

### FUZZ-IEEE 2007

# IEEE International Conference on Fuzzy Systems

### **Tutorial 3: Fuzzy Reinforcement Learning**









#### **Fuzzy Reinforcement Learning**

A Tutorial
Presented by
Dr. Hamid Berenji
FUZZ-IEEE07, London



#### **Outline**

- Reinforcement Learning
- 2. Dynamic Programming
- 3. Monte Carlo Methods
- 4. Temporal Difference
- 5. Function Approximation
- 6. Fuzzy Reinforcement Learning
- 7. GARIC Architecture
- 8. FQ Learning
- Co evolutionary Learning
- 10. Conclusion



### Learning Methods

- Supervised Learning, Reinforcement Learning, Unsupervised Learning
- In supervised learning, a teacher provides the desired control objective at each time step
- In reinforcement learning, the teacher's response is not as direct, immediate, and informative as in supervised learning
- The presence of a supervisor to provide the correct response is not assumed in unsupervised learning



### Reinforcement Learning

- What is it?
  - Learning by interaction with the environment
  - Is learning what to do
  - How to map situations to actions



### Reinforcement Learning basics

- Has its roots in animal learning
- Draws upon many insights from the fields of control theory, operations research, neural networks, and artificial intelligence



### Reinforcement Learning basics

- A policy is a decision making function which specifies what action to take in each situation
- A policy may be stochastic
- A reward function maps the state to a reward and the goal of the agent is to maximize this reward over the long run



### Reinforcement Learning basics

- A value function determines the expected reward in the long run
- The value of a state is the sum of the rewards that it collects over long run or expects to accumulate in the future starting from that state
- A state may receive a low immediate reward but be of high value because it is often followed by states which receive high rewards



### Reinforcement Learning Basics Boltzmann distribution

Boltzmann distribution:

$$\pi_{t+1}(a_i) = \frac{e^{Q_t(a_i)/T}}{\sum_{i=1}^{m} e^{Q_t(a_i)/T}}$$

where  $\pi_{t+1}(a_i)$  is the probability of selecting action  $a_i$  in the next time step,

- T is called a temperature parameter where the high values of T will make actions more equi-probable and low values will lead to a more selective policy,
- m is the number of actions available to the agent at time t+1



### Reinforcement Learning Basics Reward functions

- Maximize the expected return.
- For processes which always end in a final time step such as in games, this reward will be

$$r_t = r_{t+1} + r_{t+2} + \cdots + r_T$$

where T is the final time step.

■ For infinite-horizon problems, T =∞ and hence the expected reward can become infinite.



### Reinforcement Learning Basics Reward functions (Cont..)

 This problem is solved in reinforcement learning by calculating a discounted reward

$$r_t = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots = \sum_{j=0}^{\infty} \gamma^j r_{t+j+1},$$
  
where  $\gamma$  is the discount rate and  $0 \le \gamma \le 1$ 

- If  $\gamma=0$ , then the agent is concerned with only maximizing the immediate rewards ( $\gamma_{\ell+1}$ ).
- $\,\blacksquare\,$  As  $\gamma\,$  gets closer to 1, then the agent considers future rewards more strongly.



### Reinforcement Learning Basics Action values

 The action value of taking action a in state s using policy π is defined

$$Q^{\pi}(s,a) = E_{\pi} \left\{ \sum_{j=0}^{\infty} \gamma^{j} r_{t+j+1} \middle| s_{t} = s, a_{t} = a \right\}$$

where  $Q^{\tau}$  is the action-value function for policy  $\pi$  .



# Reinforcement Learning basics greedy methods

- Keep an estimate of values for different actions and always select the action with the highest action value
- A greedy method only exploits its environment and does not explore
- RL methods work best when one keeps a delicate balance between exploration and exploitation



### Elements of Reinforcement Learning

- Policy: Way of behaving at a given time
- Reward function: defines the goal
- Value function: what is good in the long run.
- Model of environment: mimics the behavior of the environment.



### Reward function vs. Value function

- We seek actions that bring about states of highest value, not highest reward
- Because these actions obtain the greatest amount of reward for us over the long run.



### Exploration vs. Exploitation

- Exploitation: always select actions that result in highest state values
- Exploration: once in awhile, select nonmax actions to allow exploring for higher values
- Softmax action selection



### Solving full Reinforcement Learning

- Dynamic Programming
- Monte Carlo Method
- Temporal Difference Learning
- A Unified View



### **Dynamic Programming**



Agent-environment interaction

### Reinforcement Learning Basics Bellman equations

$$\begin{split} & \mathbf{V}^{\pi} = E_{\pi} \left\{ \sum_{j=0}^{\infty} \gamma^{j} r_{t+j+1} \right\} \\ & = E_{\pi} \left\{ r_{t+1} + \gamma \sum_{j=0}^{\infty} \gamma^{j} r_{t+j+2} \right\} \\ & = \sum_{a} \pi(s, a) \sum_{s'} P_{ss'}^{a} \left[ R_{ss'}^{a} + \gamma \mathcal{E}_{\pi} \left\{ \gamma^{j} r_{t+j+2} \right\} \right] \\ & = \sum_{a} \pi(s, a) \sum_{s'} P_{ss'}^{a} \left[ R_{ss'}^{a} + \gamma \mathcal{E}_{\pi} \left\{ \gamma^{j} r_{t+j+2} \right\} \right] \end{split}$$

where  $P^{s}_{s'}$  represents the probability of reaching state s' while taking action a in state s and  $R^{s}_{ss'}$  is its associated return.

