
1

Genetic Programming

Practice and Theory
Riccardo Poli

Department of Computing and Electronic Systems

University of Essex

R. Poli - University of Essex 2

Overview

�Basics

�Examples and Applications

�Theory

�Conclusions

R. Poli - University of Essex 3

Genetic Programming

�GP is a systematic method for getting

computers to automatically solve a
problem starting from a high-level

statement of what needs to be done.

�GP is a domain-independent method that
genetically breeds a population of

computer programs to solve a problem.

R. Poli - University of Essex 4

� GP iteratively transforms a population of
programs into a new generation of programs.

� GP applies analogues of genetic operations
like sexual recombination, mutation, etc.

2

R. Poli - University of Essex 5

Program Representation

�Programs are expressed in GP as syntax

trees rather than as lines of code.

�For example,

max(x*x,x+3*y) =

Terminals
Functions

R. Poli - University of Essex 6

Prefix Notation

�GP trees and the corresponding

expressions can be represented in prefix
notation.

� In this notation, functions always precede

their arguments. E.g.

max(x*x,x+3*y)

(max (* x x)(+ x (* 3 y)))

R. Poli - University of Essex 7

Linear Representation

� If all functions have a fixed arity, the
brackets become redundant in prefix-
notation expressions.

� E.g.

(max (* x x)(+ x (* 3 y)))

max * x x + x * 3 y

� So, often GP trees are stored internally as
linear sequences of instructions.

R. Poli - University of Essex 8

Preparatory Steps of GP

Users need to specify:

1. The terminal set

2. The function set

3. The fitness measure

4. Certain parameters for controlling the run

5. The termination criterion and method for
designating the result of the run

3

R. Poli - University of Essex 9

Terminal Set (Step 1)

�Steps 1 and 2 specify the ingredients that

are available to create the computer
programs (primitive set).

�The terminal set may consist of

�The program’s external inputs (e.g. x, y),

�0-arity functions (e.g. rand(), go_left()),

�Numerical constants (e.g. 0.1, 3, R).

R. Poli - University of Essex 10

� For some problems, the function set may
consist of merely the arithmetic functions (+,
-, *, /) and a conditional branching operator.

� But all sort of functions are allowed, e.g.

Function Set (Step 2)

Kind Example(s)
Arithmetic +, *, /
Mathematical sin, cos, exp
Boolean AND, OR, NOT
Conditional IF-THEN-ELSE
Looping FOR, REPEAT

R. Poli - University of Essex 11

� For many other problems, the primitive set
includes specialized functions and terminals. E.g.

� If the goal is to program a robot to mop the floor

Function set = {moving, turning, swishing the mop}

� If the goal is the automatic creation of a

controller

Function set = {integrators, differentiators, leads, lags,
gains}

Terminal set = {reference signal, plant output}

� If the goal is the synthesis of analog electrical

circuits

Function set = {transistors, capacitors, resistors}

R. Poli - University of Essex 12

Syntax Errors Are Impossible

� IF all programs in the initial population of a run
of GP are syntactically valid, executable
programs,

� AND the genetic operations performed during
the run are designed to produce offspring that

are syntactically valid, executable programs,

� THEN every individual created during a run of
GP is a syntactically valid, executable program.

4

R. Poli - University of Essex 13

Run-time Errors Can Be
Avoided

� IF all functions in the primitive set can
take as input the results produced by any
other function or terminal (closure)

�THEN run-time errors are avoided.

�Sometime this requires modifying the
primitive set appropriately, e.g. using
protected versions of division, logarithm,
square root, etc.

R. Poli - University of Essex 14

Fitness Measure (Step 3)

�The fitness measure is the mechanism

for giving a high-level statement of the

problem’s requirements to the GP
system.

�The first two preparatory steps define

the search space whereas the fitness

measure implicitly specifies the search’s
desired goal.

R. Poli - University of Essex 15

�The amount of error between its output and
the desired output

�The amount of time (fuel, money, etc.)
required to bring a system to a desired
target state

�The accuracy of the program in recognizing
patterns or classifying objects into classes

�The payoff that a game-playing program
produces

�The compliance of a structure with user-
specified design criteria, ...

Fitness can be measured in terms of …

R. Poli - University of Essex 16

�The fitness measure is, for many practical
problems, multi-objective, i.e. it combines
two or more different elements that are
often in competition with one another.

�For many problems, each program in the
population is executed over a
representative sample of different fitness
cases.

�Fitness cases may represent different
values of the program’s input(s), different
initial conditions of a system, or different
environments.

