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Outline of the Presentation

. Benchmark Test Functions

Il. Real Parameter Particle swarm optimization (PSO)

B Basic PSO, its variants, Comprehensive learning PSO
(CLPSO), Dynamic multi-swarm PSO (DMS-PSO)

Ill.  Real Parameter Differential evolution (DE)
B DE, its variants, Self-adaptive differential evolution

I\VV.  Constrained optimization

Multi-objective PSO / DE

Multimodal optimization (niching)

|. Binary / Discrete PSO & DE

Il. Benchmarking results of CEC 2005, 2006, 2007.
Dynamic, Robust optimization — excluded. g\ vanc
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Resources available from
http.//www.ntu.edu.sg/home/epnsugan

(limited to our own work)

From Prof Xin Yao’s group
http://www.cs.bham.ac.uk/research/projects/ecb/

Includes diverse problems.
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Why do we require benchmark problems?

Why we need test functions?

B To evaluate a novel optimization algorithm’s property on
different types of landscapes

B Compare different optimization algorithms

Types of benchmarks

B Bound constrained problems (real, binary, discrete,
mixed)

Constrained problems

Single / Multi-objective problems

Static / Dynamic optimization problems

Multimodal problems

Various combinations of the above
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Shortcomings in Bound constrained Benchmarks

[0 Some properties of benchmark functions may make them unrealistic
or may be exploited by some algorithms:

Global optimum having the same parameter values for different
variables / dimensions

Global optimum at the origin

Global optimum lying in the center of the search range
Global optimum on the bound

Local optima lying along the coordinate axes

no linkage among the variables / dimensions or the same linkages
over the whole search range

Repetitive landscape structure over the entire space

Do real-world problems possess these properties?
Liang et. al 2006¢ (Natural Computation) has more

detalls.
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How to Solve?

1 Shift the global optimum to a random position to make the
global optimum to have different parameter values for
different dimensions

[0 Rotate the functions as below:
F(X) = f(R*X)

where R is an orthogonal rotation matrix

[J Use different classes of benchmark functions, different
rotation matrices to compose a single test problem.

[0 These Composition Functions mix different properties of
different basic test functions together to destroy repetitive
structures.
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Novel Composition Test Functions

[0 Compose the standard benchmark functions to construct a
more challenging function with a randomly located global
optimum and several randomly located deep local optima
with different linkage properties over the search space.

[0 Gaussian functions are used to combine these benchmark
functions and to blur individual functions’ structures mainly
around the transition regions.

[J More detalls in Liang, et al 2005, CEC 2005 special sessions
on benchmarking RP-EAs.
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Novel Composition Test Functions

Fix) new composition function.
F,(x) o ith basic function used to construct the composition function.
2 mymber of basic functions. The bigger # iz, the more complex #(x) IS.

2 ditnenision.

[X min, ¥ max]™; #(x) "s search range

[xmin;, xmax, " F,0x) s search range

Ad, : orthogonal rotation matrez for each # (x)
o, new shufted optanum posttion for each  #)(x)

2., . old optirmam position for each  # (x)

F(x)= 3 (W, *[£{(x~0, +0,, )/ 4, * M,) + bias ]} + f _ bias

B NANYANG
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Novel Composition Test Functions

w, - weight walue for each 7 (x), calculated as below:

I
Z (% —og + '%wj'g

Wy = EEpl- =

2D a
_ { W 1wy = max(w;)

Yl ma(w )0 0) i W max(w )
then nortnalize the weight w, = w, / HZHH
lm]

a,:used to control each 7 (x) s coveragerange, asmall o, grves a narrow range for 7 (x) .

A, :used to stretch or compress the function, 4, 1 means stretch, A, <1 means compress.

X = X i

usually set A =g, _
X ITUER, — XLt

i NANYANG
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Novel Composition Test Functions

o, define the global and local optima’s posttion,

bies define which optirauim 15 global optirmim,
[f f(x) aredifferent functions, different funchions have different properhies and height,

It order to get a better muzhure, we estimate the bizgest funchion value [

then normalize each basic function to swnilar height as below:

Alx =% f0I| £ 4l C i 2 predefined constant

These composition functions can also be used as

multimodal functions.
B4 I\.';\ NYA NG
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A couple of Examples

[0 Many composition functions are available from our homepage
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Composition Function 1 (F1): Composition Function 2 (F2):
Made of Sphere Functions Made of Griewank’s Functions

Similar analysis Is needed for other benchmarks such
as the multi-objective, constrained, etc. _ NANVANG
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1l - Particle Swarm Optimizer

Introduced by Kennedy and Eberhart in 1995
(Eberhart & Kennedy,1995; Kennedy & Eberhart,1995)

Emulates flocking behavior of birds, animals, insects, fish, etc. to
solve optimization problems

Each solution in the landscape Is a particle
All particles have fithess values and velocities

The standard PSO does not have mutation, crossover,
selection ,etc.

Oooo O 0O

kel NANYANG

TECHNOLOGICAL

1. ﬁ\/ UNIVERSITY




Particle Swarm Optimizer

[0 Two versions of PSO

B Global version (May not be used alone to solve multimodal
problems): Learning from the personal best (pbest) and the
best position achieved by the whole population (gbest)

V.4« ¢, *rand1 = (pbest® — X.%)+c,*rand 2" = (gbest’ — X.)
Xid N Xid +Vid | — particle counter & d — dimension counter

B Local Version: Learning from the pbest and the best position
achieved in the particle's neighborhood population (Ibest)

V¢ <~ ¢, *randl® = (pbest® — X.*)+c,*rand 2, = (Ibest,* — X.%)
X;® < X" +V°

[0 The random numbers (rand1 & rand2) should be
generated for each dimension of each particle in every

Iteration. NANYANG
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General parameters in PSO

[1 c, and c, denote the acceleration constants usually set to ~2.

O randl! and rand2? are two uniform random numbers within the
range [0,1]

O x=(x"%"..%") represents the position of the i" particle

O v,=(v'v’...v.°) represents the position changing rate
(velocity) of the it particle

[0 pbest, =(pbest’, pbest?,..., pbest®)  represents the best
previous position (the position giving the best objective
function value) of the ith particle

[0 gbest = (gbest’, gbest’,...,gbest®)  represents the best
previous position of the whole swarm

0 lbest, = (Ibest’,Ibest?, ..., Ibest.°) represents the best
previous position achieved by those particles within the

neighborhood of the ith particle
il NANYANG
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PSO variants

[0 Modifying the Parameters

Inertia weight « (Shi & Eberhart, 1998; Shi & Eberhart, 2001; Eberhart
& Shi, 2001, ...)

Constriction coefficient (Clerc,1999; Clerc & Kennedy, 2002)
Time varying acceleration coefficients (Ratnaweera et al. 2004)
Linearly decreasing V.., (Fan & Shi, 2001)

Tribes (Clerc 2006)

max

[1 Using Topologies

Extensive experimental studies (Kennedy, 1999; Kennedy & Mendes,
2002, ...)

Dynamic neighborhood (Suganthan,1999; Hu and Eberhart, 2002;
Peram et al. 2003)

Combine the global version and local version together (Parsopoulos
and Vrahatis, 2004 ) named as the unified PSO or UPSO.

Fully informed PSO or FIPS (Mendes & Kennedy 2004) and so on ...

52 ik 4 N J,-\ I\:wfrj' ‘\. NG
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PSO variants and Applications

[1 Hybrid PSO Algorithms

PSO + selection operator (Angeline,1998)
PSO + crossover operator (Lovbjerg, 2001)

PSO + mutation operator (Lovbjerg & Krink, 2002; Blackwell &
Bentley,2002; ... ... )

PSO + dimension-wise search (Bergh & Engelbrecht, 2004)

[0 Various Optimization Scenarios & Applications

Binary Optimization (Kennedy & Eberhart, 1997; Agrafiotis et. al 2002; )

Constrained Optimization (Parsopoulos et al. 2002; Hu & Eberhart,
2002; ...)

Multi-objective Optimization (Ray et. al 2002; Coello et al. 2002/04; ... )
Dynamic Tracking (Eberhart & Shi 2001; ...)

Yagi-Uda antenna (Baskar et al 2005b), Photonic FBG design (Baskar

et al 2005a), FBG sensor network design (Liang et al June 2006)
i NANYANG
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PSO with Momentum / Constriction

In PSO with momentum [SE98], a momentum term
@ Is Introduced to the original equation:

V! <« oV’ +crand1’ (pbest’ —x) +c,rand 2¢ (gbest® — x")

X0 x* + V! |
« IS usually reduced form 0.9 to 0.4

PSO with constriction factor [CKO02]:

Vi < y[vi +c;randl’ (pbest’ —x )+ c,rand 2 (gbest® — x")]

X\« x* + v’ Constriction factor y can be set to 0.7298.

R NANYANG
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PSO Variants by Kennedy et. al

In fully informed particle swarm (FIPS) [KMOG6,
MKNO4], each particle’s velocity is adjusted based on
contributions from pbest of all its neighbors.

Bare bones PSO [K03]: PSO without the velocity
term, i.e. with the social & cognitive terms only.

Essential Particle swarm [KO6]: The velocity is
expressed as direction defined by the particle’s
position at time t and time (t-1), i.e. the persistence
and social influence.

Essential Particle Swarm is another realization of the
FIPS.

ER NANYANG
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Comprehensive learning PSO (CLPSO)

[0 CLPSO learning strategy:
vl « wxv! +cxrand  x (pbest C @)~ X )
X!« x! v

O f =[f,@) f(2)..,f(D) denotes a set of particle indices with
respect to each dimension of the particle i. f,(d) represents a
comprehensive exemplar with each dimension composed of the
value from the corresponding dimension of the pbest of
particle pbest, . These indices take the value I itself with the
probability Pc, referred to as the learning probability, which
takes different values with respect to different particles.

[0 For each dimension of particle i, we generate a random number.
If this random number is larger than Pc;, the corresponding
dimension of particle i will learn from its own pbest, otherwise it
will learn from the pbest of another randomly chosen particle.
il NANYANG
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CLPSO

O

Tournament selection with size 2 i1s used to choose the
index fi(d)

To ensure that a particle learns from good exemplars and to
minimize the time wasted on poor directions, we allow each
particle to learn from the exemplars until such particle stop to
iImprove for a certain number of generations, called the
refreshing gap m (7 generations).