Requires a complete environment model.

#### Finite State DP





### Markov Property

$$P_r \left\{ s_{t+1} = s', r_{t+1} = r | s_t, a_t, r_t, s_{t-1}, a_{t-1}, \dots, r_1, s_0, a_0 \right\}$$

$$P_r \{ s_{t+1} = s', r_{t+1} = r | s_t, a_t \}$$

### **Dynamic Programming**

$$V^{\pi}(s) = E_{\pi} \left\{ R_{t} \middle| s_{t} = s \right\} = E_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1} \middle| s_{t} = s \right\}$$

State-Value function for Policy  $\pi$ 

$$V^*(s) = \max_{a} E \{ r_{t+1} + \mathcal{W}^*(s_{t+1}) | s_t = s, a_t = a \}$$

$$Q^{*}(s,a) = E\{r_{t+1} + \gamma \max Q^{*}(s_{t+1}, a') | s_{t} = s, a_{t} = a\}$$

$$= \sum_{s'} P_{ss'}^{a} [R_{ss'}^{a} + \gamma \max Q^{*}(s', a')]$$



### **Dynamic Programming**

$$\overrightarrow{V}^{\pi}(s) = E_{\pi} \left\{ r_{t+1} + \mathcal{Y}_{t+2} + \gamma^{2} r_{t+3} + \cdots \middle| s_{t} = s \right\} 
= E_{\pi} \left\{ r_{t+1} + \mathcal{W}^{\pi}(s_{t+1}) \middle| s_{t} = s \right\} 
= \sum_{a} \pi(s, a) \sum_{s'} P_{ss'}^{a} \left[ R_{ss'}^{a} + \mathcal{W}^{\pi}(s') \right]$$

$$\begin{aligned} V_{k+1}(s) &= E_{\pi} \left\{ r_{t+1} + \mathcal{W}_{k}(s_{t+1}) \middle| s_{t} = s \right\} \\ &= \sum_{a} \pi(s, a) \sum_{s'} P_{ss'}^{a} \left[ R_{ss'}^{a} + \mathcal{W}_{k}(s') \right] \end{aligned}$$



### **Policy Evaluation**

Input  $\pi$ , the policy to be evaluated Initialize V(s) = 0, for all  $s \in S^+$ 

Repeat

 $\Delta \leftarrow 0$ 

for each  $s \in S$ :  $v \in V(s)$ 

 $V(s) \leftarrow \sum \pi(s, a) \sum P_{ss'}^{a} \left[ R_{ss'}^{a} + \mathcal{W}(s') \right]$ 

 $\Delta \leftarrow \max^{a}(\Delta, |v - V(s)|)$ 

until  $\Delta < \theta$  (a small positive number)

output  $V \approx V$ 

 $Q^{\pi}(s,a) = E_{\pi} \Big\{ r_{t+1} + \mathcal{W}^*(s_{t+1}) \big| s_t = s, a_t = a \Big\}$  $= \sum_{s,s'} P_{ss'}^a R_{ss'}^a \Big[ R_{ss'}^a + \mathcal{W}^*(s') \Big]$ 



### **Policy Improvement**

Initialize V arbitrarily, e.g., V(s) = 0, for all  $s \in S^+$ 

Repeat

 $\Delta \leftarrow 0$ 

for each  $s \in S$ :

 $v \in V(s)$ 

 $V(s) \leftarrow \max \sum P_{ss'}^a \left[ R_{ss'}^a + \mathcal{W}(s') \right]$ 

 $\Delta \leftarrow \max(\Delta, |v - V(s)|)$ 

until  $\Delta < \theta$  (a small positive number) output a deterministic policy  $\pi$  such that

 $\pi(s) = \arg\max_{a} \sum_{s'} P_{ss'}^{a} \left[ R_{ss'}^{a} + \mathcal{W}(s') \right]$ 



#### Monte Carlo Methods

- Any estimation method whose operation involves a significant random component.
- Based on averaging complete returns
- Ideas carry over from DP, they both compute the same value functions



### Reinforcement Learning Basics Monte Carlo method

- Estimate value functions  $V^{\pi}(s)$  by maintaining an average for all the actual returns that have followed the state since the policy  $\pi$ .
- Similarly, maintain an average for all the occasions that action a has been tried when visiting state s and it will converge to the true action value  $Q^{\pi}(s, a)$ .
- Problem: not practical in large problems with many states and actions



### First-Visit MC method for estimating $V^{\pi}$

Initialize

 $\pi \leftarrow$  Policy to be evaluated  $V \leftarrow$  an arbitrary state-value function Returns(s)  $\leftarrow$  an empty list, for all  $s \in S$  Repeat forever:

- (a) Generate an episode using  $\pi$
- (b) For each state s appearing in the episode

 $R \leftarrow$  return following the first occurrence of s Append R to Returns(s)  $V(s) \leftarrow$  Average (Returns(s))



### Temporal Difference (TD) Learning

- Learns from experience without a need for a model.
- Similar to dynamic programming, TD methods update their estimates based on other learned estimates.
- Unlike Monte Carlo methods, TD methods do not have to wait until the end of a trial to update their estimates.
- TD methods learn by the following update  $\Delta V_i(s_i) = \alpha \big[r_{i+1} + \mathcal{W}_i(s_{i+1}) V_i(s_i)\big]$  where  $\alpha$  is a step size parameter



# Temporal Difference Learning and Sarsa

- In order to apply TD methods in control, one has to learn an action-value function  $Q^{\pi}(s,a)$  instead of a state-value function  $V^{\pi}(s)$ .
- $\Delta Q_{t}(s_{t}, a_{t}) = \alpha [r_{t+1} + \gamma Q_{t}(s_{t+1}, a_{t+1}) Q_{t}(s_{t}, a_{t})]$
- Sarsa: quintuple  $(s_y, a_y, r_{t+1}, s_{t+1}, a_{t+1})$  for transition form one state-action pair to the next.
- Sarsa is an on-policy control algorithm which continually estimate Q<sup>π</sup> for the behavior policy π.