5

R. Poli - University of Essex 17

Control Parameters (Step 4)

�An important control parameter is the

population size.

�Other control parameters include

�The probabilities of performing the genetic
operations,

�The maximum size for programs, and

�Other details of the run.

R. Poli - University of Essex 18

Termination Criterion (Step 5)

� We need to specify the termination criterion
and the method of designating the result of
the run.

� The termination criterion may include a
maximum number of generations to be run

as well as a problem-specific success
predicate.

� The best-so-far individual is then harvested

and designated as the result of the run.

R. Poli - University of Essex 19

Executional Steps of GP

1. Randomly create an initial population of programs
from the available primitives.

2. Iterate the following sub-steps until the termination
criterion is satisfied:

i. Execute each program and ascertain its fitness.

ii. Select one or two program(s) from the population with a

probability based on fitness to participate in genetic
operations.

iii. Create new individual program(s) by applying genetic
operations with specified probabilities.

3. Return the best-so-far individual

R. Poli - University of Essex 20

Genetic Operations
� Reproduction: copy the selected individual

program to the new population.

� Crossover: create new offspring
program(s) by recombining randomly
chosen parts from two selected programs.

� Mutation: create one new offspring
program by randomly mutating a randomly
chosen part of one selected program.

� Architecture-altering operations: choose
an architecture-altering operation from the
available repertoire and create one new
offspring using it.

6

R. Poli - University of Essex 21

Flowchart of GP

R. Poli - University of Essex 22

Random Program Generation

�The programs in the initial population are

typically built by recursively generating a
tree composed of random choices of

functions and terminals.

�The initial individuals are usually
generated subject to a pre-established

maximum size.

R. Poli - University of Essex 23

“Full” Initialisation Method

�Nodes are taken from the function set
until a maximum tree depth is reached.

Beyond that depth only terminals can

be chosen.

�E.g.

R. Poli - University of Essex 24

“Grow” Initialisation Method
� It behaves like “full” except it allows the

selection of nodes from the whole

primitive set until the depth limit is
reached.

�E.g.

7

R. Poli - University of Essex 25

Fitness
�Normally, fitness evaluation requires

executing the programs in the population

multiple times within the GP system.

�A variety of execution strategies exist,
including:

�off-line or on-line compilation and linking,

�virtual-machine-code compilation,

� interpretation.

R. Poli - University of Essex 26

Program Interpretation

� Interpreting a program tree means
recursively traversing the tree and executing

its nodes only when their arguments are

known.

� E.g.

R. Poli - University of Essex 27

Selection
� Genetic operators are applied to

individual(s) that are probabilistically

selected based on fitness.

� Better individuals are favoured over inferior

individuals.

� The most commonly employed methods for
selecting individuals are tournament

selection and fitness-proportionate selection.

� Both methods are not greedy.

R. Poli - University of Essex 28

Sub-tree Crossover

� Given two parents crossover randomly
selects a crossover point in each parent tree
and swaps the sub-trees rooted at the
crossover points.

8

R. Poli - University of Essex 29

Sub-tree Mutation

�Mutation randomly selects a mutation

point in a tree and substitutes the sub-

tree rooted there with a randomly
generated sub-tree.

R. Poli - University of Essex 30

Examples

R. Poli - University of Essex 31

Toy Example

� Goal: to automatically create a computer
program whose output is equal to the values of
the quadratic polynomial x2+x+1 in the range
from –1 to +1.

� Step 1 – Definition of the Terminal Set:
� The problem is to find a mathematical function of one

independent variable, so the terminal set must
include x.

� In order to evolve any necessary coefficients, the
terminal set also includes numerical constants.

� That is: T = {X, ℜ}, where ℜ denotes constant
numerical terminals in some range (e.g. [–5.0,+5.0]).

R. Poli - University of Essex 32

�Step 2 – Definition of the Function Set:

�One possible choice consists of the four

ordinary arithmetic functions of addition,

subtraction, multiplication, and division:

F = {+, -, *, %}.

�To avoid run-time errors, the division function

% is protected: it returns a value of 1 when

division by 0 is attempted, but otherwise returns
the quotient of its two arguments.

9

R. Poli - University of Essex 33

�Step 3 – Definition of the Fitness Function:

�The fitness of an individual in the population

must reflect how closely the output of a program

comes to x2+x+1.

�The fitness measure could be defined as the

value of the integral of the errors between the

value of the individual mathematical expression

and x2+x+1.

�Often this numerically approximated using

dozens or hundreds of different values of the

independent variable x.