After that, we re - assign f, = [f,(1), f.(2)...., f,(D)] for each particle i.

The detailed description and algorithmic implementation can be
found in [LQSBO06]. Matlab codes including CLPSO and several
state-of-the-art PSO variants are available for academic use.

NANYANG
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CLPSO

[0 Three major differences between CLPSO and the conventional
PSO are highlighted:

B |nstead of using particle’s pbest and gbest as the exemplars, all
particles’ pbests can be used to guide a particle’s flying direction.

B |Instead of learning from the same exemplar for all dimensions,
different dimensions of a particle may learn from different exemplars
within certain generations. In other words, at one iteration, each
dimension of a particle may learn from the corresponding dimension of
different particle’s pbest.

B |Instead of learning from two exemplars (pbest and gbest) in every
generation, each dimension of a particle in CLPSO learns from just
one comprehensive exemplar within certain generations.

[0 Experimental results [LQSBO06] over a suite of 16 numerical test
functions have demonstrated the promising performance of the
CLPSO to solve the multi-modal optimization problems in

comparison with 8 state-of-the-art PSO variants. SR NANVANG
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CLPSO with Probability Adaptation

Adaptive Self-Learning Strategy

Assume Pc normally distributed in a range with mean(Pc)
and a standard deviation of 0.1.

Initially, mean(Pc) is set at 0.5 and different Pc values
conforming to this normal distribution are generated for
each individual in the current population.

During every generation, the Pc values associated with
the particles which find new pbest are recorded.

The mean of normal distribution of Pc is recalculated
according to all the recorded Pc values corresponding to
successful movements during the last several generations.

As a result, the proper Pc value range for the current
problem can be learned to suit the particular problem.

2 NANYANG
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Dynamic multi-swarm PSO (DMS-PSO)

0 DMS-PSO is constructed S O
based on the local version [ Y — Ry
of PSO with a novel ° o
neighborhood topology © o ®

[0 Two major characteristics Regroup B
of the novel neighborhood i}
topology:
B Small sized swarms - @OQOD Q\_./p?\d,‘s»
B Randomized re-grouping o —) o

scheme

[0 The population is divided into several sub-swarms randomly.

[0 Each sub-swarm utilizes its own particles to search for better solutions
and converge to some suboptimal solution.

[0 The whole population is re-grouped into new sub-swarms periodically.
New sub-swarms continue the search procedure.

[0 This process continues until a termination criterion is satisfied NANYANG

TECHNOLOGICAL
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DMS-PSO

[1 DMS-PSO learning strategy

Each particle i has an associated vector Pc;. After every R
generations, an indicator vector keepid; will be updated according to
Pc.: if randid is larger than or equal to Pc,(d), keepid;(d) is setto 1
and the d" dimension of particle i will be set as the value of its own
pbest(d), otherwise keepid,(d) is set to 0, and the d" dimension of
particle 1 will learn from its Ibest;(d), and its own pbest;(d), as the
PSO with constriction coefficients:

If keep _id® =0
v <« 0.729xv.® +1.49445xrandl,® x (pbest.® — x,*)
+1.49445xrand 2 ° x (lbest,® — x.)

max(-vl. ,v.?))

max !

d
max !

v. = min(v

X4« x4 +v*

Otherwise

x.¢ < phbest°

Somewhat similar to DE & CPSO
NANYANG
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DMS-PSO

[l Parameter adaptation scheme

Assume Pc; is nhormally distributed with mean mean_Pc and
standard deviation 0.1.

Initially, mean_Pc is set to 0.5 and a set of Pc; vectors with
respect to each particle i in the current population are
generated according to such normal distribution.

At each generation, the Pc; values associated with those
particles that find new pbests are recorded.

When sub-swarms are regrouped, mean_Pc is re-
calculated according to all the recorded successful Pc;
values. The recorded successful Pc; values will be cleared
when mean_Pc is recalculated.

As a result, a proper Pc; distribution with respect to the
given problem can be evolved.

52 ik 4 N J,-\ I\:wfrj' ‘\. NG
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DMS-PSO with local search

[1 Although we can achieve larger diversity using DMS-PSO,
the convergence rate may slow down. In order to alleviate
this problem, a local search procedure is incorporated:

B Every L generations, pbests of five randomly chosen
particles will be used as the starting points and the Quasi-
Newton method is applied to conduct the local search with
maximum function evaluations L _FEs.

B Atthe end of the DMS-PSO search, particles in each sub-
swarm are grouped into a whole swarm to perform the
global PSO. The best solution achieved so far is refined
using the Quasi-Newton method every L generations with
the 5xL_FEs as the maximum search step.

B |[f local search results in improvements, the nearest pbest

IS replaced.
i NANYANG
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Motivation for Differential Evolution (DE)

Classical DE
DE Variants

Self-adaptive DE (SaDE)

-27-
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-
Motivation for DE

o DE, proposed by Price and Storn in 1995 [PS95], was motivated by the attempts
to use Genetic Annealing [P94] to solve the Chebychev polynomial fitting
problem.

0 Genetic annealing is a population-based, combinatorial optimization algorithm
that implements a thermodynamic annealing criterion via thresholds. Although
successfully applied to solve many combinatorial tasks, genetic annealing could
not solve the Chebychev problem satisfactorily.

o Price modified genetic annealing by using floating-point encoding instead of
bit-string one, arithmetic operations instead of logical ones, population-driven
differential mutation instead of bit-inversion mutation and removed the annealing
criterion. Storn suggested creating separate parent and children populations.
Eventually, Chebychev problem can be solved effectively.

o DE is closely related to many other multi-point derivative free search methods
[PSLO5] such as evolutionary strategies, genetic algorithms, Nelder and Mead

direct search and controlled random search. ,
NANYANG
TECHNOLOGICAL
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DE at a glance

o Characteristics
Population-based stochastic direct search
Self-referential mutation
Simple but powerful
Reliable, robust and efficient
Easy parallelization
Floating-point encoding
o Basic components
> Initialization
> Trial vector generation
s Mutation
“ Recombination
> Replacement

v VvV Vv VY Y V

kel NANYANG
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-

Insight into classical DE (DE/rand/1/bin)

Initialization

A population P, , of Np D-dimensional parameter vectors X; ;=[Xy ; g:--..Xp i o],
1=1,...,Np is randomly generated within the prescribed lower and upper bound b, =
[b;1,....bp ] and by=[b, ,,....bp u]

Example: the initial value (at generation g=0) of the jt parameter of the it" vector is
generated by: x;; , = rand;[0,1] -(b; ,-b;, ) + b; ., J=1,...,D, I=1,...,Np

Trial vector generation

At the g™ generation, a trial population P, , consisting of Np D-dimensional trial
vectors V; ;=[v, ; ;.-..Vp; o] IS generated via mutation and recombination operations
applied to the current population P,

Differential mutation: with respect to each vector X; , in the current population,
called target vector, a mutant vector v, , is generated by adding a scaled, randomly
sampled, vector difference to a basis vector randomly selected from the current

population
NANYANG
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Insight into classical DE (DE/rand/1/bin)

Example: at the g™ generation, the i mutant vector v; , with respect to i target
vector x;, In the current population is generated by v; ; = X;o , + F(X;1 4X2.9),
17r07=rl17r2, mutation scale factor Fe(0,1+)

Discrete recombination: with respect to each target vector x;, in the current
population, a trial vector u; , Is generated by crossing the target vector Xx; , with the
corresponding mutant vector v; , under a pre-specified crossover rate Cre[0,1]

Example: at the g™ generation, the i trial vector u; , with respect to i target
vector x; , In the current population is generated by:
L= {vj,i,g If rand;[0,1]<Cr or J=j 4
Mo lx;,  Otherwise
Replacement

If the trial vector u; , has equal or better objective function value than that of its

corresponding target vector x; ,, it replaces the target vector in the (g+1)"

generation; otherwise the target vector remains in the (g+1)" generation

NANYANG
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Illustration of classic DE
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Target vector

SR CDRE
Co
Base vector / Two randomly
o selected vectors

Illustration of classic DE

5 i i MNYANG
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o X

r2,g

Four operating vectors in 2D continuous space

NANYANG
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Trial vector after Mutation

NANYANG
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Trial vector after Crossover

NANYANG
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A
3 Xi’Q
()
Xig+1
o Xrl,g
()
XrO,g
® Xr2,g

=X1

Replacement of target vector by the trial vector
NANYANG
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Differential vector distribution

A population of 5 vectors 20 generated difference vectors

Most important characteristics of DE: self-referential mutation!
ES: fixed probability distribution function with adaptive step-size

DE: adaptive distribution of difference vectors with fixed step-size
g NANYANG
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Modification of different components of DE can result in many DE
variants:

Initialization
Uniform distribution and Gaussian distribution

Trial vector generation

a Choices in base vector selection
> Random selection without replacement: r,=ceil(rand;[0,1]-Np)
> Permutation selection: ry=permute[i]
~ Random offset selection: ry=(i+r )%Np (e.g. r,;=2)

> Biased selection: global best, local best or tournament

£5F | TECHNOLOGICAL
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DE variants

o Differential mutation
> One difference vector: F-(X,,- X,,)
> Two difference vector: F-(X ;- X.o)+F-(X,3- X,,)
> Mutation scale factor F
+ Crucial role: balance exploration and exploitation

= Dimension dependence?: jitter, if yes (rotation variant) and
dither, if no (rotation invariant).