### Tabular TD(0) for estimating

Initialize V(s) arbitrarily,  $\pi$  the policy to be evaluated

Repeat (for each episode):

Initialize s

Repeat (for each step of episode):

 $a \leftarrow$  action given by  $\pi$  for s

 $V^*(s) = V(s) + \alpha [r + \mathcal{W}(s') - V(s)]$ 

Take action  $a_r$ , observe reward r, and next state s'

 $s \leftarrow s$ 

until cis terminal



- e(s) is the state's eligibility
- $e(s) = \lambda^k$  where k is the number of steps since s was visited



### Q-Learning

- Introduced by Watkins for Reinforcement Learning.
- Q-learning maintains an estimates Q(x,a) of the values of taking action a in state x and continuing with the optimal policy after a new state is reached.
- The values of a state can be defined as the value of the state's best state-action pair:

$$V(x) = Max_a Q(x, a)$$



|                                 | Elapsed Time | Predicated<br>Time to Go | Predicated<br>Total Time |
|---------------------------------|--------------|--------------------------|--------------------------|
| Leaving office,<br>Friday at 6  | 0            | 30                       | 30                       |
| Reach car, raining              | 5            | 35                       | 40                       |
| Exiting highway                 | 20           | 15                       | 35                       |
| Secondary road,<br>behind truck | 30           | 10                       | 40                       |
| Entering home street            | 40           | 3                        | 43                       |
| Arrive home                     | 43           | 0                        | 43                       |









# Generalization and Function Approximation

- Gradient Descent Methods
- Radial Basis Functions
- Coarse Coding and Tile Coding
- Linear Functions





#### **Action Selection Network**

- Layer 1: the input layer, consisting of the real-valued input variables.
- Layer 2: nodes represent possible values of linguistic variables in layer 1.
- Layer 3: conjunction of all the antecedent conditions in a rule using softmin operation.
- Layer 4: a node corresponds to a consequent label with an output
- Layer 5: nodes as output action variables where the inputs come form Layer 3 and Layer 4.



#### The Action Evaluation Network

- The AEN plays the roles of an adaptive critic element and constantly predicts reinforcements associated with different input states.
- The only information received by the AEN is the state of the physical system in terms of its state variables and whether or not a failure has occurred.
- The AEN is a standard tow-layer feedforward net with sigmoids everywhere except in the output layer.



# The Action Evaluation Network (Cont..)

■ The output unit of the evaluation network:

$$v[t,t+1] = \sum_{i=1}^{n} b_i[t]x_i[t+1] + \sum_{i=1}^{h} c_i[t]y_i[t+1]$$
  
where  $\nu$  is the prediction of reinforcement.

Evaluation of the recommended action:

$$\hat{r}[t+1] = \begin{cases} 0 & \text{start;} \\ r[t+1] - v[t,t] & \text{failure;} \\ t[t+1] + \gamma v[t,t+1] - v[t,t] & \text{else} \end{cases}$$

where  $0 \le \gamma \le 1$  is the discount rate.



### Learning in ASN

We use the following learning rule

$$\Delta p = \eta \frac{\partial v}{\partial p} = \eta \frac{\partial v}{\partial F} \frac{\partial F}{\partial p}$$

■ We assume that ∂v∂Fcan be computed by the instantaneous difference ratio

$$\frac{\partial v}{\partial p} \approx \frac{dv}{dF} \approx \frac{v(t) - v(t-1)}{F(t) - F(t-1)}$$



# Rule strength calculation using softmin operator

■ Using the softmin, the strength of Rule 1 is:

$$w_{1} = \frac{\mu_{A_{1}}(x_{0})e^{-k\mu_{A_{1}}(x_{0})} + \mu_{B_{1}}(y_{0})e^{-k\mu_{B_{1}}(y_{0})}}{e^{-k\mu_{A_{1}}(x_{0})} + e^{-k\mu_{B_{1}}(y_{0})}}$$

- Similarly we can find  $w_2$  for Rule 2.
- The control output of rule 1:

$$z_1 = \mu_{C_1}^{-1}(w_1),$$

and for Rule 2:

$$z_2 = \mu_{C_2}^{-1}(w_2),$$

Using a weighted averaging approach, Z₁ and Z₂ are combined to produce the combined result ★





- The \(\nu\)-value is suitably discounted and combined with the external failure signal to produce internal reinforcement  $\hat{r}$ .
- The output of the nunits in the hidden layer is:

$$y_i[t,t+1] = g(\sum_{j=1}^{j=1} a_{ij}[t]x_j[t+1])$$
  
where  $a(s) = 1$ 

and t and t+1 are successive time steps.



The output unit of the evaluation network:

$$v[t,t+1] = \sum_{i=1}^{n} b_i[t] x_i[t+1] + \sum_{i=1}^{n} c_i[t] y_i[t+1]$$

where  $\nu$  is the prediction of reinforcement.

