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Optimisation Problems
e optimisation problems are abundant in science and engineering

e mathematically, we want to minimise (or maximise) some function
f:D—R
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Evolutionary Algorithms

e evolutionary algorithms (EAs) are optimisation strategies which
derive inspiration from Darwinian evolution

e they model the interplay of variation and selection in a population of
individuals

e fitness is determined by the objective function
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Two-phase Jet Nozzle
e optimisation of a single-component two-phase nozzle

e Objective: maximisation of efficiency

Two-phase flashing nozzle

e 330 compatible segments

= 109 different configu-
rations
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e the efficiency increased

from 55% to 80% {:::_. |

J. Klockgether and H.-P. Schwefel, 1970. “Two-phase nozzle and and hollow core
jet experiments”, Proc. 11th Symp. Engineering Aspects of Magnetohydrodynamics,
pp. 141-148.
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Optimisation of Coffee Blends (1)

e most coffees are blends of up to ten dif-
ferent kinds of single-origin coffee

e the quality and availability of the single-
origin coffees varies from year to year

e brand name coffees have distinct “target
tastes” that need to be matched

e experts judge based on criteria such
as aroma, brightness, acidity, and body,
and achieve the target taste using their
experience
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Optimisation of Coffee Blends (2)

e interactive evolution of coffee blends:

— replace the experts’ heuristics with random steps
— experts pick the best among a population of five blends

e after 11 generations, the taste of the blend was indistinguishable from
the target

e the composition of the blend was very different from what the experts
would have chosen

e different blends can have identical flavour; the expert solution is not
necessarily the cheapest one

M. Herdy, 1997. “Evolutionary optimisation based on subjective selection — evolving
blends of coffee”, Proc. 5th European Congress on Intelligent Techniques and Soft
Computing, pp. 640-644.
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Real-Valued Optimisation

e in this tutorial, we consider optimisation problems of the form f :
RY - R

e unconstrained numerical optimisation algorithms:

— quasi-Newton and conjugate gradient methods
— implicit filtering

— pattern search

— stochastic approximation

— response surface methods

— evolutionary algorithms
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Real-Valued Evolutionary Algorithms

e evolutionary algorithms

— are easy to understand and implement

— do not rely on derivative information and make no assumptions
with regard to the function being optimised

— typically employ populations

— involve some element of randomness

— proceed based on incomplete information
— strive to be “adaptive”

e types of real-valued EAs include
— evolution strategies
— evolutionary programming
— differential evolution
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Outline

e evolution strategies
— the (u/p T A)-ES
— performance for the line model
— performance for the sphere model

— performance for other problems

e covariance matrix adaptation
— CMA-ES

— other approaches
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Benefits of “Keeping It Simple”
e derive scaling laws
e compare with optimal behaviour

¢ highlight differences between strategy variants; reveal strengths and
weaknesses

e recommend parameter settings
e develop intuition with regard to working principles of operators

e develop and improve adaptation strategies
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Evolution Strategies: The (u/p T M\)-ES (1)

e population size: |P| = u

population

e number of offspring: |Q| = A

selection [ variation selection: the 1, best candidate so-
| - lutions in

e PUQ forplus-selection
o O for comma-selection

survive (“truncation selection”)

variation: for every offspring to be generated, randomly choose p
parents; recombine and mutate
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Evolution Strategies: The (u/p T M\)-ES (2)

recombination: with ¢;,49,...,%, the
indices of the (randomly chosen)
parents of a candidate solution to
be generated, let e

P /I
1 | ;
X = — E X l ®
IO J \\
J=1 \

mutation: add a normally distributed
random vector with mean zero

y =X+ 0z
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Line Model: The (1 + 1)-ES

e consider maximisation of objective function f(z) = x

e (1+1)-ES:

(1) ) 4oz if f(2® +02) > fa®)
() otherwise

e progress rate:

p1+1 =E {xw’l) — x<t>]

ze —3%° dz

Gl
\/ﬂ
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Line Model: The (1, M\)-ES
e (1,))-ES:
w(t+1) _ le(t) + 021.0

where k; A denotes the index of the
kth best offspring

e progress rate:

P1L,A = UE[Zl;A]

= 0Cq1 )\

e c; ) is referred to as the (1, \)-progress coefficient
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Line Model: The (1, M\)-ES

e 2. IS the (A + 1 — k)th order statistic of a sample of )\ independent,
standard normally distributed random variables