R. Poli - University of Essex 34

�Step 4 – Fixing GP Parameters:

�Population size: 4 (typically thousands or millions

of individuals).

�Crossover probability: 50% (commonly about

90%).

�Reproduction probability: 25% (typically about

8%).

�Mutation probability: 25% (usually about 1%)

�Architecture-altering operation probability: 0%

(frequently around 1%).

R. Poli - University of Essex 35

�Step 5 – Termination Criterion:

�A reasonable termination criterion for this

problem is that the run will continue from

generation to generation until the fitness

(error) of some individual gets below 0.01.

�Often a maximum number of generations is

also used as an additional stopping

criterion.

R. Poli - University of Essex 36

Example Run

� Initial population of four randomly created

individuals of generation 0

+

x 1

-

0

+

2 0*

x

1

+

x

x

*

-

-1 -2

(a) (b) (c) (d)

+1x
2

+1x 2 x

10

R. Poli - University of Essex 37

�The fitness of each of the four randomly
created individuals of generation 0 is

equal to the area between two curves.

-2

4

-1 1

-2

4

-1 1

-2

4

-1 1

(a) (b) (c) (d)

0.67 1.0 1.67 2.67

R. Poli - University of Essex 38

+

x 1

-

0

+

2 0*

x

1

+

x

x

*

-

-1 -2

(a) (b) (c) (d)

+1x
2

+1x 2 x

+

x 1

-

0 x

-

0

+

1

1 *

x+

x

% 0

+

x x

(a) (b) (c) (d)

+1x 1 x
2

+ +1x x

Reproduction

R. Poli - University of Essex 39

+

x 1

-

0

+

2 0*

x

1

+

x

x

*

-

-1 -2

(a) (b) (c) (d)

+1x
2

+1x 2 x

+

x 1

-

0 x

-

0

+

1

1 *

x+

x

% 0

+

x x

(a) (b) (c) (d)

+1x 1 x
2

+ +1x x

Mutation

R. Poli - University of Essex 40

+

x 1

-

0

+

2 0*

x

1

+

x

x

*

-

-1 -2

(a) (b) (c) (d)

+1x
2

+1x 2 x

+

x 1

-

0 x

-

0

+

1

1 *

x+

x

% 0

+

x x

(a) (b) (c) (d)

+1x 1 x
2

+ +1x x

Crossover

11

R. Poli - University of Essex 41

+

x 1

-

0 x

-

0

+

1

1 *

x+

x

% 0

+

x x

(a) (b) (c) (d)

+1x 1 x
2

+ +1x x

0.67 1.00 2.67 0Fitness

New Generation

Solution (0<0.01)

R. Poli - University of Essex 42

Symbolic Regression

� Regression is a technique used to interpret
experimental data. It consists in finding the
coefficients of a prefixed function such that
the resulting function best fits the data.

� If the fit is not good then the experimenter
has to try with a different function until a
good model for the data is found.

� The problem of symbolic regression consists
in finding a good function (with its
coefficients) that fits well the data points.

R. Poli - University of Essex 43

Real Symbolic Regression Run
� Problem: find the symbolic expression that

best fits the data:
{xi ,yi} = {(-1.0,0.0) (-0.9,-0.1629) (-0.8,-0.2624)…(1.0,4.0)}

� GP parameters:

Parameter Value
Population size 1000
Function set {+ - * plog pexp sin cos pdiv}
Terminal set {x}
Initial max depth 4
Initialisation method Full
Number of generations 50
Crossover probability 0.7
Mutation probability 0
Fitness - Sum of absolute errors

R. Poli - University of Essex 44

Best Program of Generation 1

12

R. Poli - University of Essex 45

Best Program of Generation 3

R. Poli - University of Essex 46

Best Program of Generation 6

R. Poli - University of Essex 47

Best Program of Generation 26

R. Poli - University of Essex 48

Evolution of Fitness and Size

Best-of-generation

Fitness vs. Generation

Best-of-generation

Size vs. Generation

BLOAT

13

R. Poli - University of Essex 49

Real World Applications

R. Poli - University of Essex 50

Human-competitive Results
� Getting machines to produce human-like

results is the reason for the existence of the
fields of artificial intelligence and machine
learning.

� A result cannot acquire the rating of “human
competitive” merely because it is endorsed by
researchers inside the specialized fields that
are attempting to create machine intelligence.

� A result produced by an automated method
must earn the rating of “human competitive”
independent of the fact that it was generated by
an automated method.