Evaluation of the recommended action:

$$\hat{r}[t+1] = \begin{cases} 0 & \text{start;} \\ r[t+1] - v[t,t] & \text{failure;} \\ r[t+1] + \mathcal{W}[t,t+1] - v[t,t] & \text{else} \end{cases}$$

### Rule strength calculation using softmin operator

Using the softmin, the strength of Rule 1 is:

■ Using the sortmin, the strength of Rul
$$w_1 = \frac{\mu_{A_1}(x_0)e^{-k\mu_{A_1}(x_0)} + \mu_{B_1}(y_0)e^{-k\mu_{B_1}(y_0)}}{e^{-k\mu_{A_1}(x_0)} + e^{-k\mu_{B_1}(y_0)}}$$
■ Similarly we can find  $w_2$  for Rule 2.

- The control output of rule 1:

$$z_1 = \mu_{C_1}^{-1}(w_1),$$
 and for Rule 2: 
$$z_2 = \mu_{C_2}^{-1}(w_2),$$

• Using a weighted averaging approach,  $z_1$  and  $z_2$  are combined to produce the combined result  $z^*$ .



### **Fuzzy Q-Learning**



- Fuzzy Q-Learning extends Watkin's Q-learning method for decision process in which the goals and/or the constraints, but not necessarily the system under control, are fuzzy in nature.
- An example of a fuzzy constraint is: "the weight of object A must not be substantially heavier than w''where w is a specified weight. Similarly, an example of a fuzzy goal is: "the robot must be in the vicinity of door  $\hat{k}''$ .

### The GARIC-Q Architecture (Cont..)

- The FQ values are updated according to:  $\Delta FQ = \beta(r + \gamma V(y) - V(x))$
- V(x) is the value of state x and action  $a_k$ selected through a Boltzman process.
- *V(y)* is the value of the best state-agent pair defined by:  $V(y) = Max_a FQ(y, a_k)$

where k = 1 to K, is the agent number and  $a_{\nu}$ is its recommended final action.



### Reinforcement Learning Basics Markov Decision Process (MDP)



 An example of a MDP with 5 states with two goals (i.e., terminal states) where two actions a<sub>1</sub> and a<sub>2</sub> are available at each non-terminal state.



### FQ-Learning (Cont..)

 FQ is the confluence of the immediate reinforcements plus the discounted value of the next state and the constraints on performing action a in state x.

$$FQ(x,a) = E\{(r + \mathcal{W}(y)) \land \mu_{C}(x,a)\}$$

■ Update Rule:

$$\Delta FQ(x,a) \leftarrow \beta [(r + \mathcal{W}(y)) \wedge \mu_C(x,a) - FQ(x,a)]$$



# The GARIC-Q Architecture (Cont..)

- At each time step, using Fuzzy Q-Learning, GARIC-Q selects a winner among the GARIC agents and switches the control to that agent for that time step.
- The agent takes over and:
  - Calculates what action to apply using the current set of rules, within the selected agent, and their fuzzy labels.
  - Using SAM and  $\hat{r}(t-1)$  calculates a new action F'



### The GARIC-Q Architecture

- The GARIC-Q method presents an algorithm to model a society of rule bases (i.e., agents)
- Each agent operates internally with the methodology of GARIC and at the top level, using a modified Fuzzy Q-learning to select the best agent at each particular time step.



#### TD Method

- Real-time dynamic programming (Barto et al 1995)
- RTDP combines value function idea with simulation idea
- *TD*(1): Supervised training
- *TD*(0): Train for one-step
- *TD*(λ): Mixture



### Q-Learning

- The development of Q-learning by Watkins is one of the most significant breakthroughs in reinforcement learning.
- Q-learning is an off-policy TD control algorithm and uses the following update rule:

$$\Delta Q_{t}(s_{t}, a_{t}) = \alpha \left[ r_{t+1} + \gamma \max_{a} Q_{t}(s_{t+1}, a_{t}) - Q_{t}(s_{t}, a_{t}) \right]$$



#### The GARIC Architecture

- The Action Selection Network maps a state vector into a recommended action F, using fuzzy inference.
- The Actor Evaluation Network maps a state vector and a failure signal into a scalar score which indicates sate goodness. This is also used to produce internal reinforcement r̂.
- The Stochastic Action Modifier uses both F and  $\hat{r}$  to produce an action F which is applied to the plant.



### **Fuzzy Dynamic Programming**

- Developed by Bellman and Zadeh, 1970
- Goals and Constraints can be fuzzy
- Provides a symmetrical view over gorals and constraints
- Decision: Confluence of goals and constraints



### Fuzzy Q-Learning

- Introduced by Berenji in 1993 for Fuzzy Reinforcement Learning
- Fuzzy Q-Learning extends Watkin's Q-learning method for decision process in which the goals and/or the constraints, but not necessarily the system under control, are fuzzy in nature.
- An example of a fuzzy constraint is: "the weight of object A must not be substantially heavier than w' where w is a specified weight. Similarly, an example of a fuzzy goal is: "the robot must be in the vicinity of door k".