Blok] = <= [ e REP Tt - s

o for large A,

c1a X v/ 2log A

=- the growth of the progress rate
with \ is very slow ’

H.-G. Beyer, 2001. The Theory of Evolu-
tion Strategies, Springer.
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Noisy Line Model: The (1, \)-ES
e sources of noise in real-world problems:
— inaccurate measurements
— Monte Carlo methods

— subjective selection

e noisy fitness: f.(x) = f(x) + ocz.

e progress rate:

0C1,\

PLAT o2

= larger steps reduce the noise-to-signal ratio by amplifying the
signal
DALHOUS[E

UNIVERSITY

v = o./0: noise-to-signal ratio
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Line Model: The (i, \)-ES
e (1, N\)-ES: short for (/1, A\)-ES; no recombination

e problem: the distribution of the population in search space needs to
be modelled

e progress rate:

Pu,x = 0Cu, A
e it can be shownthatc, \ < c; ) foranyp

= keeping any but the best offspring
deteriorates performance

H.-G. Beyer, 1995. “Toward a theory of evolution
strategies: The (u, \)-theory”, Evolutionary Comp-
utation, 2(4):381-407.

DALHOUSIE

UNIVERSITY

17



Line Model: The (i, \)-ES
e (1, N\)-ES: short for (/1, A\)-ES; no recombination

e problem: the distribution of the population in search space needs to
be modelled

e progress rate:
Pu,x = 0Cu, A
e it can be shownthatc, \ < c; ) foranyp

= keeping any but the best offspring
deteriorates performance

H.-G. Beyer, 1995. “Toward a theory of evolution
strategies: The (u, \)-theory”, Evolutionary Comp-
utation, 2(4):381-407.

DALHOUSIE

UNIVERSITY

17



Line Model: The (i, \)-ES
e (1, N\)-ES: short for (/1, A\)-ES; no recombination

e problem: the distribution of the population in search space needs to
be modelled

e progress rate:

Pu,x = 0Cu, A
e it can be shownthatc, \ < c; ) foranyp

= keeping any but the best offspring
deteriorates performance

H.-G. Beyer, 1995. “Toward a theory of evolution
strategies: The (u, \)-theory”, Evolutionary Comp-
utation, 2(4):381-407.

DALHOUSIE

UNIVERSITY

17



Line Model: The (i, \)-ES
e (1, N\)-ES: short for (/1, A\)-ES; no recombination

e problem: the distribution of the population in search space needs to
be modelled

e progress rate:

Pu,x = 0Cu, A
e it can be shownthatc, \ < c; ) foranyp

= keeping any but the best offspring
deteriorates performance

H.-G. Beyer, 1995. “Toward a theory of evolution
strategies: The (u, \)-theory”, Evolutionary Comp-
utation, 2(4):381-407.

DALHOUSIE

UNIVERSITY

17



Line Model: The (i, \)-ES
e (1, N\)-ES: short for (/1, A\)-ES; no recombination

e problem: the distribution of the population in search space needs to
be modelled

e progress rate:
Pu,x = 0Cu, A
e it can be shownthatc, \ < c; ) foranyp

= keeping any but the best offspring
deteriorates performance

H.-G. Beyer, 1995. “Toward a theory of evolution
strategies: The (u, \)-theory”, Evolutionary Comp-
utation, 2(4):381-407.

DALHOUSIE

UNIVERSITY

17



Line Model: The (i, \)-ES
e (1, N\)-ES: short for (/1, A\)-ES; no recombination

e problem: the distribution of the population in search space needs to
be modelled

e progress rate:

Pu,x = 0Cu, A
e it can be shownthatc, \ < c; ) foranyp

= keeping any but the best offspring
deteriorates performance

H.-G. Beyer, 1995. “Toward a theory of evolution
strategies: The (u, \)-theory”, Evolutionary Comp-
utation, 2(4):381-407.

DALHOUSIE

UNIVERSITY

17



Line Model: The (i, \)-ES
e (1, N\)-ES: short for (/1, A\)-ES; no recombination

e problem: the distribution of the population in search space needs to
be modelled

e progress rate:

Pu,x = 0Cu, A
e it can be shownthatc, \ < c; ) foranyp

= keeping any but the best offspring
deteriorates performance

H.-G. Beyer, 1995. “Toward a theory of evolution
strategies: The (u, \)-theory”, Evolutionary Comp-
utation, 2(4):381-407.