+» Randomization: different distributions of F

DE/rand/1: Vie =X, o +F- (X, s - X, ¢)

DE/best/1: Vig = Xoesro + F - (Xi 6 =X, o)

DE/current-to-best/1: V, 6 =Xio+F (Koo - .G)+ F -(Xrl G —sz,e)

DE/rand/2: =X, 6 +F (X, 6 =X, s + X, 6 =X, o)

DE/best/2: vi,G = xbest,G +F-(X, 6 - XrZ,G ¥ ><r:,,,G ~X. o) B NANYANG
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D_E variants

o Recombination

-

> Discrete recombination (crossover) (rotation variant)
» One point and multi-point
+ Exponential (somewhat comparable to two-point)
» Binominal (uniform)
> Arithmetic recombination
» Line recombination (rotation invariant, vector operation)
+ Intermediate recombination (rotation variant, dimension-wise)
» Extended intermediate recombination (rotation variant)
X,4 discrete

1 %o s

line . .
intermediate

a discrete

NANYANG
TECHNOLOGICAL
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Motivation for self-adaptation in DE

The performance of DE on different problems depends on:

o Population size

o Strategy and the associated parameter setting to generate trial vectors
o Replacement scheme

It is hard to choose a unique combination to successfully solve any problem at
hand

o Population size usually depends on the problem scale and complexity

o During evolution, different strategies coupled with specific parameter settings
may be effective for different search stages.

o Replacement schemes influence the population diversity

o Trial and error scheme may be a waste of computational time & resources

Automatically adapt the configuration in DE so as to generate effective
trial vectors during evolution

kel NANYANG
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Related works -

Practical guideline [SP95], [SP97], [CDG99], [BO04], [PSL05],[GMKO02]: for
example, Npe[5D,10D]; Initial choice of F=0.5 and CR=0.1/0.9; Increase NP and/or F
If premature convergence happens. Conflicting conclusions with respect to different
test functions.

Fuzzy adaptive DE [LLO02]: use fuzzy logical controllers whose inputs incorporate the
relative function values and individuals of successive generations to adapt the mutation
and crossover parameters.

Self-adaptive Pareto DE [A02]: encode crossover rate in each individual, which is
simultaneously evolved with other parameters. Mutation scale factor is generated for
each variable according to Gaussian distribution N(0,1).

Zaharie [Z02]: theoretically study the DE behavior so as to adapt the control
parameters of DE according to the evolution of population diversity.

Self-adaptive DE (1) [OSEO05]: encode mutation scale factor in each individual, which
Is simultaneously evolved with other parameters. Crossover rate is generated for each
variable according to Gaussian distribution N(0.5,0.15).

DE with self-adaptive population [T06]: population size, mutation scale %\?\D\dwc

crossover rate are all encoded into each individual. ) TCorocicH
-43- : \_/ UNIVERSITY



Self-Adapting Control Parameters in DE

d [BGBMZO06] |DE algorithm encodes mutation scale
factor F and crossover rate CR In each individual.

d New values for F & CR are assigned to each
iIndividual from a set of values and the assignment

Is performed randomly with respect to pre-specified
2 parameter values.

[1 JDEZ2 algorithm [BBGOG6] introduces re-initialization of
poorly performing individuals to the JDE algorithm.

R NANYANG
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-
Self-adaptive DE (SaDE)

DE with strategy and parameter self-adaptation [QS05, HQS06]

Strategy adaptation: select one strategy from a pool of candidate
strategies with the probability proportional to its previous successful rate
to generate effective trial vectors during a certain learning period

Steps:

1. Initialize selection probability p,=1/num_st, i=1,...,num_st for each strategy

2. According to the current probabilities, we employ stochastic universal
selection to assign one strategy to each target vector in the current population

3. For each strategy, define vectors ns; and nf;, i=1,...num_st to store the number
of trial vectors successfully entering the next generation or discarded by
applying such strategy, respectively, within a specified number of generations,
called “learning period (LP)”

. Once the current number of generations is over LP, the first element of ns; and
nf, with respect to the earliest generation will be removed and the behavior in
current generation will update ns; and nf;

kel NANYANG
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Self-adaptive DE (SaDE)

ns,(1) e | NSpum (D) ns,(2) o | NSum st(2) ns,(3) o | NSpum s(3)

v
\ 4

ns,(L) e | NSpum (L) ns,(L+1) | ... | NSyym s(L+1) ns,(L+2) | ... | NS um s(L+2)

5, The selection probability p is updated by>.ns; / (Z ns; + 2. nfi) Go to 2" step
Parameter adaptation

Mutation scale factor (F): for each target vector in the current population, we
randomly generate F value according to a normal distribution N(0.5,0.3). Therefore,
99% F values fall within the range of [-0.4,1.4]

Crossover rate (CR;): when applying strategy J with respect to a target vector, the
corresponding CR; value Is generated according to an assumed distribution, and those
CR; values that have generated trial vectors successfully entering the next generation
are recorded and updated every LP generations so as to update the parameters of the
CR; distribution. We hereby assume that each CR;, J=1,...,num_st is normally
distributed with its mean and standard deviation initialized to 0.5 and 0.1, respectively
NANYANG
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~Instantiations

O

O

In CEC’05, we use 2 strategies:

DE/rand/1/bin: Vig =X, 6 +F-(X, 6 =X, o)
DE/current-to-best/2/bin: V, ; =X, o +F (X, X o )+ F -(Xrl,G X, 6+ X, ¢ —X%G)
LP =50

In CEC’06, we employ 4 strategies:
DE/rand/1/bin: Vie=X.ctF '(sz,e X6 )
DE/rand/2/bin: Vie=X.ctF '(sz,e —X.6t X6 X.o )

DE/current-to-best/2/bin: Vg =X, ¢ +F - (Xoee = X6 F- (X 6 =X, 6 + X 6 =X, 6)
DE/current-to-rand/1:  Vig =X +F(X, s —XioJ+F-(X, s =X, o)
LP =50

kel NANYANG
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- Local search enhancement

To improve convergence speed, we apply a local search
procedure every 500 generations:

o To apply local search, we choose n = 0.05-Np individuals,
which include the individual having the best objective function
value and the n-1 individuals randomly selected from the top 50%
Individuals in the current population

o We perform the local search by applying the Quasi-Newton
method to the selected n individuals

gl NANYANG
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Overview of DE research trends

DE Applications

o Digital Filter Design

o Multiprocessor synthesis

o Neural network learning

o Diffraction grating design

o Crystallographic characterization

o Beam weight optimization in
radiotherapy

0 Heat transfer parameter estimation
in a trickle bed reactor

o Electricity market simulation

o Scenario-Integrated Optimization of
Dynamic Systems

o Optimal Design of Shell-and-Tube Heat
Exchangers

o Optimization of an Alkylation's Reaction
o Optimization of Thermal Cracker Operation

o Optimization of Non-Linear Chemical
Processes

o Optimum planning of cropping patterns
o Optimization of Water Pumping System
o Optimal Design of Gas Transmission Network

o Differential Evolution for Multi-Objective
Optimization

o Bioinformatics

NANYANG
TECHNOLOGICAL
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IV - Constrained Optimization

[1 Optimization of constrained problems is an important
area Iin the optimization field.

[1 In general, the constrained problems can be
transformed into the following form:

0 Minimize F(X), X =[X, %5, Xp ]

subjected to: g.(x)<0,i=1...q

h;(X)=0,J=q+1,...m

g is the number of inequality constraints and m-q is the
number of equality constraints.
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Constrained Optimization

[0 For convenience, the equality constraints can be transformed into
Inequality form:

| hj (X)|- <0
where &gis the allowed tolerance.

[1 Then, the constrained problems can be expressed as
Minimize f(X), X =X, X000y X5 ]

subjectedto G, (x)<0,j=1..,m,

[0 If we denote with F the feasible region and S the whole search
space, X € F if X e S and all constraints are satisfied. In this case,
X Is a feasible solution.

NANYANG
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Constraint-Handling (CH) Techniques

[0 Penalty Functions:

Static Penalties (Homaifar et al.,1994;...)

Dynamic Penalty (Joines & Houck,1994; Michalewicz&
Attia,1994;...)

Adaptive Penalty (Eiben et al. 1998; Coello, 1999; Tessema &
Gary Yen 2006, Smith & Tate 1993...)

[0 Superiority of feasible solutions

Start with a population of feasible individuals (Michalewicz,
1992; Hu & Eberhart, 2002; ...)

Feasible favored comparing criterion (Ray, 2002; Takahama &
Sakai, 2005; ...)

Specially designed operators (Michalewicz, 1992; ...)
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Constraint-Handling (CH) Techniques

[l Separation of objective and constraints

L

Stochastic Ranking (Runarsson & Yao, TEC, Sept 2000)
Co-evolution methods (Coello, 2000a)

Multi-objective optimization techniques (Coello, 2000b;
Mezura-Montes & Coello, 2002;... )

Feasible solution search followed by optimization of
objective (Venkatraman & Gary Yen, 2005)

While most CH technigues are modular (i.e. we can pick one CH
technique and one search method independently), there are also
CH techniques embedded as an integral part of the EA.
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DMS-PSO for Constrained Optimization

1 Novel Constraint-Handling Mechanism

B Suppose that there are m constraints, the population is
divided into n sub-swarms with sn members in each sub-
swarm and the population size is ps (ps=n*sn). nis a
positive integer and ‘n=m’ is not required.

B The objective and constraints are assigned to the sub-
swarms adaptively according to the difficulties of the
constraints.

B By this way, it is expected to have population of feasible
individuals with high fithess values.

B NANYANG
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DMS-PSQO’s Constraint-Handling Mechanism

How to assign the objective and constraints to each sub-swarm?

Define
1 if a>b
a>b= _
0 if a<b
> (6,(x,)>0)
p, = Ci=12..m
ps
Thus fp=1-p P=[P., o Pyl

fo+> (p,/m)=1
i=1

5 4 35 N j\ I\TA NG’
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DMS-PSQO’s Constraint-Handling Mechanism

For each sub-swarm,

[0 Using roulette selection according to fp and p, /m to assign the
objective function or a single constraint as its target.

If sub-swarm i is assigned to improve constraint j, set obj(i)=) and if
sub-swarm i is assigned to improve the objective function, set
obj()=0.

[1 Assigning swarm member for this sub-swarm: Sort the unassigned
particles according to obj(i), and assign the best and sn-1 worst
particles to sub-swarm i.
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DMS-PSQO’s Comparison Criteria

B 1. If obj(i) = obj()) = k (particle i and j handling the same constraint k),
particle i wins if

G, (X;) <G, (x;) with G, (x;) >0
or V(x;)<V(x;) &G, (x),G, (x;)<0
or f(x;)<f(x;)&V(x;))==V(x;)

B 2 If obj(i) = obj(j) = O (particle i and j handling f(x) ) or obj(i) # obj(j) (i
and j handling different objectives), particle i wins if

V(%) <V (x;)
or f(x;)<f(x;)&V(x;))==V(x;)

V() =Y (weight, -G, (x)- (G, (x) 2 0))

e max i _1.m

weight, = —

> (/G max)

i1 NANYANG
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DMS-PSO for Constrained Optimization

[0 Step 1. Initialization -

Initialize ps particles (position X and velocity V), calculate f(X), G;(X)
(j=1,2...,m) for each particle.