### Fuzzy Q-Learning

- FQ-learning maintains an estimate *FQ*(*x*,*a*) of the value of taking action *a* in state *x* and continuing with the optimal policy after a new state is reached.
- The value of a state can be defined as the value of the state's best state-action pair:

$$V(x) = Max_a FQ(x, a)$$



### FQ-Learning (Cont..)

■ FQ is the *confluence* of the immediate reinforcements plus the discounted value of the next state and the constraints on performing action *a* in state *x*.

$$FQ(x,a) = E\{(r + \mathcal{W}(y)) \land \mu_{C}(x,a)\}$$

■ Update Rule:

 $\Delta FQ(x,a) \leftarrow \beta [(r + \mathcal{W}(y)) \wedge \mu_c(x,a) - FQ(x,a)]$ 



### The FQ-Learning Algorithm

- Initialize FQ values
- Until FQ values converge do {
  - 1.  $x \leftarrow current state$
  - 2. Select the action with the highest FQ. If multiple exist, select randomly among them.
  - 3. Apply action, observe the new state (y) and reward (r)
  - 4. Update

 $FQ(x,a) \leftarrow FQ(x,a) + \beta [(r + \mathcal{W}(y)) \wedge \mu_C(x,a) - FQ(x,a)]$ 



### The GARIC-Q Architecture

- The GARIC-Q method presents an algorithm to model a society of rule bases (i.e., agents)
- Each agent operates internally with the methodology of GARIC and at the top level, using a modified Fuzzy Q-learning to select the best agent at each particular time step.





# The GARIC-Q Architecture (Cont..)

- At each time step, using Fuzzy Q-Learning, GARIC-Q selects a winner among the GARIC agents and switches the control to that agent for that time step.
- The agent takes over and:
  - Calculates what action to apply using the current set of rules, within the selected agent, and their fuzzy labels.
  - Using SAM and  $\hat{r}(t-1)$  calculates a new action F'



# The GARIC-Q Architecture (Cont..)

- Calculates the internal reinforcement  $\hat{r}(t)$
- Updates the weights of AEN
- Updates the parameters of the fuzzy labels in ASN
- Updates the fq values of all the rules used by the agent



## The GARIC-Q Architecture (Cont..)

- An approach similar to Glorennec's method for selecting a rule base among the competing rule bases.
- Assuming that there are K agents and each agent k has R<sub>k</sub> rules, then the total number of rules considered by the system is

$$R = \sum_{k=1}^{K} R_k.$$

•  $R_{ij}$  refers to rule number i of agent j. Associated with each rule  $R_{ij}$  is a  $fq_{ij}$  which represents the fq of rule  $R_{ij}$ .



# The GARIC-Q Architecture (Cont..)

■ The FQ value for an agent *k* is calculated from:

$$FQ_k = \frac{\sum_{i=1}^{R_k} fq_i * \alpha_i}{\sum_{i=1}^{R_k} \alpha_i}$$



### The GARIC-Q Architecture (Cont..)

- The FQ values are updated according to:  $\Delta FQ = \beta(r + \gamma V(y) - V(x))$
- V(x) is the value of state x and action  $a_{\nu}$ selected through a Boltzman process.
- V(y) is the value of the best state-agent pair defined by:  $V(y) = Max_a FQ(y, a_k)$

$$V(y) = Max_a FQ(y, a_k)$$

where k = 1 to K, is the agent number and  $a_{\nu}$ is its recommended final action.



### The GARIC-Q Architecture (Cont..)

The reinforcement r(t) can take:

$$r(t) = \begin{cases} 0 & Viable zone \end{cases}$$

Within each agent or rule base k, the reward or punishment is distributed based on the activity of rule i.

$$\rho_i = \frac{\alpha_i}{\sum_{i=1}^{R_k} \alpha_i}$$

where  $\alpha_i$  is the strength of rule *i*.



### The GARIC-Q Architecture (Cont..)

■ The fq values are updated for the selected agent j using:

$$\Delta f q_i = \lambda * \rho_i * \Delta F Q$$

- Upon each success or failure the state of the system is returned to an initial state (can be a random state) in the viable zone and learning restarts.
- Agents compete until the whole process converges to a unique agent or a combination of different agents have been able to control the process for an extended time.



### **Experiments**

| $\theta$                                                                         | $\dot{	heta}$                                                                           | Χ                                                                                | х                                                            | F                                                     |
|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------|
| PÖ1<br>PO1<br>ZE1<br>ZE1<br>ZE1<br>NE1<br>NE1<br>NE1<br>VS1<br>VS1<br>VS1<br>VS1 | PO2<br>ZE2<br>NE2<br>PO2<br>ZE2<br>NE2<br>PO2<br>ZE2<br>VS2<br>VS2<br>VS2<br>VS2<br>VS2 | null<br>null<br>null<br>null<br>null<br>null<br>null<br>PO3<br>PO3<br>NE3<br>NE3 | null<br>null<br>null<br>null<br>null<br>null<br>null<br>null | PL<br>PM<br>ZE<br>PS<br>ZES<br>NM<br>NL<br>PVS<br>NVS |



### The 13 rules used by each agent with 7 labels for force

| $\theta$     | $\dot{	heta}$            | Χ            | ż            | F                                       |
|--------------|--------------------------|--------------|--------------|-----------------------------------------|
| PO1          | PO2                      | nuḷḷ         | nuḷḷ         | PL                                      |
| <u>PO1</u>   | ZE2<br>NE2               | null         | null         | 멅                                       |
| PO1<br>  ZE1 | PO2                      | null<br>nuḷḷ | null<br>null | ŻĒ<br>PS                                |
| 炸            | <i>7</i> F2              | null         | null         | デ l                                     |
| ZE1<br>ZE1   | NE2                      | null         | null         | ZE<br>NS<br>ZE<br>NL<br>NL<br>PS<br>PVS |
| NE1          | PO2                      | nuḷḷ         | nuḷḷ         | ZE                                      |
| NE1<br>NE1   | ZEZ<br>NIES              | null<br>null | null<br>null | NL I                                    |
| VS1          | VS2                      | PO3          | PO4          | PS                                      |
| VS1          | ZE2<br>NE2<br>VS2<br>VS2 | PO3          | PS4          | PVS                                     |
| VS1          | VS2                      | NE3          | NE4          | ŅŞ                                      |
| VS1          | VS2                      | NE3          | <u>NS4</u>   | NVS                                     |



#### Conclusion

- GARIC-Q improves the speed of GARIC
- More importantly, GARIC-Q provided the facility to design and test different types of agents.
- These agents may have different number of rules, use different learning strategies on the local level, and have different architectures.