R. Poli - University of Essex 51

Criteria for Human-competitiveness

A. The result was patented as an invention in the past, is
an improvement over a patented invention, or would
qualify today as a patentable new invention

B. The result is equal to or better than a result that was
accepted as a new scientific result at the time when it
was published in a peer-reviewed scientific journal

C. The result is equal to or better than a result that was
placed into a database or archive of results
maintained by an internationally recognized panel of
scientific experts

D. The result is publishable in its own right as a new
scientific result − independent of the fact that the
result was mechanically created

R. Poli - University of Essex 52

Criteria for Human-competitiveness

E. The result is equal to or better than the most recent
human-created solution to a long-standing problem
for which there has been a succession of increasingly
better human-created solutions

F. The result is equal to or better than a result that was
considered an achievement in its field at the time it
was first discovered

G. The result solves a problem of indisputable difficulty
in its field

H. The result holds its own or wins a regulated
competition involving human contestants (in the form
of either live human players or human-written
computer programs)

14

R. Poli - University of Essex 53

Pre-2004 GP Human-competitive
Results
� 36 human-competitive results

� 23 instances where GP has duplicated the
functionality of a previously patented invention,
infringed a previously patented invention, or created a
patentable new invention

� 15 instances where GP has created an entity that
either infringes or duplicates the functionality of a
previously patented 20th-century invention

� 6 instances where GP has done the same with
respect to an invention patented after January 1, 2000

� 2 instances where GP has created a patentable new
invention (general-purpose controllers).

R. Poli - University of Essex 54

1. Creation of a better-than-classical quantum algorithm for
Grover’s database search problem

2. Creation of a quantum algorithm for the depth-two AND/OR
query problem that is better than any previously published
result

3. Creation of a soccer-playing program that won its first two
games in the Robo Cup 1997 competition

4. Creation of four different algorithms for the transmembrane
segment identification problem for proteins

5. Creation of a sorting network for seven items using only 16
steps

6. Synthesis of 60 and 96 decibel amplifiers

7. Synthesis of analog computational circuits for squaring,
cubing, square root, cube root, logarithm, and Gaussian
functions

8. Synthesis of a real-time analog circuit for time-optimal control
of a robot

9. Synthesis of an electronic thermometer

A selection of results

R. Poli - University of Essex 55

10. Creation of a cellular automata rule for the majority
classification problem that is better than the Gacs-
Kurdyumov-Levin (GKL) rule and all other known rules
written by humans

11. Synthesis of topology for a PID-D2 (proportional, integrative,
derivative, and second derivative) controller

12. Synthesis of NAND circuit

13. Simultaneous synthesis of topology, sizing, placement, and
routing of analog electrical circuits

14. Synthesis of topology for a PID (proportional, integrative, and
derivative) controller

15. Synthesis of a voltage-current conversion circuit

16. Creation of PID tuning rules that outperform the Ziegler-
Nichols and Astrom-Hagglund tuning rules

17. Creation of three non-PID controllers that outperform a PID
controller that uses the Ziegler-Nichols or Astrom-Hagglund
tuning rules

R. Poli - University of Essex 56

Human-competitive-result

competition

� Held at GECCO 2004-2007

� Example winners:

� Automated Quantum Programming, L.

Spector

� An Evolved Antenna for Deployment on

NASA's Space Technology 5 Mission, J.

Lohn et al.

15

R. Poli - University of Essex 57

Understanding GP
Motivation

R. Poli - University of Essex 59

Understanding GP Search

Behaviour with Empirical Studies

�We can perform many GP runs with a

small set of problems and a small set of

parameters

�We record the variations of certain

numerical descriptors.

�Then, we suggest explanations about the
behaviour of the system that are

compatible with (and could explain) the

empirical observations.

R. Poli - University of Essex 60

�GP is a complex adaptive system with
zillions of degrees of freedom.

�So, any small number of descriptors can
capture only a fraction of the complexities
of such a system.

�Choosing which problems, parameter
settings and descriptors to use is an art
form.

�Plotting the wrong data increases the
confusion about GP’s behaviour, rather
than clarify it.

Problem with Empirical Studies

16

R. Poli - University of Essex 61

Example: Bloat
� Bloat = growth without (significant) return in

terms of fitness. E.g.

� Bloat exists and continues forever, right?

sizefitness

R. Poli - University of Essex 62

Why do we need mathematical

theory?

� Empirical studies are rarely conclusive

� Qualitative theories can be incomplete

Search Space

Characterisation

R. Poli - University of Essex 64

How many programs in the search

space?