[0 Step 2: Divide the population into sub-swarms and assign obj for
each sub-swarm using the novel constraint-nandling mechanism,
calculate the mean value of Pc (except in the first generation,
mean(Pc)=0.5), calculate Pc for each particle. Then empty Pc.

[0 Step 3: Update the particles according to their objectives; update
pbest and gbest of each particle according to the same
comparison criteria, record the Pc value if pbest is updated.
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DMS-PSO for Constrained Optimization

O

Step 5: Local Search-

Every L generations, randomly choose 5 particles’ pbest and start local
search with Sequential Quadratic Programming (SQP) method using
these solutions as start points (fmincon(...,...,...) function in Matlab is
employed). The maximum fitness evaluations for each local search is

L FEs.

Step 6: If FEs<0.7*Max_FEs, go to Step 3. Otherwise go to Step 7.

Step 7. Merge the sub-swarms into one swarm and continue PSO
(Global Single Swarm). Every L generations, start local search using
gbest as start points using 5*L_FEs as the Max FEs. Stop search if
FEs=Max_FEs
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SaDE for Constrained Optimization

1 Strategy Adaptation

Probabilistically select one out of several available learning
strategies to apply for each individual in the current population

DE/Rand/1: Vic =X ct+F '(sz,e - Xr&c;)
DE/Current to best/2: Vg =X +F -(Xpests = Xi )+ F -(Xrl,G ~ X6+ Xp6 _Xr4,G)
DE/Rand/2: Vie = Xrl,G +F '(sz,e - Xr&G )"' F '(Xr4,c; _Xr5,G)

DE/Current-to-rand/1: U;, =X, . +K -(Xr3,G —Xi,G)+ F '(Xrl,G —sz,e)

NANYANG
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Self-adaptive Differential Evolution

L1 Initial probabilities pl=p2=p3=p4=0.25

[0 According to the probability, we apply Stochastic Universal
Selection to select the strategy for each individual in the current
population.

O ns;(nf,), i=1,2,3,4: the accumulated number of trial vectors,
successfully entering (discarded) the next generation while
generated by each strategy

[0 ns; and nf, are accumulated within a specified number of
generations, called the “learning period (LP)”. The probability

P; Is updated as:

ns;

Pi = ns, + nf

NANYANG
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Self-adaptive Differential Evolution

Parameters adaptation

F: different random values normrnd(0.5,0.3) in the range (0,2]
for different individuals

CR: accumulating the previous learning experience within a certain
generational interval so as to dynamically adapt the value of CR

to a suitable range

IF REM (G, LP)=0 IF REM (G, 5)=0
CRm=mean(CRpool) FORI1=1to NP
END IF CRi=normrand(CRm,0.1)
END FOR
END IF
ANYANG
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Extend SaDE to Handle Constraints

Selection procedure

The trial vector U, ¢ Is compared to its corresponding
target vector X, ¢ in the current population considering
both the fitness value and constraints.

U, ¢ will replace X, If any of the following conditions is true

1. U,sIs feasible, X; s Is not.

2. U, and X, ; are both feasible, and U, ; has smaller or
equal fltness value (for minimization problem) than X, .

3. U,gand X, ; are both infeasible, but U; ; has a smaller
overall constrain violation.

R NANYANG
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Local Search

[l To speed up the convergence, we apply a local search
procedure once every 500 generations

[0 n=5% of NP individuals

DE_gbest + randomly selected n-1 individuals from the best 50%
individuals in the current population

[0 We employ the Sequential Quadratic Programming (SQP)
method as the local search method.
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Applications: [cvL02), [SP05], [MBO6], [TLLO5]
»Robotics and control engineering

> Transport engineering

»Scheduling

»Finance

>Bioinformatics

>Pattern recognition

>PID design

[0 Non-dominated solutions: In a set of
solutions P, the non-dominated set of
solutions P’ are those that are not
dominated by any member of the set P .

[J Pareto-optimality: When the set P is
the entire search space, the resulting P’
Is called the Pareto-optimal set.
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Multi-Objective Optimization

1 Mathematically, we can use the following formula to
express the multi-objective optimization problems (MOP):

Minimize y = f(x)=(f,(x), f,(x),K, f (X)) Xxe[Xmin, Xmax]
subjectto  g;(x)<0,]=1..,z

h (X)=0k=g+1,...m

[1 The objective of multi-objective optimization is to find a
set of solutions which can represent the Pareto-optimal
set well, thus there are two goals for the optimization:
B 1) Convergence to the Pareto-optimal set

B 2) Diversity of solutions in the Pareto-optimal set
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-
Representative MOEAS (cikoo1][po1][zLT01][CVL02][AIGO5][TKLOS]

[0 Non-elitist MOEAS

B Weight based GA (WBGA)

B Multiple objective GA (MOGA)

B Niched Pareto GA

B Non-dominated sorting GA(NSGA)
o Elitist MOEASs

B Distance-based Pareto GA (DPGA)

Strength Pareto GA (SPEA), SPEA-II

Non-dominated GA-Il (NSGA-II)

Pareto-archived ES (PAES),

Pareto envelope-based selection algorithm (PESA), PESA-II
Multi-objective messy GA (MOMGA) R———
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From PSO to MOPSO

Mainly used techniques:

B External archive for the non-dominated solution set.
B How to update pbest and gbest (or Ibest)
[1 Execute non-domination comparison with pbest or gbest

[l Execute non-domination comparison among all particles’
pbests and their offspring in the entire population

B How to choose gbest (or Ibest)

[1 Choose gbest (or Ibest) from the recorded non-dominated
solutions

[0 Choose good local guides
B How to keep diversity

[0 Crowding distance sorting

1 Subpopulation
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From CLPSO and DMS-PSO to MOPSOs

[0 Combine an external archive which is used to record the
non-dominated solutions found so far.

[0 Use Non-dominated Sorting and Crowding distance Sorting
which have been used in NSGAII (Deb et al., 2002) to sort
the members in the external archive.

[0 Choose exemplars (CLPSO) or Ibest (DMS-PSO) from the
non-dominated solutions recorded in the external archive.

[0 Experiments show that MO-CLPSO and DMS-MO-PSO are
both capable of converging to the true Pareto optimal front
and maintaining a good diversity along the Pareto front.

NANYANG
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Selection of pbest, gbest in MO-CLPSO [HSLO6]

Selection of pbest

if X dominates pbest . pbest =X,
if pbest.and X are non-dominated with each other,

if rand < 0.5, pbest. = X

Selection of gbest in MOCLPSO

= all the non-dominated solutions are good individuals
= Randomly choose a particle from the non-dominated solutions.

= Other alternatives would be to form grids in the objective space and to select
representatives from each cells, or to select more from less crowded cells, etc.

NANYANG
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MO-CLPSO Algorithm

1) Initialize
Randomly initialize particle positions, Initialize particle velocities
Evaluate the fitness values of particles, initialize the external archive.
2) Optimize
WHILE stopping criterion is not satisfied
DO
Fori=1to NP
Select gbest from external archive

Assign each dimension to learn from gbest, pbest of this particle and
pbests of other particles,
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MO-CLPSO Algorithm (cont)

Update particle velocity [(if a(d)==

V(d) = @, *V,(d) +rand() * (gbest(d) — X, (d))
if b(d)=

Vi(d) = o, *V;(d)+rand() *(pbest;, (d)— X;(d))
else

Vi(d) = o, *V;(d)+rand() = (pbest;(d) — X;(d))

N\

Update particle position X.(d)=X.(d)+V,(d)

Evaluate the fitness values of particle

Update pbest if current position is better than pbest
End For

Update the external archive

Increment the generation count

END WHILE PR NANYANG
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MO-DMS-PSO Algorithm

[0 The solutions in the external archive are sorted based on one
randomly chosen objective and then partitioned into n groups where

n is the number of sub-swarms.

[0 Each sub-swarm randomly selects one representative as the gbest

from each partition of the external archive.

fi(x) 4
sub-swarm1
*(f R it L e i
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MOSaDE

MOSaDE is an extension of SaDE to optimize
problems with multiple objectives.

Similar to SaDE, the MOSaDE algorithm
automatically adapts the trial vector generation
strategies and thelr assoclated parameters
according to their previous experience of
generating promising or inferior individuals.

However, when extending the single-objective
algorithm to multi-objective domain, the
evaluation criteria of promising or inferior

il NANYANG
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MOSaDE

We use the following:
Individual A is better than individual B, If
(1) individual A dominates B, or

(2) individual A and individual B are non-
dominated with each other, but A is less crowded
than individual B.

Therefore, In case that the trial vector Is better
than the target vector according to this criterion,
we Wwill record the associated parameter and
strategy.

kAl NANYANG
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MOSaDE

The strategies incorporated Into our proposed MOSaDE
algorithm are ‘rand/1/bin’ and ‘best/2/bin’.

The X . In ‘best/2/bin’ Is randomly selected from external
archive.
MOSaDE Algorithm

Step 1. Randomly initialize a population of NP individuals. Initialize
strategy probability (pk, k=1,...,K, K s the no. of available
strategies), the median value of CR(CRmk) for each strategy,
learning period (LP=50) .

Step 2. Evaluate the individuals in the population, and fill the external
archive with these individuals.

i NANYANG

;| TECHNOLOGICAL
-76- % UNIVERSITY




MOSaDE Algorithm

Step 3.Repeat

(1) Calculate strategy probability p,: the percentage of the success rate of trial
vectors generated by each strategy during the learning period.

(2) Assign trial vector generation strategy and parameters to each target vector
X

(a) Use stochastic universal sampling to select one strategy k for each
target vector X

(b) Assign control parameters F and CR
F: Generate the F values under Normrnd(0.3,0.1)

CR: After the first LP generation, calculate CRm, according to the recorded
CR values. Generate the CR values under Normrnd(CRm,,0.1)

(3) Generate a new population where each trial vector is generated according
to associated trial vector generation strategy k and parameter F and CR in
(2).

