension.
Success Rate= (# of successful runs) / total runs
Success Performance = mean (FEs for successful runs)*(# of total runs) /
(# of successful runs)

-94-

CEC’05 Comparison Results
Success Rates of the 11 algorithms for 10-D

*In the comparison, only the problems in which at least one algorithm
succeeded once are considered.

-95-

CEC’05 Comparison Results

Empirical distribution over all successful functions for 10-D (SP here
means the Success Performance for each problem. SP=mean (FEs for
successful runs)*(# of total runs) / (# of successful runs). SPbest is the
minimal FES of all algorithms for each problem.)

First three algorithms:
1. G-CMA-ES
2. DE
3. DMS-L-PSO

-96-

CEC’05 Comparison Results

Success Rates of the 11 algorithms for 30-D

*In the comparison, only the problems which at least one algorithm
succeeded once are considered.

-97-

CEC’05 Comparison Results

Empirical distribution over all successful functions for 30-D (SP here
means the Success Performance for each problem. SP=mean (FEs for
successful runs)*(# of total runs) / (# of successful runs). SPbest is the
minimal FES of all algorithms for each problem.)

First three algorithms:
1. G-CMA-ES
2. DMS-L-PSO
3. L-CMA-ES

-98-

CEC’06 Comparison Results
Algorithms

DE (Zielinski & Laur, 2006): Differential Evolution
DMS-C-PSO (Liang & Suganthan, 2006): Dynamic Multi-Swarm Particle
Swarm Optimizer with the New Constraint-Handling Mechanism
ε- DE [TS06] Constrained Differential Evolution with Gradient-Based
Mutation and Feasible Elites
GDE (Kukkonen & Lampinen, 2006) : Generalized Differential Evolution
jDE-2 (Brest & Zumer, 2006): Self-adaptive Differential Evolution
MDE (Mezura-Montes, et al. 2006): Modified Differential Evolution
MPDE (Tasgetiren & Suganthan,2006): Multi-Populated DE Algorithm
PCX (Ankur Sinha, et al, 2006): A Population-Based, Parent Centric
Procedure
PESO+ (Munoz-Žavala et al, 2006): Particle Evolutionary Swarm Optimization
Plus
SaDE (Huang et al, 2006): Self-adaptive Differential Evolution Algorithm

-99-

CEC’06 Comparison Results

Problems: 24 minimization problems with constraints
(Liang, 2006b)
Runs / problem: 25 (total runs)
Max_FES: 500,000
Feasible Rate = (# of feasible runs) / total runs
Success Rate = (# of successful runs) / total runs
Success Performance = mean (FEs for successful
runs)*(# of total runs) / (# of successful runs)

The above three quantities are computed for each problem
separately.
Feasible Run: A run during which at least one feasible
solution is found in Max_FES.
Successful Run: A run during which the algorithm finds a
feasible solution x satisfying () (*) 0.0001f f− ≤x x

-100-

CEC’06 Comparison Results

ω
NP, LP, LS_gapSaDE

, c1, c2 , n, not sensitive to , c1, c2PESO+
N , λ, r (a different N is used for g02), PCX
F, CR, np1, np2MPDE
μ, CR, Max_Gen, λ, Fα, Fβ,MDE
NP, F, CR, k, ljDE-2
NP, F, CRGDE
N, F, CR, Tc, Tmax, cp, Pg, Rg, Neε_DE
, c1, c2 , Vmax, n, ns, R, L, L_FESDMS-PSO

NP, F, CRDE
ω

ω

Algorithms’ Parameters

-101-

CEC’06 Comparison Results
Success Rate for Problems 1-11

-102-

CEC’06 Comparison Results

Success Rate for Problems 12-19,21,23,24

-103-

CEC’06 Comparison Results

Empirical distribution over all functions(SP here means the Success Performancefor each
problem. SP=mean (FEs for successful runs)*(# of total runs) / (# of successful runs).
SPbest is the minimal FES of all algorithms for each problem.)

GDE, PESO+9th

jDE-28th

DE7th

MPDE6th

SaDE5th

MDE, PCX3rd

DMS-PSO2nd

ε_DE1st

-104-

Results of MOCLPSO on ZDT1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f1

f2

True Pareto Front
MOCLPSO

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f1
f2

True Pareto Front
MOPSO

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f1

f2

True Pareto Front
NSGA-II

NSGA-II [D01]; MOPSO [CL04]; MOCLPSO [HSL06]

-105-

Results of MOCLPSO on ZDT3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

f1

f2

True Pareto Front
MOCLPSO

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-1

-0.5

0

0.5

1

1.5

2

f1

f2

True Pareto Front
MOPSO

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-1

-0.5

0

0.5

1

1.5

2

2.5

f1

f2

True Pareto Front
NSGA-II

-106-

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f1

f2

True Pareto Front
MOCLPSO

Results of MOCLPSO on ZDT6

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

f1

f2

True Pareto Front
MOPSO

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

f1

f2

True Pareto Front
NSGA-II

NSGA-II [D01]; MOPSO [CL04]; MOCLPSO [HSL06]

-107-

Results of MO-DMS-PSO

NSGA-II [D01]; MOPSO [CL04]; PAES [KC00]

-108-

Results of MO-DMS-PSO

-109-

Results of MO-DMS-PSO

-110-

CEC07 comparison results on MOEAs:
Evaluation Criteria

Quantitative performance measurements, R indicator and Hypervolume
difference to a reference set is used as a measure for the expected
number of function evaluations to reach a target Pareto front.
Invariance is a non-empirical statement on the ability to generalize
performance results. Invariance guarantees identical performance on a
class of functions. Possible invariances are invariance against translation,
scaling, or even order preserving transformations of the objective function
value invariance against angle preserving (rigid) transformations of the
search space (translation, rotation)
Parameters Settings

how many parameters of the algorithm need to be adjusted to the
object function?
how many different settings were tested?
how many different settings were finally used?

-111-

References to Algorithms in CEC07 papers

NSGAII_SBX: Sharma, Kumar et al.
NSGAII_PCX: Kumar et al.
GDE3: Kukkonen and Lampinen
DEMOwSA: Zamuda et al.
MOSaDE: Huang et al.
MO_DE: Zielinski and Laur
MO_PSO: Zielinski and Laur
MTS: Tseng and Chen

-112-

CEC07 Function Sets

Three subsets
2-objective functions
3-objective functions
5-objective functions

Comparison: Rank of the mean of the metric
values from 25 runs

-113-

M=2, Rank(R indicator)

FES=5000

FES=50000

FES=500000

-114-

M=2, Rank(Hypervolumn)

FES=5000

FES=50000

FES=500000

-115-

M=3, Rank(R indicator)

FES=5000

FES=50000

FES=500000

-116-

M=3, Rank(Hypervolumn)

FES=5000

FES=50000

FES=500000

-117-

M=5, Rank(R indicator)

FES=5000

FES=50000

FES=500000

-118-

M=5, Rank(Hypervolumn)

FES=5000

FES=50000

FES=500000

-119-

CEC07 Summarized Results - Rank by IR2

-120-

CEC07 Summarized Results - Rank by HI

-121-

CEC07 Summarized Results - Rank by IR2 and HI

-122-

Rank (IR2 and) on all test problems
FES=5000 FES=50000

FES=500000

HI

-123-

Acknowledgement

Our research into evolutionary algorithms in
Singapore is financially supported by an A*Star
(Agency for Science, Technology and Research),
Singapore

Thanks to all past and current researchers working
with me for their contributions. These slides show
the results of their research efforts.