= Number of trees of depth at
most d

17

R. Poli - University of Essex 65

Example

R. Poli - University of Essex 66

Logarithmic scale Superexponential

R. Poli - University of Essex 67

Doubly logarithmic scale

Exponentials

R. Poli - University of Essex 68

GP cannot possibly work!

� The GP search space is immense, and
so any search algorithm can only explore

a tiny fraction of it (e.g. 10-1000 %).

� Does this mean GP cannot possibly

work?

Not necessarily.

� We need to know the ratio between the

size of solution space and the size of
search space

18

R. Poli - University of Essex 69

{d0,d1,NAND} search space
Proportion of 2-input logic functions
implemented using NAND primitives

R. Poli - University of Essex 70

Limiting distribution
� Empirically is has been shown that as

program length grows the distribution of
functionality reaches a limit

� So, beyond a certain length, the proportion of
programs which solve a problem is constant

� Since there are exponentially many more long
programs than short ones, in GP

size of the solution space

= constant
size of the search space

� Proofs?

R. Poli - University of Essex 71

Linear model of computer

R. Poli - University of Essex 72

States, inputs and outputs

� Assume n bits of memory

� There are 2n states.

� At each time step the machine is in a

state, s

19

R. Poli - University of Essex 73

Instructions

� Each instruction changes the state of the
machine from a state s to a new s′, so

instructions are maps from binary strings to

binary strings of length n

E.g. if n = 2, AND m0 m1 � m0 is represented as

1111

0001

1010

0000

m′1m′0m1m0

11001000=

R. Poli - University of Essex 74

Behaviour of programs

� A program is a sequence of instructions

� So also the behaviour of a program can
be described as a mapping from initial

states s to corresponding final states s′

R. Poli - University of Essex 75

� For example,

AND m0 m1 � m0

NOP

OR m0 m1 � m0

AND m0 m1 � m0 1111

0001

1110

0000

m′1m′0m1m0

11001100

R. Poli - University of Essex 76

Does the behaviour tend to a

limiting distribution?

11011000
Identity function
(no instruction
executed yet)

AND m0 m1 � m0 OR m0 m1 � m0

11001000 11011100

1/2 1/2

A B

� Two primitives: AND m0 m1 � m0 OR m0 m1 � m0

20

R. Poli - University of Essex 77

11001000

AND m0 m1 � m0 OR m0 m1 � m0

11001000 11001100

1/2 1/2

A

A C

R. Poli - University of Essex 78

11011100

AND m0 m1 � m0 OR m0 m1 � m0

11001100 11011100

1/2 1/2

B

C B

R. Poli - University of Essex 79

11001100

AND m0 m1 � m0 OR m0 m1 � m0

11001100 11001100

1/2 1/2

C

C C

R. Poli - University of Essex 80

Probability tree

AND OR

Identity

A B

AND OR

C B

AND OR

C C

AND OR

C B

AND OR

A C

AND OR

A C

AND OR

C C

21

R. Poli - University of Essex 81

Distribution of behaviours

07/81/161/164

0100∞

0¾1/81/83

0½¼¼2

00½½1

10000

IdentityBehaviour

C

Behaviour

B

Behaviour

A

Program

length

R. Poli - University of Essex 82

Yes….

� …for this primitive set the distribution

tends to a limit where only behaviour C
has non-zero probability.

� Programs in this search space tend to

copy the initial value of m1 into m0.

R. Poli - University of Essex 83

Markov chain proofs of limiting distribution

� Using Markov chain theory we have

proved that a limiting distributions of
functionality exists for a large variety of

CPUs

� There are extensions of the proofs from
linear to tree-based GP.

� See Foundations of Genetic

Programming book for an introduction to

the proof techniques.

R. Poli - University of Essex 84

So what?

� Generally instructions lose information.
Unless inputs are protected, almost all

long programs are constants.

� Write protecting inputs makes linear GP

more like tree GP.

� No point searching above threshold?

� Predict where threshold is? Ad-hoc or

theoretical.

22

R. Poli - University of Essex 85

Implication of
|solution space|/|search space|=constant

� GP can succeed if

� the constant is not too small or

� there is structure in the search space to
guide the search or

� the search operators are biased
towards searching solution-rich areas of

the search space

or any combination of the above.

GP Search

Characterisation

R. Poli - University of Essex 87

GA and GP search

� GAs and GP search like this:

� How can we understand (characterise,

study and predict) this search?

R. Poli - University of Essex 88

Schema Theories

� Divide the search space into subspaces

(schemata)

� Characterise the schemata using

macroscopic quantities

� Model how and why the individuals in the
population move from one subspace to

another (schema theorems).