(4) Selection:

i NANYANG
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FOR i=1:NP
nearest to the trial vector in the solution space.
IF X,;dominates y*, discard U;.
ELSE
IF Ufdominates X, ,replace X, with U; ;

IF non-dominated with each other, choose less crowded one to be
the new target vector;

U’ will enter the external archive if (i) U* dominates some
Individual(s) of the archive (the dominated individuals in the archive are
deleted); or (i) U; is nondominated with archived individuals

END IF

(b) If trial vector is better than X ., record the associated parameter CR
and flag strategy k as successful strategy. Otherwise, flag strategy k as
failed strategy.

(c) When the external archive exceeds the maximum specified size, we
select the less crowded individuals based on harmonic average
distance to keep the archive size. NANYANG

END FOR 78- NIVERSITY
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| ocal search

Use local search to further improve solutions
found by the MOSaDE algorithm.

Employ the Quasi-Newton method as the local
search method, considering only one objective
randomly selected each time.

The local search procedure Is applied once every
200 generations, on 10 individuals randomly
selected among the non-dominated solutions that
were not applied local search previously.

kAl NANYANG
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VI - Niching Methods [SD-06]: Fitness sharing

[0 Fitness sharing [GR-87] modifies the search landscape by reducing the fitness of
individuals in densely-populated regions. A sharing radius o is used to determine
whether two individuals share the same niche.

[0 Reducing an individual’s fitness is controlled by two operations, a similarity
function and a sharing function. The shared fitness ;" is given by the formula as
below:

N
fi = £ Y shdy)
j=1

[ «
with sh(dij)x 1—(% /O‘S) 1fdij <O,
1 0 otherwise

where f; denotes the original fitness of the individual i, N the population size, and d;; the
distance between the individual i and the individual | J. arIs a constant parameter
which regulates the shape of the sharing function sh (typically a=1).

[0 The effect of this scheme is to encourage search in unexplored regions. The
weakness of this method lies in the fact that it requires a priori knowledge about
the distance between the peaks in the search space. R NANYANG
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N, Is the number of individuals in the niche containing individual i, d

O

O

O

R-means clustering based

K-means clustering algorithm is used to divide the population into niches [YG-93].
The fitness is calculated based on the distance d,, between the individual and its
niche centroid.

The final fitness of an individual is calculated by the relation:

. .

' e |:] — |::fi,.7__-"£f£max ° :I

max 1S the maximum
distance allowed between an individual and its niche centroid, and « is a constant.

The formation of the niches is based on the adaptive K-mean algorithm. The
algorithm begins with a fixed number (k) of seed points taken as the best k
individuals.

Using a minimum allowable distance d
are formed from the seed points.

The remaining population members are then added to these existing clusters or are
used to form new clusters based ond .. and d ... These computations are
performed in each generation.

between niche centroids, a few clusters

min

min max*

NANYANG
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Deterministic crowding (DC)

[1 Deterministic crowding [M-95] is an extension of a technique first used by De Jong
to help promote diverse populations [D-75]. After crossover and mutation, the
offspring then replace their closest parent if it has a better fitness.

L1 Calculate the distances between p, and c,, p, and c,, p, and c,, p, and c,, and name
them d,, d,, d;, d, respectively.

If d,+d, <=d,+d,, then
If the fitness of c, Is higher than the fitness of p,, replace p, with c,;
If the fitness of c, is higher than the fitness of p,, replace p, with c,.
Else
If the fitness of c, Is higher than the fitness of p,, replace p, with c,;
If the fitness of c, is higher than the fitness of p,, replace p, with c,.

[1 Deterministic crowding uses a distance measure to determine similarity between
Individuals. As, DC does not require the use of a similarity radius, this relaxes the
requirement of a priori domain knowledge and makes DC more suitable for
difficult problems than fitness sharing. DC is an elitist niching method. This means
that once a peak is discovered, it is never lost from the population. NANYANG
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Restricted tournament selection (RLS)

[0 RTS [H-94] adapts tournament selection for multimodal
optimization. It initially selects two elements from the
population to undergo crossover and mutation. Then a
random sample of w individuals is taken from the population
to be compared with each offspring created, and the most
similar (or the closest) individual is chosen to compete with
the offspring. If the offspring wins, it is allowed to enter the

population.
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Clearing

vold Clearing{double Sigma, int KEappa) {

[1 Clearing [P-96] is best described mt 1. ], nbWinners;
as a variant of the sharing SortFitness (P):;
teChmque' for (=0 ;1= ;1+=3 {

if { Fitness (P[i]) = 0) {

[ Instead of sharing resources nbWinners = 1-
between all individuals of a same
niche as in the fitness sharing
scheme, clearing attributes them

for j=1+1;1=n-1;1++) {
if (Fitmess(P[1]=0 && Dastance (P[I]. P[)])=Sigmal{

only to the best few members of if (nbWinners = Kappa) {
the niche and removes the nbWinners++; }
Inferior individuals. The else

remaining individuals form the Fitness (P[j]) = 0.0:]
mating pool and generate .

offspring. _

the algorithm of Clearing
o ik
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K-means Clustering-based Niched PSO

Kennedy proposed the niched
PSO using K-means
clustering [K-00].

The gbest / pbest / Ibest were Cluster A
replaced by cluster centers or N
the best particle of each
cluster to obtain several
variants.

Clustering-based variants
performed better than the
original PSO.

Cluster B

Fitness

R NANYANG
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“‘
Deflection, Stretching, Repulsion based Niched PSO

Parsopoulos [PV04Db] et. al
made use of deflection,
stretching, repulsion, etc.
to locate as many optima
as possible.

These techniques - |
transform the objective
function to make
previously obtained local

optima to have high | — o ien|
function values (or low S I R R
fitness).
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Initialize the main particle swarm.

Train the main swarm particles using one iteration ol the cognition

only model.

Update the fitness of each main swarm particle,

For each subswarm:

(a) Train subswarm particles using one iteration of the GCPS0 al-
gorithm.

(b} Update each particle’s fitness.

(¢} Update swarm radius

Il possible, merge subswarms.

Allow subswarms to absorb any particles from the main swarm that

moved into it

Search the main swarm for any particle that meets the partitioning

criteria. If any is found, create a new subswarm with this particle and

its closest neighbor.

Repeat from 2 until stopping criteria are met.

Fig. 1. NichePS0O algorithm.

-87-

I3

G | TECHNOLOGICAL

UNIVERSITY



] Binary PSO (K&E97)
L1 Sigmoid function

B Force the real values between 0 and 1
[J Velocity is updated with traditional equation
[ Sigmoid function is used to squash them to be within [0,1]
W s(v;;)=1/(1+exp(-vy))
B X;=lifr < s(vy)
W X;=01f r > s(v;)
B r=uniform random number

2R NANYANG
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Angle Modulated PSO / DE [pFE05, PEF06]
gle) =sin(2r(r —a) x b xcos(A))+d

where A=2r xclx —a)

*a, b, c and d are real valued variables to be optimized by
the PSO or DE.

oIf there are 10 binary variables, x takes 10 different values,
for example, from 1 to 10.

*For every solution of “a, b, c and d” binary bits are
generated by sign(g(x)) operation (as x runs from
1 to 10 in the case 10 bit problem.

NANYANG
TECHNOLOGICAL
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VIII - Benchmarking Evolutionary Algorithms

CECO5 comparison results (Single obj. + bound
const.)

CECO06 comparison results (Single obj + general
const.)

Experimental Results on MOPSOs
CECO7 comparison results on MOEASs

CEC benchmarking resources available from
nttp://www.ntu.edu.sg/home/epnsugan/ = NanvanG

TECHNOLOGICAL
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CEC’'05 Comparison Results

O

Algorithms involved in the comparison:

BLX-GL50 (Garcia-Martinez & Lozano, 2005 ): Hybrid Real-Coded Genetic
Algorithms with Female and Male Differentiation

BLX-MA (Molina et al., 2005): Adaptive Local Search Parameters for Real-Coded
Memetic Algorithms

CoEVO (Posik, 2005): Mutation Step Co-evolution

DE (Ronkkonen et al.,2005):Differential Evolution

DMS-L-PSO: Dynamic Multi-Swarm Particle Swarm Optimizer with Local Search
EDA (Yuan & Gallagher, 2005): Estimation of Distribution Algorithm

G-CMA-ES (Auger & Hansen, 2005): A restart Covariance Matrix Adaptation
Evolution Strategy with increasing population size

K-PCX (Sinha et al., 2005): A Population-based, Steady-State real-parameter
optimization algorithm with parent-centric recombination operator, a polynomial
mutation operator and a niched -selection operation.

L-CMA-ES (Auger & Hansen, 2005): A restart local search Covariance Matrix
Adaptation Evolution Strategy

L-SaDE (Qin & Suganthan, 2005): Self-adaptive Differential Evolution algorithm
with Local Search

SPC-PNX (Ballester et al.,2005): A steady-state real-parameter GA with PNX

crossover operator e )
s NANYANG
TECHMNOLOGICAL
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CEC’'05 Comparison Results

O O0O000

Problems: 25 minimization problems (Suganthan et al. 2005)
Dimensions: D=10, 30
Runs / problem: 25

Max_FES: 10000*D (Max_FES_10D= 100000; for 30D=300000; for
50D=500000)

Initialization: Uniform random initialization within the search space, except
for problems 7 and 25, for which initialization ranges are specified. The
same initializations are used for the comparison pairs (problems 1, 2, 3 & 4,
problems 9 & 10, problems 15, 16 & 17, problems 18, 19 & 20, problems 21,
22 & 23, problems 24 & 25).

Global Optimum: All problems, except 7 and 25, have the global optimum
within the given bounds and there is no need to perform search outside of
the given bounds for these problems. 7 & 25 are exceptions without a
search range and with the global optimum outside of the specified
Initialization ranges.

52 ik 4 N J,-\ I\:wfrj' ‘\. NG
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- CEC'05 Comparison Results

[0 Termination: Terminate before reaching Max_FES if the error in the
function value is 102 or less.

[0 Ter Err: 108 (termination error value)

[0 Successful Run: A run during which the algorithm achieves the fixed
accuracy level within the Max_FES for the particular dimension.