DALHOUSIE

UNIVERSITY

17



Noisy Line Model: The (i, \)-ES

2.5

e the signal strength is Vo2 + D2, 7lo=0.0 —
where D? is the variance of the .ol slo=50 — |
population 2

% 1.5 |

e D is proportional to o and In- g I

creases with increasing p S

. . . 0.5 f{
=- increasing the size of the pop-
ulation decreases the noise-to- 0.0

. | t 0 2IO 4IO 6IO 8IO 100
Slgna ralio size .. of the parental population

D. V. Arnold and H.-G. Beyer, 2001. “Investigation of the (u, A\)-ES in the presence of
noise”, 2001 IEEE Congress on Evolutionary Computation, pp. 332-339.

D. V. Arnold and H.-G. Beyer, 2003. “On the benefits of populations for noisy optimi-
zation”, Evolutionary Computation, 11(2):111-127.
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Line Model: The (u/u, \)-ES

o (u/u, N\)-ES: recombination of p = p parents contracts the population

to a point

v
o
H k=1

e progress rate:

P/ = TCu/ N

¢ in the presence of noise:

OCu/pu,\

M
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Line Model: The (u/u, \)-ES

e (u/u, \)-progress coefficient:

cumn =52 () [z @@ - e

i) J o

e ingeneral, ¢,/ < cur < cin

H.-G. Beyer, 1995. “Toward a theory of
evolution strategies: On the benefit of
sex — the (u/p, A)-theory”, Evolutionary
Computation, 3(1):81-111.
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3.0

g
o
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=
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T

0.0

0.0 0.2 0.4 0.6 0.8
truncation ratio p/\

1.0
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The Sphere Model (1)

e sphere model: minimise

e assume that N is large

|. Rechenberg, 1994. Evolutionsstrategie ‘94, Frommann-Holzboog.
H.-G. Beyer, 2001. The Theory of Evolution Strategies, Springer.

D. V. Arnold, 2002. Noisy Optimization with Evolution Strategies, Kluwer.
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The Sphere Model (2)

e consider candidate solution

y =X+ 0z

e fitness:

fly)=r°
= (R —o0z4)" + 0°||z]"
= R* —2Roza + o°||z|*
= f(x) — 2Roz4 + 0°||z|?

0zg \

e 02|z||* deteriorates fitness, limiting
useful mutation strengths

DALHOUSIE
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The Sphere Model (3)

10.0 - . .
e if z is a mutation vector, then N
80 | /\ N=1000 ——
1. z4 is standard normally dis- 2 |
tributed § 60 x
. _— z A
2. ||z||* is x4-distributed 2 40} | |
g_ AN
e the x3,-distribution has mean 207 lf",' \ '
N and standard deviation v2N . R

0.0 0.5 1.0 15 2.0
normalised sauared lenath IIzII2/N

e the coefficient of variation of the x4 -distribution tends to zero as NV
Increases

= for the range of mutation strengths of interest and large enough
N, ||z||? can be replaced with N
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The Sphere Model (4)

e Offspring fitness:

f(y) = f(x) —2Roz4 + No?

e with normalised mutation strength
c* =oN/R:

logarithm of function value

fly) = f(x) [1_%(0*%_0;2)] S

e evolution strategies converge linearly on the sphere model provided
that the mutation strength is adapted properly

e the rate of convergence is inversely proportional to NV

DALHOUSIE
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Sphere Model: The (1 + 1)-ES

e progress rate (Rechenberg, 1973):

*2 *
. of  _1.x2 O o
fla= - [1-e ()

e success probability:

0.25
o* @ i
Poyee =1 =0 | — 90.20
2 2
S 015}
o
. , 8 o010l
e maximal progress rate: .
5 005 |
0.00 ——L ' ' —
0.001 0.01 0.1 1 10 100
at mutation Strength O'* — 1 224 normalised mutation strength
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Sphere Model: The (1 + 1)-ES