23

R. Poli - University of Essex 89

Example

� The number of individuals in a given
schema H at generation t, m(H,t), is a good
descriptor

� A schema theorem models mathematically
how and why m(H,t) varies from one
generation to the next.

R. Poli - University of Essex 90

Exact Schema Theorems

� The selection/crossover/mutation process
is a random coin flip (Bernoulli trial). New

individuals are either in schema H or not.

� So, m(H,t+1) is a binomial stochastic

variable.

� Given the success probability of each trial

α(H,t), an exact schema theorem is

E[m(H,t+1)] = M α(H,t)

R. Poli - University of Essex 91

Exact Schema Theory
for GP with

Subtree Crossover

R. Poli - University of Essex 92

GP Schemata

� Syntactically, a GP schema is a tree with
some “don’t care” nodes (“=”) that represent
exactly one primitive.

� Semantically, a schema is the set of all
programs that match size, shape and
defining nodes of such a tree.

=

x +

y =

+

x +

y x

+

x +

y y

×

x +

y x

×

x +

y y

24

R. Poli - University of Essex 93

Creation of individuals via

crossover is a compound event
{create individual} =

{select parent 1,

select parent 2,

choose crossover point 1,

choose crossover point 2 }

R. Poli - University of Essex 94

1st parent is
prog 1 ….

1st parent is
prog Nprogs

2nd parent is
prog 1

….
2nd parent is

prog Nprogs
….

A

2nd parent is
prog 1

2nd parent is
prog Nprogs

Selection-Crossover Probability

tree

A A A

Selection 1

Selection 2

p(prog1) p(progN)

p(prog1) p(progN) p(prog1) p(progN)

R. Poli - University of Essex 95

Subtree A

offspring
in H

not in H

chosen XO point
1 in 1st parent ….

chosen XO point
N1 in 1st parent

chosen XO point
1 in 2nd parent ….

chosen XO point
N2 in 2nd parent

offspring
in H

not in H offspring
in H

not in H

chosen XO point
1 in 2nd parent ….

chosen XO point
N2 in 2nd parent

offspring
in H

not in H

XO point 1

XO point 2

1/N1 1/N1

1/N2 1/N2

N1 = size(parent1)

1/N2 1/N2

N2 = size(parent2)

R. Poli - University of Essex 96

Microscopic schema model

� Problems:

� many paths � many terms to evaluate
(most=0)

� r.h.s. quantities are not about schemata

� model misses regularities in creation process

� Can we do better?

α(H,t) = sum of products of probabilities

along paths leading to offspring in H

25

R. Poli - University of Essex 97

� The process of crossover point selection is
independent from the actual primitives in the
parent tree.

� The probability of choosing a particular
crossover point depends only on the actual size
and shape of the parent.

� For example, the probability of choosing any
crossover point in the program

(+ x (+ y x))
is identical to the probability of choosing any

crossover point in

(AND D1 (OR D1 D2))

Regularities

R. Poli - University of Essex 98

Fragmenting selection

R. Poli - University of Essex 99

{select parent} = {select size/shape,
select individual of that size/shape}

can be
postponed

R. Poli - University of Essex 100

1st parent has
shape 1 ….

1st parent has
shape Nshapes

2nd parent has
shape 1

….
2nd parent has

shape Nshapes
….`

A

2nd parent has
shape 1

2nd parent has
shape Nshapes

Selection-XO Probability Tree

revisited

A A A

Selection

Shape 1

Selection

Shape 2

p(shape1) p(shapeN)

p(shape1) p(shapeN) p(shape1) p(shapeN)

26

R. Poli - University of Essex 101

Subtree revisitedA

chosen XO point
1 in 1st shape ….

chosen XO point
N1 in 1st shape

chosen XO point
1 in 2nd shape ….

chosen XO point
N2 in 2nd shape

chosen XO point
1 in 2nd shape ….

chosen XO point
N2 in 2nd shape

XO point 1

XO point 2

BB B B

1/N1 1/N1

1/N2 1/N21/N2 1/N2

R. Poli - University of Essex 102

1st parent is
prog 1 ….

1st parent is
prog Nprogs

2nd parent is
prog 1

….
2nd parent is

prog Nprogs
….

2nd parent is
prog 1

2nd parent is
prog Nprogs

Parent

Selection 1

Parent

Selection 2

p(prog1|shape1)
p(progN|shape1)

p(prog1|shape2)
p(progN|shape2)

p(prog1|shape2)
p(progN|shape2)

Subtree (take 1)B

offspring
in H

not in H offspring
in H

not in H offspring
in H

not in H offspring
in H

not in H

R. Poli - University of Essex 103

Variable Arity Hyperschemata

� A GP variable arity hyperschema is a tree

with internal nodes from F ∪ {=, # } and
leaves from T ∪ { =, # }.