[0 Success Rate= (# of successful runs) / total runs

[0 Success Performance = mean (FEs for successful runs)*(# of total runs) /
(# of successful runs)

NANYANG
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CEC’'05 Comparison Results

Success Rates of the 11 algorithms for 10-D

Func
Algorit
BLX-GLS0 | 100% [ 100% [ 0% | 100% [ 100% | 100% | 36% [ 12% [ 0% | 0% | 52% | 0%

BLX-MA | 100% | 100% | 0% | 096 | O 0% 0%, | 2% | O | 0% 0% | 20%
CoEYO [ 100% | 100% | 100% | 100% | 0% 0% 0% | O 0% | 0% 0% 0
DE 100% | 100% [ 20%, [ 100% [ L00% | Badk | 6% | 44 | 0% | 48% [ Té¥ | 4%
DRIS-L-PSO| 100% | 100% | 100% | 4% | 100% | 100% | 16% | 100% | 0% | 0% | B0% | 24%
EDA 100% | 100% | 9% [ 100% [ 100%4 | B33 | 4% | 0% 0% | 12% | 40% | 0%
G-CMA-ES | 100% [ 100% [ 100% | 100% [ 100% | 100% | 100% [ Ta% | 92% | 24% | &s8% | 0%
K-PCX [100% | 100% | 0% | B4 | 0% 40%, | 20% | 96l | 883 | 0% 0% 0
L-CMA-ES | 100% ( 100% [ 100% [ 23% | 100% | 100% | 100% | 0% 0% | 0% | 8% | 0%
L-SaDE [ 100% [ 100% | 643 | 96% | 0% | 100% | 24% | 100% | 0% | 0% | 100% | 92%
SPC-PINX | 100% | 100% | 0% | 100% | 100% | 0% 4 | 4 0% | 0% 0% [

1 2 3 4 5 6 T 9 10 11 12 15

*In the comparison, only the problems in which at least one algorithm BEE NANYANG
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CEC’'05 Comparison Results

BL<-GLS0
BL-hA,
CoEWD

DE
OMS-L-FPS0
EDA
G-CMA-ES
K-PCH
L-ChA-ES
L-SaDE

. 2 E =7 = SPC-FMx

11

Gt
SRS LEEEN

|

hi e ) First three algorithms:
7 1. G-CMA-ES

0.2 ; ' 2. DE
01 @j - 3.  DMS-L-PSO

10° 10 10° 0

SPISP, .,
Empirical distribution over all successful functions for 10-D (SP here
means the Success Performance for each problem. SP=mean (FEs for
successful runs)*(# of total runs) / (# of successful runs). SP,, is the

minimal FES of all algorithms for each problem.)
-O5-

empirical distribution aver all functions
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CEC’'05 Comparison Results

Success Rates of the 11 algorithms for 30-D

Func
Algorith 1 2 3 4 5 6 T 0 10 11 12
BLX-GL50 | 100% | 100% | 0% 0% 0% 100% | 100% | 0% 0% %4 0%
BLXE-MA 100% | D% 0% 0% 0% 0% %4 26 | 0% %4 0%
CoEVO 12% | 32% 0% 0% 0% 0% A%, % 0% %4 0%
DE 100% | 0% 0% 0% 0% 0% 28 % 0% %4 0%
DMS-L-PS0 | 100% | 100% | BE% 0% 0% QEt | D6 | 100% | O %4 20%
EDA 100% | 100% | 100% | 100% | 0% 0% | 100% | 0% 0% %4 0%
G-CMA-ES | 100% | 100% | 100% | 40% | 100% | 100% | 100% | 36% | 12% 4% 32049
E-PCX 100% | 0% 0% 0% % 0% A% | T2 | S6% 074 0%
L-CMA-ES | 100% | 100% | 100% | 0% 100% | 100% | 100% | O 0% 074 0%
L-SaDE 100% | Dé%, 0% S % 0% al [ 100%h | 0% 074 0%
wPC-PME | 100% [ B2 0% TEY % A% B, % 0% 074 0%
*In the comparison, only the problems which at least one algorithm kAl NANYANG

% | TECHMNOLOGICAL
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- CEC'05 Comparison Results

First three algorithms:

1 ; . o
— BLX-GLSO
e —- BLAMA,
' —s— CoBVO
" — DE
5 Uy -5 DMELPS0
= EDA
507} —— (3-CMAES
= & ml —5— K-PCX
s 06} .T: . L-CMA-ES
5 % —& L-SaDE
S 057 —- SPC-PNX
b= * e Tt Hi
E 04
wm -
= H
03} .
£ 1.
=iy
A B - 2.
Ulg— oo 3.
1 10

Empirical distribution over all successful functions for 30-D (SP here

means the Success Performance for each problem. SP=mean (FEs for

successful runs)*(# of total runs) / (# of successful runs). SPbest is the

minimal FES of all algorithms for each problem.)
-97-

G-CMA-ES

DMS-L-PSO
L-CMA-ES
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CEC’'06 Comparison Results

Algorithms

DE (Zielinski & Laur, 2006): Differential Evolution

DMS-C-PSO (Liang & Suganthan, 2006): Dynamic Multi-Swarm Particle
Swarm Optimizer with the New Constraint-Handling Mechanism

e - DE [TS06] Constrained Differential Evolution with Gradient-Based
Mutation and Feasible Elites

GDE (Kukkonen & Lampinen, 2006) : Generalized Differential Evolution
|DE-2 (Brest & Zumer, 2006 ): Self-adaptive Differential Evolution

MDE (Mezura-Montes, et al. 2006): Modified Differential Evolution
MPDE (Tasgetiren & Suganthan,2006): Multi-Populated DE Algorithm

PCX (Ankur Sinha, et al, 2006): A Population-Based, Parent Centric
Procedure

PESO+ (Munoz-Zavala et al, 2006): Particle Evolutionary Swarm Optimization
Plus

SaDE (Huang et al, 2006 ): Self-adaptive Differential Evolution Algorithm

NANYANG
TECHNOLOGICAL
UNIVERSITY
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CEC'06 Comparison,_ResuIts

Ogoood O

Problems: 24 minimization problems with constraints
(Liang, 2006b)

Runs / problem: 25 (total runs)

Max_FES: 500,000

Feasible Rate = (# of feasible runs) / total runs
Success Rate = (# of successful runs) / total runs
Success Performance = mean (FEs for successful

runs)*(# of total runs) / (# of successful runs)

The above three guantities are computed for each problem
separately.

Feasible Run: A run during which at least one feasible
solution is found in Max_FES.

Successful Run: A run during which the algorithm finds a
feasible solution x satisfying f(x)- f (x*) <0.0001

NANYANG
TECHNOLOGICAL
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CEC’'06 Comparison Results

Algorithms’ Parameters

DE NP, F, CR

DMS-PSO w, C,, C,, Vmax, n,ns, R, L, L_FES
e DE N, F, CR, Tc, Tmax, cp, Pg, Rg, Ne
GDE NP, F, CR

JDE-2 NP, F, CR, k, |

MDE 1, CR, Max_Gen, 4, F_, F,

MPDE F, CR, npl, np2

PCX N, A, I (adifferent N is used for g02),
PESO+ @, Cy, C,, N, NOt sensitive to@ , c1, c2
SaDE NP, LP, LS gap

-100-
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CEC’'06 Comparison Results

Success Rate for Problems 1-11

Fune

Algorith 1 2 3 4 5 6 7 8 0 10 11
DE 21 64% [ 100% | &4% | 0% [ 100% | 100% [ 100% | 100% | 100% | 100% | 100% | 100%
DMS-C-PSO | 95 27% | 100% | Dé% [ 100% [ 100% | 100% | 100% | 100% [ 100%% | 100%, | 100% [ 100%
e-DE 100% | 100%, | 100% | 100% | 100% | 100% [ 100% | 100% | 100% | 100% | 100% | 100%
GDE E091% [ 100% | T2% | 4% [ 100% | 92% [ 100%% | 100% | 100% | 100% | 100% | 100%
jDE-2 3 A% [ 100% | B2% | 0% [ 100% | 623 | 1005 | 100% | 100% | 100% | 100% [ 96%
MDE 01 64% [ 100% | 16% | 100% [ 100% | 100% [ 100% | 100% | 100% | 100% | 100% | 100%
MPDE O1 64% | 100% | 92% | B34 [ 100% | 100% | 100% | 100% | 100% | 100% | 100% [ D&%
PCX 08 36% [ 100% | 64% | 100% [ 100% | 100% [ 100% | 100% | 100% | 100% | 100% | 100%
PESO+ TO91% [ 100% | 6% | 100% [ 100% | 100% [ 100% | 96% | 100% | 100% | 16% | 100%
saDE 01 09% [ 100% | &4% | 963 | 100% | 100% [ 100% | 100% | 100% | 100% | 100% | 100%

it

NANYANG
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CEC’'06 Comparison Results

Success Rate for Problems 12-19,21,23,24

Func
Algorith 12 13 14 15 16 17 18 19 21 23 24

DE 1005 | 32% | 100% | 100% | 100% [ 20% | 100% | 100% | &0% 0% | 100%
DM5-C-PSO | 100% | 100% | 100% | 100% | 100% | 0% [ 100% | 100% [ 100% | 100% | 100%
£ -DE 100%, | 100% | 100% | 100% | 100% | 100% | 100% | 100% [ 100% | 100% | 100%
GDE 1005 | 4% | Pa% | Pak [ 100% [ 1é% | T6E% | BE¥ | a0 | 40% | 100
jDE-2 100%: | 0% | 100% | 9@l [ 100% [ 4% | 100% | 100% | 92% | 9% | 1003k
MDE 1005 | 100% | 100% | 100% [ 100% [ 100% | 100% [ 0% | 100% | 100% | 100%
MPDE 1005 | 48% | 100% | 100% [ 100% [ Z&% | 100% | 100% | &&8% | 100% | 1005
PCX 1005 | 100% | 100% | 100% [ 100% | 100% | 100% | 100% | 100% | 100% | 1005
PE5S0+ 1005 | 100% | 0% | 100% | 100% | 0% 02%e 0% 0% 0% | 100%
malE 1005 | 100% | &% | 100% | 100% | 4% 2% | 1005 | é0%, 8% | 100%

eeisd NANYANG
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- CEC’06 Comparison Results

Ermpirical Distribution of Mormalized Success Performance

to

=
i

—_—
——
_E_

—

—_—

—i

DE
OMS-C-PS0
e-DE

=0E

jDE-2

MOE

MPDE

PCx
PESO+
SalbE

1t | ¢ DE
2nd | DMS-PSO
] 3rd | MDE, PCX
_ 5th SaDE
6th | MPDE
] 7th | DE
i gth | jDE-2
oth | GDE, PESO+

SPAER

10

I

10

3

Empirical distribution over all functions( SP here means the Success Performancefor each

problem. SP=mean (FEs for successful runs)*(# of total runs) / (# of successful runs).