#### Conclusion (Cont..)

GARIC-Q provided the first step toward a true intelligent system where at the lower level, agents can explore the environment and learn from their experience, while at the top level, a super agent can monitor the performance and learn how to select the best agent for each step of the process.



#### **MULTI-GARIC-Q**

- MULTI-GARIC-Q extends the GARIC-Q.
- The evaluator or AEN to learn not only based on the trials of the winning agent but also learn based on all the hypothetical experiences gained by the nonwinning agents.
- The AEN in this model acts like a classroom teacher that learns by observing what each individual student is doing but only listens to the best student who has won the competition at that cycle.





# USING FUZZY REINFORCEMENT LEARNING FOR POWER CONTROL IN WIRELESS TRANSMITTERS

David Vengerov Hamid Berenji



#### State Generalization

- In large state spaces, most states will be visited only once
- Need to generalize learning experience across similar states
- Function approximation for generalizing state values



# Limitations of Q-learning With State Generalization

- Q-learning can diverge even for linear approximation architectures
- Requires solving a nonlinear programming problem at each time step when action space is continuous



### **Actor-Critic Algorithms**

- Actor-critic (AC) algorithms can be used in continuous action spaces because actor can be parameterized
- Tsitsiklis and Konda (1999) presented a practical convergent AC algorithm
- Actor is a parameterized function that has to satisfy certain conditions



#### Actor-Critic Fuzzy Reinforcement Learning (ACFRL) algorithm

- Actor is represented by a fuzzy rulebase
- Convergence proven in Fuzz-IEEE 2000

### Power Control for Wireless Transmitters

- Transmitter -- finite-buffer FIFO queue
- The transmission probability is a function increasing with power  $p_t$  and decreasing with channel interference  $i_t$ :  $\Pr_{\text{Prob(success} \mid p_t, i_t)} = 1 e^{\frac{-p_t}{i_t}}$
- The transmission cost at time *t* is a function of transmitter's backlog *b<sub>t</sub>* and the power used *p<sub>t</sub>*: C<sub>t</sub>=α *p<sub>t</sub>* + *b<sub>t</sub>*
- When a packet arrives to a full buffer, an overflow cost ∠ is incurred.

## **Power Control for wireless transmitters**

- Agent observes current interference i<sub>t</sub> and backlog b<sub>t</sub> and chooses a power level p<sub>t</sub>
- Objective: minimize the average cost per time step.

### Tradeoff to be learned

 Higher power incurs a higher immediate cost but also increases the probability of a successful transmission thereby reducing the future backlog.

### Agent Structure

An agent is a fuzzy rulebase, which specifies transmission power as a function of backlog(b) and interference(i):

- If (b is SMALL) and (i is SMALL) then (power is p1)
- If (b is SMALL) and (i is MEDIUM) then (power is p2)
- If (b is SMALL) and (i is LARGE) then (power is p3)
- If (b is LARGE) and (i is SMALL) then (power is p4)
- If (b is LARGE) and (i is MEDIUM) then (power is p5)
- If (b is LARGE) and (i is LARGE) then (power is p6)

# Motivation for the rulebase structure

Bambos and Kandukuri (INFOCOM 2000) analytically derived a special-case power control policy:

Hump-shaped interference response resulting in a backoff behavior

The size of the hump grows with backlog







Problem setup of Bambos and Kandukuri:

Poisson arrivals, uniform i.i.d. interference, finite buffer Simulated arrival rates 0.1 through 0.6, corresponding to low and high stress levels on the transmitter







Co-evolutionary Perception-based Reinforcement Learning for Sensor Allocation in Autonomous Vehicles

Hamid Berenji, David Vengerov, Jayesh Ametha IIS Corp

> Fuzz-IEEE, St. Louis May 26, 2003





### Distributed Sensor Allocation in Teams of Automated Vehicles

- "Curse of dimensionality" problem
- At the team level, treat each AV as a composite sensor
- Distribute AVs to different regions of search space
- An AV Must be aware of other nearby AVs (e.g., not to track the same targets)

### Perception-based Reinforcement Learning (PRL)

- Uses Perception-based Rules for Generalizing decision strategy across similar states
- Uses Reinforcement Learning for adapting these rules to the uncertain, dynamic environment

# Co-evolutionary PRL for Sensor Allocation in AVs

- AVs must learn two complementary policies:
  - How to allocate their individual sensors
  - How to distribute themselves as a team in space to match the density and importance of targets
- Learn policies separately but with a common reward function => co-evolution toward the common objective

### Reinforcement Learning (RL)



$$\max_{a_t, t=0,1,\dots} E\left[\sum_{t=0}^{\infty} \gamma^t r_t(s_t, a_t)\right]$$

Subject to the constraint on the evolution of sequence of states:  $s_{t+1} = f(s_t, a_t)$ .

**Q-value:** 
$$Q(s,a) = E\{\sum_{t=0}^{\infty} \gamma^{t} r_{t}(s_{t}, a_{t}) \mid s_{0} = s, a_{0} = a\},$$

expected long-term benefit of taking action a in state s and following the optimal policy thereafter.