= is a “don't care” symbols which stands for
exactly one node

is a more general “don’t care” that represents

either a valid subtree or a tree fragment

depending on its arity

R. Poli - University of Essex 104

� For example, (# x (+ = #))

27

R. Poli - University of Essex 105

Upper and lower building blocks

Variable arity hyperschemata express which

parents produce instances of a schema

Crossing over at points i and j any individual in L(H,i,j) with
any individual in U(H,i) � offspring in H

U(H,i) U(H,i)L(H,i,j) L(H,i,j)

i
i

j
j

R. Poli - University of Essex 106

Subtree (take 2)

offspring
in H

chosen parent in
U(H,i)

not in H

chosen parent in
L(H, i, j)

Parent 1

selection

Parent 2
selection

p(U(H,i) | shape1)

B

not in H

p(L(H,i,j) | shape2)

R. Poli - University of Essex 107

Bayes

p(U(H,i)∩shape1)

p(U(H,i) | shape1) =

p(shape1)

p(L(H,i,j)∩shape2)

p(L(H,i,j) | shape2) =

p(shape2)

R. Poli - University of Essex 108

Exact GP Schema Theorem for

Subtree Crossover (2001)

� Schema theorem for selection +

100% standard GP crossover

shape1 shape2 size(shape2)=N2size(shape1)=N1

XO points in shape1XO points in shape2

α(H,t)=

28

R. Poli - University of Essex 109

�Let us assume that also reproduction is

performed.

�Creation probability tree for a schema H:

To reproduce or not to reproduce …

reproduction crossover

offspring in H not in H

1-pxo pxo

selection picks an
individual in H

parent selection and XO
point choice produce

an individual in H

Selection-XO

Probability Tree

R. Poli - University of Essex 110

Exact GP Schema Theorem with

Reproduction, Selection, Crossover

α(H,t) =

R. Poli - University of Essex 111

So what?

� A model is as good as the predictions

and the understanding it can produce

� So, what can we learn from schema
theorems?

R. Poli - University of Essex 112

Lessons

� Operator biases

� Size evolution equation

� Bloat control

� Optimal parameter setting

� Optimal initialisation

� …

29

R. Poli - University of Essex 113

Selection Bias

R. Poli - University of Essex 114

Crossover Bias

R. Poli - University of Essex 115

So where is evolution going?

R. Poli - University of Essex 116

GP with subtree XO pushes the population
towards a Lagrange distribution of the 2nd kind

Proportion of programs
with n internal nodes

Mean program sizeMean function arity

Note: uniform selection of crossover

points

30

R. Poli - University of Essex 117

� Theory is right!

R. Poli - University of Essex 118

Sampling probability under Lagrange

� Probability of sampling a particular
program of size n under subtree

crossover

� So, GP samples short programs much

more often than long ones

R. Poli - University of Essex 119

Allele Diffusion

� The fixed-point distribution for linear,

variable-length programs under GP

subtree crossover is

with

R. Poli - University of Essex 120

� Crossover attempts to push the
population towards distributions of
primitives where each primitive of a given
arity is equally likely to be found in any
position in any individual.

� The primitives in a particular individual
tend not just to be swapped with those of
other individuals in the population, but
also to diffuse within the representation
of each individual.

� Experiments with unary GP confirm the
theory.

31

R. Poli - University of Essex 121

Size Evolution

�The mean size of the programs at
generation t is

µ(t) = ∑l N(Gl) Φ(Gl,t)

where

Gl = set of programs with shape l

N(Gl) = number of nodes in programs in Gl

Φ(Gl,t) = proportion of population of shape l

at generation t

R. Poli - University of Essex 122

� E.g., for the population:

x, (+ x y) (- y x) (+ (+ x y) 3)

R. Poli - University of Essex 123

� In a GP system with symmetric subtree
crossover

E[µ(t+1)] = ∑l N(Gl) p(Gl,t)

where
p(Gl,t) = probability of selecting a program of

shape l from the population at

generation t

� The mean program size evolves as if
selection only was acting on the
population

Size Evolution under Subtree XO

R. Poli - University of Essex 124

Conditions for Growth

�Growth can happen only if

E[µ(t+1)-µ(t)] > 0

�Or equivalently

∑l N(Gl) [p(Gl,t) - Φ(Gl,t)] > 0

32

R. Poli - University of Essex 125

Tarpeian Bloat Prevention

� To prevent growth one needs

� To increase the selection probability

for below-average-size programs

� To decrease the selection probability

for above-average-size programs

Conclusions

R. Poli - University of Essex 127

Theory

� In the last few years the theory of GP has
seen a formidable development.