SPye.: IS the minimal FES of all algorithms for each problem.)
-103-
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Results of MOCLPSO on ZDT1

1

§ ‘ ~True Pareto Front e ‘ ‘ ~True Pareto Front e ‘ ‘ e Pareto Front
0.7} \ 1 \ 1 X
oer \ 08l % sl \.\
04l \.\ 0.6} .~.°\.~ 0.6} .\..
0.3 L}
0.4F \ 0.4} \
0.2+ K ® °
ol \.s 0.2} .\\....‘ | 02l \~~~. |
l ss. ..~ b \. ®
Test Converge Metric 7 Diversitv Metric A
Problems MOCLPSO ~ MOPSO  NSGA-I MOCLPSO MOPSO  NSGATI
Best 0001945 0063836  0.046512 0251628 0553405  0.434004
Worst 0002455 0124011  0.122316 0351678 0652837  0.790071
Average 0.002235 0081128 0075551 0304202 0591477  0.537488
Median 0002232 0072365  0.067414 0307244 0576528 0493612
Variance 269E-08  430E-04  7.51E-04 102E03  133E-03  135E-02

NSGA-II [DO1]; MOPSO [CL04]; MOCLPSO [HSL08]

-104-
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R__e_sults of MOCLPSO on ZDT3

0:4: \ N % \ 15 \
o '07 \ N 05 \ B N 7 \ |
\ L \ 05
Test Converge Metric 7V Diversity Metric /A
Problem3 _ _ _ _ _
(ZDT3) MOCLPSO MOPSO  NSGA-II MOCLPSO MOPSO NSGA-II
Best 0.005689 0.113631 0.600920 0.503779 0.534863 0.736710
Worst 0.008323 0.227841 0.712746 0.646290 0.662133 0.844782
Average 0.007334 0.157366 0.645840 0.554944 0.607451 0.795274
Median 0.007517 0.145892 0.632486 0.549698 0.607451 0.796255
Vanance 6.70E-07 1.33E-03 1.75E-03 2 23E-03 1.61E-03 1.19E-03
sl NANYANG
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Results of MOCLPSO on ZDT6

1 ; ; ; ; ; 1.6 ; ; ; ;
8
0.9+ \ . e MOCLPSO B 1al ] e MOPSO | a5l
0.8+ © ° 4 True Pareto Front
%, 121 3t e NSGA-I
0.7 \
L 250
0.6} 1
o 05 ~ o8l &2
0.4} 06l 1.5}
0.3}
0.41 1+
0.2}
L 0.5F
0.1} 0.2
0 1 L I I L L 0 L L L L L L 0 1 1 1 1 L 1 1
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f1

Test Converge Metric 7Y Diversity Metric /A
Problem? MOCLPSO MOPSO  NSGA-II MOCLPSO MOPSO  NSGAI
Best 0002950 0527778 2.498893 0237585 0788246 0934297
Worst 0015873 1667019  3.707603 0964462 1016125 0983176
Average 0.006283 1029723 3.073925 0.486405 0927657 0954907
Median 0004871 0944908  3.023464 0346380 0929350 0954590
Variance 177E-05  190E-01  140E-01 675E-02  S30E-03  3.00E-04

NSGA-II [DO1]; MOPSO [CL04]; MOCLPSO [HSL08]
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Results of I\/IO-DI\/IS-PSO

Convergence Metric (v ) comparison of the four algovithms

Algorithms SCH FON KUR ZDI1 ZDI? ZDI3 ZDT4 ZDT6

NSC AL mean 00043 00021 0.0324 0.0674 01897 0.6211 51219 3.1209
std  0.0004 00002 01074 00246 00615 00329 22526 03413

PAFS mean 0.0045 00360 1.0955 0.0006 0.0005 00743 35097 735964
std  0.0004 01315 21724 00003 0.0003 0.0034 10967 08102

\IOPSO mean 0.0044 00013 00252 00189 00162 00267 56413 0.7501
std  0.0004 00001 00041 00032 0.0099 00069 2.7814 04208

mean 0.0044 0.0012 0.0162 00018 00016 0.0018 0.0018 0.0039

DB std  0.0003 00001 00015 0.0003 0.0004 00004 0.0008 0.0012

f 0 1 1 1 1 l 1 1

NSGA-Il [DO1]: MOPSO [CL04]; PAES [KCO00]
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esults of MO-DI\/IS-BSO

Diversity Metric ( A ) comparison of the four algorithms

NANYANG

TECHNOLOGICAL

Algorithms SCH FON EKUR ZDT1 ZDI? ZDT3 ZDTI4 ZDTo
T mean 02823 04470 07680 05401 09482 07958 09445 09639
std  0.0269 0.0335 00533 00454 0.1344 00148 00590 0.0212
mean 07416 05533 06896 1.1197 1.1539 09707 1.0108 0.8900
PAES std  0.0427 0.1276 00840 0.1561 0.1849 0.0331 01671 0.0815
ey mean 0.7618 05861 07849 05980 06810 0.7203 09720 1.0054
std  0.0517 0.0413 0.0961 0.0470 02006 0.0322 00310 0.0741
e mean 0.1723 01371 0.2665 0.1615 0.15835 0.5015 0.1047 0.1573
std  0.0110 0.0142 0.0125 0.0109 0.1547 0.0155 00124 00129

i 1 1 1 1 1 1 1 1

-108- %j
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Fig. 6-14 Parero fronts generated by the four algorithms on ZDT0o
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CECO7 comparison results on MOEASs:
Evaluation Criteria

[0 Quantitative performance measurements, R indicator and Hypervolume
difference to a reference set is used as a measure for the expected
number of function evaluations to reach a target Pareto front.

1 Invariance is a non-empirical statement on the ability to generalize
performance results. Invariance guarantees identical performance on a
class of functions. Possible invariances are invariance against translation,
scaling, or even order preserving transformations of the objective function
value invariance against angle preserving (rigid) transformations of the
search space (translation, rotation)

[0 Parameters Settings

B how many parameters of the algorithm need to be adjusted to the
object function?

B how many different settings were tested?
B how many different settings were finally used?

R NANYANG
TECHNOLOGICAL
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References to Algorithms in CECO7 papers

[0 NSGAIl_SBX: Sharma, Kumar et al.

1 NSGAIl_ PCX: Kumar et al.

[0 GDES: Kukkonen and Lampinen
[l DEMOwWSA: Zamuda et al.

1 MOSaDE: Huang et al.

[0 MO _DE: Zielinski and Laur

[ MO _PSO: Zielinski and Laur

I MTS: Tseng and Chen

NANYANG
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UNIVERSITY
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CECO07 Function Sets

Three subsets

B 2-objective functions
B 3-objective functions
B 5-objective functions

Comparison: Rank of the mean of the metric
values from 25 runs

NANYANG
TECHNOLOGICAL
UNIVERSITY
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M=2, Rank(R indicator)

-

-

Tatal 1.0KAZ 2.3YMPART 3.5_Z0T1 4.5 F0T2 55 2074 G.R_ZDT4 7.5 20786
NSGA2 SBX | 1.74 2 3 1 1 2 2 1
NSGA2 PCX | 543 4 1 : 8 g 1 a
GDE3 414 1 7 4 4 5 4 4
FES=5000 pepowsa | 6.43 3 8 G 7 7 7 7
MOSaDE 414 8 4 3 3 3 5 3
MO _DE 571 5 6 5 5 6 8 5
MO_PSO 5.00 7 y) 7 6 4 3 6
MTS 3.43 6 5 2 2 1 6 2
Total 1.0KAZ2 25YMPART 35_7FDT1 45 7072 H3_7DT4 6R_F0T4 T.5_FDT8H
NSGA2 SBX | 3.14 2 5 2 2 2 6 5
NSGA2 PCX | 4.86 1 7 g 3 3 4 7
FES=50000 GDE3 2.43 3 2 4 4 4 3 2
DEMOWSA | 4.71 4 4 3 6 7 2 3
MOSaDE | 3.57 8 6 1 1 1 1 1
MC_DE 414 5 3 5 7 6 5 4
MO _PSO | 7.29 7 1 8 g 8 7 8
MTS 586 6 8 7 5 5 g 6
Total 1.0KAZ  23YMPART 35 2071 4.5 2072 5&8 ZDT4 G.RE_ZDT4 7.5_ZDTG6
NSGA2 SBX | 3.42 2 5 2 2 2 6 5
NSGA2 PCX | 4.43 1 7 6 3 3 4 7
GDE3 314 3 2 4 4 4 3 2
FES=500000 pepowsa | 4.14 4 4 3 6 7 2 3
MOSaDE | 2.71 8 6 1 1 1 1 1
MO _DE 5.00 5 3 5 7 B 5 4
MO_PSO | 6.71 7 1 8 8 8 7 8
MTS 6.43 6 8 7 5 5 8 6
~113-
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-

M=2, Rank(Hypervolumn)