Then, the optimal action in state s is  $a*(s) = \arg \max Q(s,a)$ 

### Example of RL: Q-learning

Q-value satisfies Bellman's equation:  $Q(s_t, a) = E\{r_t + \gamma \max_{t=1}^{n} Q(s_{t+1}, a)\}$ 

Idea of Q-learning: compute a noisy sample of Bellman's error:

$$\delta_{t} = E\{r_{t} + \gamma \max_{a} Q(s_{t+1}, a)\} - Q(s_{t}, a)$$
$$= r_{t} + \gamma \max_{a} Q(s_{t+1}, a) - Q(s_{t}, a_{t})$$

Stochastic update in small discrete state-action spaces:

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha_t \delta_t$$

In large or continuous state-action spaces:

$$\theta_t \leftarrow \theta_t + \alpha_t \delta_t \nabla_{\theta} Q(s_t, a_t, \theta_t)$$



# Computational Theory of Perceptions

- Based on Computing with Words
- Granulation based on *perceptions* plays a critical role
- Combining rules with different  $\theta^i$ , recommendation of a Q-value
- Weighted by  $w^i(s,a)$ , normalized applicability of each rule

$$Q(s,a,\mathbf{\theta}) = \sum_{i=1}^{M} \theta^{i} w^{i}(s,a)$$



# Perception-based Q-Learning

Given 
$$Q(s, a, \mathbf{\theta}) = \sum_{i=1}^{M} \theta^{i} w^{i}(s, a),$$

$$\nabla_{\mathbf{\theta}} Q(s_t, a_t, \mathbf{\theta}_t)$$
 becomes  $(w^1(s_t, a_t), ..., w^M(s_t, a_t))^T$ 

Continuous update equation  $\mathbf{\theta}_{t} \leftarrow \mathbf{\theta}_{t} + \alpha_{t} \delta_{t} \nabla_{\mathbf{\theta}} Q(s_{t}, a_{t}, \mathbf{\theta}_{t})$ 

for perception-based rules becomes component-wise 
$$\theta^i \leftarrow \theta^i + \alpha_i \delta_i w^i(s_i, a_i), i = 1,...,M$$

 $\mathrm{TD}(\lambda)$  updates rules according to how much they have contributed to decision-making in the past, discounting by  $\gamma\lambda$ :

$$\theta^{i} \leftarrow \theta^{i} + \alpha_{i} \delta_{i} \sum_{\tau=0}^{t} (\gamma \hat{\lambda})^{t-\tau} w^{i}(s_{\tau}, a_{\tau})$$



#### **AV Reward Functions**

Reward received by AV k for tracking all targets within its sensor range after aligning itself with target j:

$$r_{kj} = \sum_{n=1}^{N} \left( \frac{V_n}{1 + d_{kn}^2} \right) \left( \frac{\frac{1}{1 + d_{kn}^2}}{\sum_{m=1}^{M} \frac{1}{1 + d_{mn}^2}} \right)$$

#### State variables

Evaluating a target for individual sensor allocation:

Sum of potentials for all targets that an AV expects to track after aligning itself with target *j*:

$$x[1] = \sum_{n=1}^{N} \left( \frac{V_n}{1 + d_{kn}^2} \right)$$

Sum of potentials of all other UAVs near target j:

$$x[2] = \sum_{m=1}^{P} \left( \frac{1}{1 + d_{jm}^2} \right)$$

Choosing direction of motion for allocating AVs in a search space:

y[1]="target potential"

y[2]="AV potential"





Darker locations have higher target potentials

### Rules for sensors alignment

- If ( $S_1$  is SMALL) and ( $S_2$  is SMALL) then  $\theta^1$
- If ( $s_1$  is SMALL) and ( $s_2$  is LARGE) then  $\theta^2$
- If ( $s_1$  is LARGE) and ( $s_2$  is SMALL) then  $\theta^3$
- If  $(s_1 \text{ is LARGE})$  and  $(s_2 \text{ is LARGE})$  then  $\theta^4$



#### **Experiments**

- 3 AVs to track 6 targets
- Use Player-Stage to simulate
- 2D square-shaped environment of length 2
- Size of AV and targets is .05 and .025



#### Sensors on each AV

- Sony EVID30 pan-tilt-zoom camera set to a range of 60 degrees
- SICK LMS-200 laser rangefinder for measuring distance
- GPS device for exact location position



#### **Experimental Results**

Measuring average team performance for different values of the TD parameter  $\lambda$ :

|                    | $\lambda = 0$ | $\lambda = 0.5$ | $\lambda = 0.9$ |
|--------------------|---------------|-----------------|-----------------|
| Before<br>Learning | 1.1           | 1.1             | 1.1             |
| After<br>Learning  | 2.55          | 2.52            | 2.25            |

Decrease in performance for higher  $\lambda =>$  decreased importance of past actions due to co-evolution with the second policy



#### **Conclusions**

- Co-evolutionary Perception based Reinforcement Learning algorithm performs well and it is feasible for AVs
- Joint optimization of individual sensor allocation policy and the team motion policy
- The methodology can be used in other domains such as robotic swarms





### Adaptive Coordination Among Fuzzy Reinforcement Learning Agents

David Vengerov Hamid Berenji Alexander Vengerov



### Task distribution in multiagent systems

- Traditional task distribution in multiagent systems:
  - Centralized allocation
  - Allocation by auction (directly or through brokers)
  - Allocation by acquaintances
- Works well in static, known environments



### Emergent allocation methods

- Interested in dynamic, a priori unknown environments
- Emergent allocation methods: signalbased rather than message-based.
- Agents learn the value of signals in the context of their local environments



### Q-learning

• Q(s,a) is the expected reward in state s after taking action a and following the optimal policy thereafter:

$$Q(s, a) = E\{R_t \mid s_t = s, a_t = a\}$$

$$= E\{\sum_{k=0}^{\infty} \gamma^k r_{t+k} \mid s_t = s, a_t = a\}$$

- $r_t$ : the reward received after taking action a in state  $s_t$
- $\gamma$ : is the discounting factor.