0.5 .
e 1/5th success rule (Rechenberg, 1973): _ \
£ 04
Decrease the mutation strength if the S o3l
percentage of successful mutations is 2 02l AN
below one fifth; increase it if it is above. 5 .l L
_ _ . 0.0 T —
e simple implementation: DORSTGE 2.0 SR 0
normalised mutation strength
1/N 0.25
L _ )2 / on success g
2-0-25/N " otherwise 3 O TN
S 015 \
g 010t / \
S. Kern et al., 2004. “Learning probability distribu- g (05 \l
tions in continuous evolutionary algorithms —a com- 2 000 /o

parative review”, Natural Computing, 3:77-112. 00 01 02 03 04 05
success probability
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Sphere Model: The (1, M)-ES

e progress rate (Rechenberg, 1984): L, 60 aog —
@ A=40 —
) @ 40 A=4 —
o* >
PIA=0 CLx — —5~ = 20
2 3
FolN
S
' : = 20 -
e optimal progress rate: 0 20 40 60 80
normalised mutation strength
C% A
Pl = 5" o log A ;O
| g owl
at mutation strength o* = ¢; 5 | e
2 005
o the (1,))-ES is less efficient than the £
simple (1JT1)-ES unless offspring can be 000 T 20 30 40
evaluated in parallel number of offspring
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Noisy Sphere Model: The (1, M)-ES

e assume noise of strength o.(x)

proportional to R?
0.6

7.,=0.0 —
0.,=1.0 —
o, =2.0 —

e progress rate (Beyer, 1993):

04 r

AT AR /\
where ¥ = ¢/c* is the noise- >
to-signal ratio o s .

0 0.5 1 1.5 2 25
normalised mutation strength

normalised progress rate

e averaging over multiple fitness
evaluations reduces the noise
strength, but is expensive
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Noisy Sphere Model: Rescaled Mutations

e (1, \)-ES with rescaled mutations: 0.6
— generate and evaluate offspring g Ll
Yi = x) KOZ; 2))
— then let % 02}
x(D) = x) 4 oz é -
e progress rate: -
« o Cy A o+ 02

g

T I+ o/ ()2 2

==
coo|

e N
UL

JRNA

0

0.5 1 15 2

normalised mutation strength

|. Rechenberg, 1994. Evolutionsstrategie 94, Frommann-Holzboog.

2.5

H.-G. Beyer, 1998. “Mutate large, but inherit small! On the analysis of rescaled muta-
tions in (1, X\)-ES with noisy fitness data”, Parallel Problem Solving from Nature, 5,

pp. 109-118, Springer.
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Mutative Self-Adaptation

e every candidate solution carries its own set of strategy parameters

— mutation:
o; = oW exp(TN(0,1))

yi =x" + 0;2;

— selection:

St — 1

x (1) — Y1

e have a competition of strategic ideas; a “good” set of strategy param-
eters increases the chance of generating a good set of object param-
eters and is thus likely to prevail under selection

S. Meyer-Nieberg and H.-G. Beyer, 2007. “Self-adaptation in evolutionary algorithms”,

in F. Lobo et al. (eds.), Parameter Setting in Evolutionary Algorithms, Springer.
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Hierarchically Organised Evolution Strategies

e problems with mutative self-adaptation:
— selection of strategy parameters is indirect and noisy

— rewarding short-term success may be shortsighted

e hierarchically organised ES “try out” strategy parameter settings for
longer periods of time

=- evolve several populations in isolation from each other; compare
their relative success after a number of time steps

M. Herdy, 1992. “Reproductive isolation as strategy parameter in hierarchically organ-
ized evolution strategies”, Parallel Problem Solving from Nature, 2, pp. 207-217,
Elsevier.

D. V. Arnold and A. MacLeod, 2006. “Hierarchically organised evolution strategies on
the parabolic ridge”, Genetic and Evolutionary Computation Conference — GECCO

2006, pp. 437-444.
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Sphere Model: The (u/u, A\)-ES

e progress rate (Rechenberg, 1994):

*2
* * o
© =0 C AT A
YT /1 21
e maximal progress rate:
2
* e/
Pu/ux = o  FH

at mutation strength o* = puc, /., »

e the maximal (serial!) efficiency is asymp-
totically equal to that of the (1 + 1)-ES

DALHOUSIE
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normalised progress rate

progress per offspring

5.0

4.0 r
3.0 r
20
10 ¢
0.0

i
~
>
—_

77

= CO O]

\

-1.0
0.0

\ L\

8.0

12.0

normalised mutation strength

0.3 .
A=24
=4y
A=8u
0'2 kX X XXX XX X
TS A
0.1
0'0 1 1 1
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population size
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Sphere Model: The (u/u, A\)-ES

e the components toward the optimum of the selected mutation vectors
are correlated, the other components are not

e consider vector

/ ,(avg) _ 1 i -

o
optimum k=1

e the length of the “harmful”
components of the muta-
tion vectors is reduced

e the purpose of recombina-
tion is similarity extraction;