Taotal 1.0KAZ  2.5YMPART 3.5 20T 4.5 FA0OT2 558 7ZDT4 6.R_ADT4 7.5 _ZDT6E
MSGAZ SBX 1.86 i 3 1 1 2 i 2
NSGA2 PCX | 5.29 3 1 8 8 8 1 8
GDE3 4.43 1 7 4 4 G 4 5
FES=5000 opemowsa | 6.71 4 g 7 7 7 7 7
MOSaDE 4.29 8 4 3 3 3 6 3
MO_DE 5.43 5 6 3 5 5 8 4
MO_PSO 471 6 2 6 6 4 3 6
MTS 3.29 7 5 2 2 1 5 1
Total 1.0KAZ 2. SYMFART 3.5 _FZDT1 4.5 FDT2 5SS _FDT4 6.R_ZDT4 T.5_ZDTE
NSGAZ SBX | 2.86 2 7 2 1 1 4 3
NSGAZ2 PCX | 4.43 3 3 & 4 5 3 7
GDE3 1.71 1 1 1 2 4 1 2
FES=50000 pemowsa | 442 5 2 3 5 7 5 4
MOSaDE 525 a G 7 a1 3 2 5
MO _DE 4 57 4 4 4 7 5 5 1
MO _PSO 7.29 7 5 A a 8 7 8
MTS 543 5 g 5 3 2 8 6
Total 1.0KAZ 2.5YMPART 3.5_D0T1 45 7072 55 _FDT4 6R_ZDT4 7.5 _FDT8E
NSGAZ SBX | 3.71 2 6 4 1 2 G 5
NSGA2 PCX | 4.57 3 7 5 2 4 4 7
GDE3 2.43 1 2 2 4 3 3 2
DEMOwSA | 4.00 6 4 1 5 7 2 3
FES=500000 wmosanE 4.43 8 5 3 7 1 1 1
MO _DE 4.43 4 3 3 6 6 5 4
MO _PSO 6.57 7 1 7 g 8 7 g
MTS 5 86 5 8 B 3 5 g 6 \G
; C% TECHMOLOGICAL
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M 3, Rank(R indicator) -

Tntal 8.5 DTLZ2 9. R DTLE?_ 10. 5 DTLZ3 11. WFG1 12. WFG8 13. WFGS
NSGA2 SBX | 146 1 4 1 4 7 2
NSGA2_PCX | 185 8 5 3 2 3 3 T
GDE3 1.92 5 3 5 6 2 4
DEMOWSA | 1.31 4 3 2 1 1 1
FES=5000 mosaDE 3.08 2 7 7 8 3 8
MO_DE 2.31 3 6 6 5 4 6
MO_PSO 246 6 1 8 7 5 5
MTS 293 7 2 4 3 6 7
Tatal |8 S DTLZ? 9. R DTLZ2 10.S DTLZ3 11. WFG1 12. WFGB 13. WFGS
NSGA2 SBX | 1.38 5 2 1 3 6 1
NSGA2 PCX | 2.15 7 3 5 5 3 5
GDE3 1.00 3 1 2 4 1 2
DEMOwWSA 162 2 8 4 2 2 3
FES=50000 wosane 2 85 1 7 6 7 g 8
MC_DE 2 38 4 6 7 6 4 4
MO_PSO 2 G2 6 5 3 8 5 6
MTS 2 3 g 4 3 1 7 7
Total |8.S DTLZ2 9. R DTLZ2 10.S DTLZ311. WFGT 12. WFGB 13. WFG9
NSGA2 SBX | 1.38 5 1 1 7 & 3
NSGA2 PCX | 2.23 7 3 6 6 3 4
GDE3 1.00 2 2 y, 1 1 5
DEMOwWSA 208 3 q 4 4 2 6
FES=500000 osape | 2.15 1 5 3 3 8 8
MO_DE 223 4 6 7 7 4 1
MO_PSO 277 B 7 8 8 5 2
MTS 277 8 4 5 5 7 7 IYANG
IOLOGICAL

115- ¥35/ UNIVERSITY



M 3, Rank(Hypervolumn)

-

Total |8 S DTLZZ 9 R DTLZZ 10.S DTLZ3 11 WFG1 12. WFGB 13, WFGS
NSGA2 SBX | 1.31 1 3 2 8 1 2 =
NSGAZ PCX | 2.15 g 5 5 2 4 4
GDE3 1.69 4 4 3 5 3 3
FES=5000 DEMOwWSA 1.54 6 G 4 1 2 1
MOSaDE 3.23 5 8 i 7 8 8
MO_DE 2.38 2 7 7 4 5 6
MO_PSO 2 31 3 2 8 g 5 5
MTS 2 .00 7 1 1 3 7 7
Total 8.5 DTLZZ2 9. R DTLZZ2 105 DTLZ2 11.WFG1T 12. WFEE8 13 WFGE9
NSGAZ SBX 1.62 6 2 1 8 1 3
NSGA2_PCX | 223 7 3 5 4 4 6
GDE3 0.92 3 1 2 3 2 1
FES=50000 DEMOwSA 1.69 2 ] G 1 3 2
MOSaDE 2 69 1 7 4 7 8 8
MO_DE 2 46 4 6 7 5 5 5
MO _PSO 2 62 5 5 8 6 6 4
MTS 238 8 4 3 2 7 7
Tatal 8. DTLZ2 9. R DTLZZ 10.5 DTLES 11 WFGT 12 WFGE 13 WFG9
MSGAZ SBX 1.77 ] 1 2 8 1 5
NSGA2 PCX | 2231 7 3 5 5 4 6
GDE3 0.92 2 2 3 1 2 2
DEMOwWSA 1.92 3 g 4 3 3 4
FES=500000 wmosapE 1.92 1 5 1 2 g 8
MO _DE 223 4 G 7 6 5 1
MO_PSO 277 5 7 g 7 6 3
MTS 277 8 4 6 4 7 7
L Wikl W LAl ™ T
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M=5, Rank(R indicator)

|

Total |8.5 DTLZ2Z 9. R DTLZZ 10.S DTLZ3 11.WFG1 12. WFGE 13. WFG9
NSGAZ SBX 0.79 1 1 1 8 2 2 —

NSGAZ PCX 0.84 4 3 2 3 3 1
GDE3 1.42 5 5 4 5 4 4
FES=5000 DEMOwSA 1.89 g g 5 2 3 7
MOSaDE 1.95 3 7 & 7 8 G
MO DE 1.74 & G i 4 5 A
MO PSSO 211 T 4 B (5] 7 8
MTS 0.63 2 2 3 1 1 3

Total |8.8 DTLZ2Z 9. R DTLZ2 10.S DTLZ3 11. WFG1 12. WFGB 13 WFGS
NSGAZ2_SBX 0.58 1 1 1 6 1 1
NSGAZ PCX 1.63 8 4 8 5 4 2
GDE3 0.89 3 3 3 p 2 4
FES=50000 DEMOwWSA 1.53 2 a 4 4 6 )
MOSaDE 2.05 4 B a5 8 8 a8
MO _DE 1.47 6 7 6 3 3 3
MO_PSO 2.05 7 5 7 7 7 6
MTS 1.16 5 2 2 1 5 7

Total |8 S DTLZZ 9 R DTLZZ 10.S DTLZ3 11. WFG1 12. WFG8 13. WFG9
NSGA2 SBX 0.47 1 1 1 4 1 1
NSGA2 PCX 1.74 7 5 8 5 G 2
GDE3 0.84 4 3 2 1 2 4
DEMOwSA 1.58 2 8 4 7 4 5
FES=500000 mosapE 163 3 4 5 3 a a
MO _DE 1.58 8 5 5 A 3 3
MO _PSO 2.16 8 7 7 a8 5 G
MTS 1.37 5 2 3 2 7 7
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|

M=5, Rank(Hypervolumn)

Total |8.S DTLZ2 9.R DTLZZ 10.S DTLZ3 11.WFG1 12 WFGS 13 WFGY
NSGA2 SBX | 0.74 1 1 1 g 1 >

NSGA2 PCX | 0.95 7 3 7 3 2 1
GDE3 116 2 5 4 5 3 3
FES=5000  DEMOwSA | 168 g 8 6 1 4 5
MOSaDE 1.95 3 7 5 7 8 7
MO_DE 158 4 6 7 4 5 4
MO_PSO 174 5 2 g 6 6 6
MTS 158 B 4 3 2 7 8

Total g.5 DTLZ2 9. R DTLZ2 10.85 DTLE2E  11. WFG1 12.WFGEE 13 WFGE9
NSGA2 SBX | 0.63 2 1 1 6 1 1
NSGA2 PCX | 162 8 5 8 5 3 2
GDE3 0.79 3 2 2 3 2 3
FES=50000  pemowsa 147 4 8 4 4 4 4
MOSaDE 1.64 1 6 5 8 8 7
MO_DE 163 6 7 6 2 5 5
MO_PSO 1.84 5 4 7 7 6 6
VTS 153 7 3 3 1 7 8

Tatal 8.5 DTLZ2 9 R DTLZ2 10.S5 _DTLSZ3 11 WFG1 12. WFGS 13 WFG9
NSGA2 SBX | 0.53 3 1 1 3 1 1
MSGAZ PCX 1.74 &) 5 a 5 3 (&
GDE3 0.74 4 2 2 | 2 5
DEMOwSA | 137 2 g 3 7 4 2
FES=500000 osane 1.37 1 4 4 2 7 g
MO _DE 1.95 7 7 7 6 6 4
MO_PSO 1.84 5 6 6 g 5 5
MTS 1.84 8 3 5 4 5 7

== —G
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NSGA2_SBX
NSGA2 PCX
GDE3
DEMOWSA
MOSaDE
MO _DE
MO_PSO
MTS

H Total K H Total
2.32(1) 1 NSGA2 SBX | 2.68(2)  2.79(2) 2
4.37(4) 35 NSGA2 PCX | 4.89(55)  4.79(4) 475
3.95(2) 35 247(1)  2.05(1) 1

521(65) 575 DEMOWSA | 4.37(3)  4.26(3) 3
5 74(8) 75 MOSaDE | 532(7)  563(7) 7
521(65)  B.25 MO_DE 463(4)  5.00(5) 45
5.05(5) 6.5 MO _PSO | 6.74(8)  6£.32(8) 3
4.16(3) 25 489(55) 5.16(8) 575

FES=500000

R H

Total

NSGA2 SBX | 263(15) 3.11(2) 175
NSGA2 PCX | 4.89(5)  5.00(5) 5
GDE3 263(15)  2.26(1) 1.25
DEMOwSA | 453(4)  4.16(3) 35
MOSaDE | 4.11(3)  4.32(4) 35
MO_DE 495(6)  5.11(6) G
MO PSO | 6.53(8)  6.16(8) 3
MTS 563(7)  5.8%(7) 7
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