� Today we understand a lot more about
the nature of the GP search space and
the distribution of fitness in it.

� Also, schema theories explain and predict
the syntactic behaviour of GAs and GP.

� We know much more as to where
evolution is going, why and how.

R. Poli - University of Essex 128

� Theory primarily provides

explanations, but many recipes for
practice have also been derived

(initialisation, sizing, parameters,

primitives, anti bloat, …)

� So, theory can help design competent
algorithms

� Theory is hard and slow: empirical

studies are important to direct theory
and to corroborate it.

33

R. Poli - University of Essex 129

Turing’s Intuition

� In his seminal 1948 paper entitled “Intelligent
Machinery,” Turing identified three ways by
which human-competitive machine intelligence

might be achieved. In connection with one of
those ways, Turing said:

“There is the genetical or evolutionary search
by which a combination of genes is looked for,
the criterion being the survival value.”

R. Poli - University of Essex 130

� Turing did not specify how to conduct the
“genetical or evolutionary search” for machine
intelligence, but in his 1950 paper “Computing
Machinery and Intelligence,” he wrote
“We cannot expect to find a good child-machine at
the first attempt. One must experiment with
teaching one such machine and see how well it
learns. One can then try another and see if it is
better or worse. There is an obvious connection
between this process and evolution, by the
identifications

Structure of the child machine = Hereditary material

Changes of the child machine = Mutations

Natural selection = Judgment of the experimenter”

R. Poli - University of Essex 131

�So, over 50 years ago Turing perceived
that one approach to machine intelligence

would involve an evolutionary process in

which

�a description of a computer program (the

hereditary material)

�undergoes progressive modification (mutation)

�under the guidance of natural selection (what
we now call “fitness”).

R. Poli - University of Essex 132

� Turing also understood the need to evaluate
objectively the behaviour exhibited by
machines, to avoid human biases when
assessing their intelligence.

� This led him to propose an imitation game,
now know as the Turing test for machine
intelligence, whose goals are summarised
by Arthur Samuel’s position statement

“[T]he aim [is] … to get machines to exhibit
behavior, which if done by humans, would
be assumed to involve the use of
intelligence.” [Arthur Samuel, 1983]

34

R. Poli - University of Essex 133

GP Has Started Fulfilling Turing

and Samuel’s Dreams

� GP has started fulfilling Turing’s dream by
providing us with a systematic method, based
on Darwinian evolution, for getting computers
to automatically solve problems.

� To do so, GP simply requires a high-level
statement of what needs to be done (and
enough computing power).

R. Poli - University of Essex 134

�Today GP certainly cannot produce
computer programs that would pass the
full Turing test for machine intelligence.

�But GP has been able to solve tens of
difficult problems with human-competitive
results.

�No other AI technique has done this
“John Koza’s genetic programming approach to

machine discovery can invent solutions to
more complex specifications than any other I
have seen.” [John McCarthy]

R. Poli - University of Essex 135

� These are a small step towards fulfilling
Turing and Samuel’s dreams, but they are
also early signs of things to come.

� In a few years’ time GP will be able to
routinely and competently solve important
problems for us in a variety of specific
domains of application, becoming an
essential collaborator for many of human
activities.

� This will be a remarkable step forward
towards achieving true, human-competitive
machine intelligence.

R. Poli - University of Essex 136

More information
� W.B. Langdon & R. Poli, Foundations of Genetic

Programming, Springer, 2002.
� J. Koza & R. Poli, Genetic Programming, in INTROS tutorial

book, Chapter 5, Kluwer, 2005
� R. Poli, Exact Schema Theory for Genetic Programming and

Variable-Length Genetic Algorithms with One-Point
Crossover, Genetic Programming and Evolvable Machines
2(2), 2001.

� R. Poli & N. F. McPhee, Schema Theory for GP with Sub-
tree Crossover, Parts I & II, Evolutionary Computation,
11(1):53-66 & 11(2):169–206, 2003.

� R. Poli, N. F. McPhee & J.E. Rowe, Exact Schema Theory
and Markov Chain Models for Genetic Programming and
Variable-length Genetic Algorithms with Homologous
Crossover, Genetic Programming and Evolvable Machines,
5(1):31-70, 2004.