N = “genetic repair principle”
Y (Beyer, 1995)
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Noisy Sphere Model

e progress rate in the presence of

noise:

* *2
O Cujux O

qu/u,/\:m 2

where v = o¢*/o* is the noise-to-
signal ratio

e the larger mutation strengths (com-
pared to the (1, A)-ES) reduce o

e the (u/u, N\)-ES implicitly rescales
mutation vectors

: The (u/p, A)-ES

4.0

=1, \=4 —
=2, \=8 —

o I =4, \=16 —

£ 3.0

wn

o

S 20

S

o

o

g 10¢

S

£

2 00 \ \

1.0 ' '
0.0 4.0 8.0 12.0

normalised mutation strength

D. V. Arnold and H.-G. Beyer, 2000. “Local performance of the (u./u, A)-ES in a noisy
environment”, Foundations of Genetic Algorithms, 6, pp. 127-141.
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Sphere Model: Optimally Weighted Recombination

weighted recombination: replace 2.0 -
A=25 ——
v ‘ A=10
1 \
X = - Z Xk 0 b
Z
with A 2
X = Z WX\
k=1
for maximal progress, choose 2000 02 04 06 08 10
Wi X E[Zk;A] normalised rank (k-1)/(\-1)

the proportionality constant determines the amount of implicit re-
scaling; the speed-up is 2.5-fold

D. V. Arnold, 2006. “Weighted multirecombination evolution strategies”, Theoretical
Computer Science, 361(1):18-37.
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Cumulative Step Length Adaptation (1)

positive correlations negative correlations

e postulate: consecutive
steps of the strategy
should be uncorrelated

e If consecutive steps are positively correlated, then the step length
should be increased

e if consecutive steps are negatively correlated, then the step length
should be decreased

A. Ostermeier, A. Gawelczyk, and N. Hansen, 1994. “Step-size adaptation based
on non-local use of selection information”, Parallel Problem Solving from Nature, 3,
pp. 189-198, Springer.
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Cumulative Step Length Adaptation (2)

e in order to detect correlations, information from a number of steps
needs to be accumulated

= (for the (u/u, A)-ES) define the search path

st = (1 — ¢)s™® + \/pue(2 — ¢)z@9)

e under random selection, the expected squared length of the search
path is N

e the step length is updated according to

(t+1)(12 _ N
5t — () exp (HS || >

2DN
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Cumulative Step Length Adaptation (3)

e Oon the noisy sphere, cumulative step
length adaptation generates

* \/2 ( o )
O = UCpu/pu N — | —
p/ HCp

and achieves progress rate

* \/i_l 2 O-: ’
o= | 2

2 HCu/ N

D. V. Arnold and H.-G. Beyer, 2004. “Performance
analysis of evolutionary optimization with cumulative
step length adaptation”, /IEEE Transactions on Auto-
matic Control, 49(4):617-622.

UNIVERSITY
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Comparison of Strategies (1)

Direct Pattern Search: (Hooke and Jeeves, 1961) precursor of many
direct search strategies

Multi-Directional Search: (Torczon, 1989) successor of Nelder and
Mead’s simplex method, the most popular strategy for noisy optimi-
sation

Implicit Filtering: (Gilmore and Kelley, 1995) gradient strategy using
finite differencing and Armijo line searches; designed for noisy optimi-
sation

Evolution Strategy: (u/u, A)-ES with cumulative step length adapta-
tion and various population sizes

D. V. Arnold and H.-G. Beyer, 2003. “A comparison of evolution strategies with other
direct search methods in the presence of noise”, Computational Optimization and
Applications, 24(1):135-1509.
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0.15

Comparison of Strategies (2)

0.10

0.05

normalised progress per offspring

0.00 \\

N=40

ES -+
HJ x
MDS =
IF =

(12/12,40)

0.0

2.0

4.0

6.0 8.0

normalised noise strength

normalised progress per offspring

0.15

0.10 |

0.05 |

0.00

ES -
N=400 HJ
MDS =x
(6/6,20) IF =
(12/12,40)
(24/24,80)

0.0

4.0 8.0
normalised noise strength

120 16.0 20.0

e incomplete graphs result from failure to achieve linear convergence

e larger populations buy robustness at the price of efficiency

e sirengths of ES: genetic repair and relatively robust step length

adaptation
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Ridge Model

e ridge model:

A. I. Oyman, H.-G. Beyer, and H.-P. Schwefel, 1998. “Where elitists start limping:
Evolution strategies at ridge functions”, Parallel Problem Solving from Nature, 5,
pp. 109-118, Springer.