### Q-learning

In discrete state and action spaces:

$$Q(s_t, a) \leftarrow Q(s_t, a) + \alpha_t(r_t + \gamma \max_{a} Q(s_{t+1}, a) - Q(s_t, a)),$$

- $\alpha_t$ : is the learning rate at time t.
- Converges to optimal Q-values (Watkins, 1989) if each action is tried in each state infinitely many times,

$$\sum_{t=0}^{\infty} \alpha_t = \infty, \quad \sum_{t=0}^{\infty} \alpha_t < \infty.$$



#### State Generalization

- In large state spaces, most states will be visited only once
- Need to generalize learning experience across similar states
- Function approximation for generalizing state values



# Q-learning with state generalization

$$\boldsymbol{\theta}_{t} \leftarrow \boldsymbol{\theta}_{t} - \frac{1}{2} \alpha_{t} \nabla_{\boldsymbol{\theta}_{t}} [r_{t+1} + \gamma \max_{a} Q(s_{t+1}, a, \boldsymbol{\theta}_{t}) - Q(s_{t}, a_{t}, \boldsymbol{\theta}_{t})]^{2}.$$

$$\mathbf{\theta}_{t} \leftarrow \mathbf{\theta}_{t} + \alpha_{t} \nabla_{\mathbf{\theta}_{t}} Q(s_{t}, a_{t}, \mathbf{\theta}_{t}) [r_{t+1} + \gamma \max_{a} Q(s_{t+1}, a, \mathbf{\theta}_{t}) - Q(s_{t}, a_{t}, \mathbf{\theta}_{t})].$$

- $Q(s,a,\theta)$  approximates Q(s,a)
- **0** is the set of all parameters arranged in a single vector.



# Distributed Dynamic Web Caching

- Servers distributed throughout the Internet
- Replicate content for faster access
- Main focus so far: directing requests to the "best" server
- Important issue: dynamically moving relevant content to servers located in "hot spots"



### Agent-based View

- Agents represent content blocks
- Need to allocate themselves in proportion to the demand in each area
- Natural tradeoff for an agent:
  - moving to the highest demand area
  - ensuring adequate coverage of the whole area by the team





### Tileworld Description

- Demand sources appear and disappear randomly
- Location-based similarity of interests
- Potential field model: demand source i contributes demand potential to location j:

$$P_{ij} = \frac{V_j}{1 + d_{ii}^2}$$

 $P_{ij} = \frac{V_j}{1+d_{ij}^2}$  Total potential at each location:  $P_j = \sum_i P_{ij}$ 



### Tileworld Description

- Agent at location *i* extracts reward from source j equal to  $P_{ij}$
- The value of each demand source decreases at each time step by the total reward extracted by all agents from this
- Agent's goal: maximize average reward per time step



### **Agent Coordination**

- Information about the team is presented to each agent in the form of "agent potential"
- Just like demand potential with agents being the sources



### **Decision Making**

- Agents evaluate 8 adjacent locations
- Sample rule k: IF (demand potential at  $L_i$  is LARGE) and (agent potential at  $L_i$  is SMALL) then (Q-value of moving to  $L_i$  is  $Q_k^i$ )



■ Final value of moving to location *L<sub>i</sub>*:

$$Q^i = \sum_k \mu_k^i Q_k^i$$



### **Experimental Setup**

- 20-by-20 tileworld with 10 demand sources and 5 agents
- Agents are trained using fuzzy Qlearning for 1000 time steps and then tested for 100 time steps
- Sensory radius: 5 units of distance or unlimited



#### Results

- Agents learn rules that prefer higher demand potential and smaller agent potential
- Coordinating agents perform 50-100% better than random agents
- Independent agents perform worse than random agents because they crowd together



#### **Conclusions**

- Fuzzy rulebased agents can learn successfully in continuous state spaces
- A new method for adaptive coordination among fuzzy reinforcement learning agents
- Agents learn an efficient group behavior in a dynamic resource allocation problem



#### References

- David Vengerov, Nicholas Bombos, Hamid Berenji, Reinforcement Learning Approach to Power Control in Wireless Transmitters, IEEE Transactions on Systems, Man, and Cybernetics, August 2005.
- Richard Sutton, Andrew Barto, Reinforcement Learning, An Introduction, MIT Press, 1988.
- Hamid Berenji, Pratap Khedkar, Generalized Approximate Reasoning based Intelligent Control, IEEE Transactons on Neural Networks, August 1992
- Hamid Berenji, David Vengerov, On Convergence of Fuzzy Reinforcement Learning, IEEE Fuzzy systems, 2001.



### References (Cont...)

- Hamid Berenji, David Vengerov, A Convergent actor critic based fuzzy reinforcement learning with application to power management of wireless transmitters, IEEE Transactionof Fuzzy Aystems, vpl. 11, no.4, 478-485, August 2003.
- Hamid Berenji, David Vengerov, Cooperation and Coordination between Fuzzy Reinforcement Learning Agents in Continuous State Partially Observable Markov Decision Processes, IEEE Conference on Fuzzy Systems, 2002.