D. V. Arnold and A. MacLeod, 2006. “Step length adaptation on ridge functions”,
Technical Report CS-2006-08, Faculty of Computer Science, Dalhousie University.
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Convex Quadratic Functions (1)

e convex quadratic functions:

N
f(x) =) (aiz;)?
1=1
e Hessian matrix:
202 0 - 0
- 0 2a3% --- 0
0 o .- 2a?\,

e condition number: amax/Amin

e for strategies that are not rotationally invariant, the coordinate system

should be rotated
DALHOUSIE
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Convex Quadratic Functions (2)

e examples of convex quadratic functions:
N
feigar(x) = 27 + ) (1000z;)?
1=2

N
faiscus(x) = (1000z1)* + > ~ a7
1=2

N

: 2
1=1
[N/2]
fiwoaxes (X Z ZC + Z 100033z

[N/2]+1
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Convex Quadratic Functions (3)

e performance of the (1+1)-ES using isotropically distributed mutations
(Jagerskupper, 2006):

— if the condition number is O(1), the number of steps needed to
reduce the approximation error to a 2~ °-fraction is ©(bN)

— for fiwoaxes With condition number ¢ polynomially bounded in N
such that 1/¢ — 0 as N — oo, the number of steps is O(bEN)

e similar results hold for the (u/u, A)-ES with cumulative step length
adaptation (Arnold, 2007)

J. Jagerskipper, 2006. “How the (1 + 1)-ES using isotropic mutations minimizes
positive definite quadratic forms”, Theoretical Computer Science, 361(1):38-56.

D. V. Arnold, 2007. “On the use of evolution strategies for optimising certain posi-
tive definite quadratic forms”, Genetic and Evolutionary Computation Conference —
GECCO 2007.
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Nonisotropically Distributed Mutations

e nonisotropic mutation distributions can be
vastly more efficient than isotropic ones

e ideally, the mutation covariance matrix should
be proportional to the inverse of the local
Hessian of the objective

H.-P. Schwefel, 1981. Numerical Optimization of Compu-
ter Models, Wiley.

G. Rudolph, 1992. “On correlated mutations in evolution
strategies”, Parallel Problem Solving from Nature, 2,
pp. 105-114, Elsevier.
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Covariance Matrix Adaptation (1)

e the CMA-ES adapts the mutation covariance matrix based on
information gathered in past steps (Hansen and Ostermeier, 2001)

— variances in directions that have previously been successful are
increased

— other variances decay over time

e the strategy is rotationally invariant

N. Hansen and A. Ostermeier, 2001. “Completely derandomized self-adaptation in
evolution strategies”, Evolutionary Computation, 9(2):159-195.

N. Hansen, 2005. “The CMA evolution strategy: A tutorial”,
http://www.bionik.tu-berlin.de/user/niko/cmatutorial.pdf.
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Covariance Matrix Adaptation Evolution Strategy (1)
e state variables of the (u/u, A\)-CMA-ES: x, o, C, s,, sc

e in every iteration:

1. Compute an eigen decomposition C = BD(BD)?.
2. Generate )\ offspring y;, = x + cBDz;.
3. Compute the mean of the u best offspring

1 24
Z<an) — Z Zk,)\
H k=1
4. Update the search point
X «— x + cBDz@9)

5. Update s, and sc.
6. Update C and o.

UNIVERSITY
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Covariance Matrix Adaptation Evolution Strategy (2)

e update of the search paths:

Sg — (1 = ¢5)Se + V/ 11¢o (2 — ¢5) Bz@9)
SC (1 — Cc>SC + \//LCC(Z — Cc)BDZ(an)

e update of the step length:

Isoll* — N)

o Haexp< S DN

e update of the covariance matrix:
C (1 — Ccov)C + CcovSCSg

® c,, cc, and cqo, determine how quickly old information fades

DALHOUSIE
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Covariance Matrix Adaptation Evolution Strategy (3)

e better use can be made of large populations by using covariance
matrix update

C «— (1 — ccov)C + ccov (&COVSCSE + (1 — OCCOV)Z)

where
v

1
Z = BD ( > zk;Azg.A> (BD)T
M )

k=1

e ccov Can be chosen larger (roughly by a factor of ) than for the
previous update rule

e oy Weights the path-based and population-based contributions

N. Hansen, S. D. Muller, and P. Koumoutsakos, 2003. “Reducing the time complexity
of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES)”,

Evolutionary Computation, 11(1):1-18.
DALHOUSIE

UNIVERSITY

49



Covariance Matrix Adaptation Evolution Strategy (4)

performance on fgliipsoid With N = 10

small population (1 = 2, A = 8):

107 fr——————

10°

10° |

10—10

1o5o|ii
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large population (i = 10, A = 40):

10°

10° &

10° |

10710
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Active Covariance Matrix Adaptation (1)

e idea: use information not only from successful, but also from unsuc-
cessful offspring

=- actively decrease variances in directions that repeatedly yield bad
offspring

e New update rule:
C (1 — Ccov)C =+ CcovSCSg + BZ

where

1 <& -
Z=BD |- zipzin—— Y zmazi, | (BD)T
’ukzzl ILLI{::A—,LL‘Fl

G. A. Jastrebski and D. V. Arnold, 2006. “Improving evolution strategies through active
covariance matrix adaptation”, Proc. IEEE Congress on Evolutionary Computation,
pp. 9719-9726.
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Active Covariance Matrix Adaptation (2)

e performance across a set of test functions (/N = 10)

small population (u = 2, A

1600
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generations
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0
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Active Covariance Matrix Adaptation (3)

e dependence on N

e test function: fellipsoid

|
00
N

small population (u = 2, A large population (u = N, A = 4N):

— - - (2/2,8)-Original-CMA-ES B — - - (n/n,4n)-Original-CMA-E§ - .-
—+ (2/2,8)-Hybrid-CMA-ES | - v g (n/n,4n)-Hybrid—-CMA-ES |- - :
— + (2/2,8)-Active-CMA-ES | - * (n/n,4n)-Active-CMA-ES | P
104 L B B B N B 104 L - - - - - B 2
2] 0 -
[ c
2 S
© @
£ 10°p 2 10°F
(] (]
(@] (@]
102 B 102 |-
10° 10" 10° 10° 10" 10°
dimension dimension
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(1+ 1)-CMA-ES
e the eigen decomposition is computationally expensive for large N

o for the (1 + 1)-CMA-ES,

— the mutation strength can be controlled using the 1/5th rule

— matrix A = BD can be updated directly, with no need to decom-
pose the covariance matrix

e for multimodal (and presumably for noisy) functions, the longer steps
of the (u/u, A)-CMA-ES are advantageous

C. Igel, T. Suttorp, and N. Hansen, 2006. “A computational efficient covariance
matrix update and a (1+1)-CMA for evolution strategies”, Genetic and Evolutionary
Computation Conference — GECCO 2006, pp. 453-460.
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Differential Evolution

e mutation (DE/rand/1): randomly pick ¢ #

j # k and let ¢
y =x; + k(x; — x) o
= the step length is determined by the .
diversity of the population e
e the rate at which diversity decreases is /
influenced by the population size, the re- %

placement mechanism, and the factor k o

e adaptive variants exist

K. V. Price, R. Storn, and J. Lampinen, 2005. Differential Evolution — A Practical
Approach to Global Optimization, Springer.
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PCX — Parent Centric Recombination

e assume wlog that x; has been picked as
parent; compute

m
y =X1+0121d; + U2Dzziez’
i=2

where x is the population centroid, d; =
x; — X, e; IS the normalised vector con-
sisting of those components of d; that are
perpendicular to x;, and D is the average
distance of the x; from the line through x
and X1

K. Deb, A. Anand, and D. Joshi, 2002. “A computationally efficient evolutionary
algorithm for real-parameter optimization”, Evolutionary Computation, 10(4):371-395.
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Summary and Further Topics

topics covered:
e evolution strategies:
— benefits of populations and recombination
— coping with noise
e step length adaptation: success rate based; mutative; cumulative
e covariance matrix adaptation: passive and active; alternative ap-
proaches
further topics:

e multimodal problems: restart strategies; niching methods; spatially
organised populations

e constraint handling techniques
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