FUZZIEEERUNyA

FUZZ-IEEE 2007

|IEEE International Conference
on
Fuzzy Systems

Tutorial 3: Fuzzy Reinforcement Learning

L,
y
i o
. 1
-

L]

-
EEE l \
Computational B '
|ﬂtEl[tﬂ‘E‘l‘lﬂ‘E
Society

* Fuzzy Reinforcement Learning

A Tutorial
Presented by
Dr. Hamid Berenji
FUZZ-1IEEEQ7, London

Outline

Reinforcement Learning
Dynamic Programming

Monte Carlo Methods
Temporal Difference

Function Approximation

Fuzzy Reinforcement Learning
GARIC Architecture

FQ Learning

Co evolutionary Learning

1. Conclusion

v ® N o AW

Learning Methods

= Supervised Learning, Reinforcement Learning,
Unsupervised Learning

= In supervised learning, a teacher provides the
desired control objective at each time step

= In reinforcement learning, the teacher’s
response is not as direct, immediate, and
informative as in supervised learning

= The presence of a supervisor to provide the
correct response is not assumed in
unsupervised learning

Reinforcement Learning

= What is it?
= Learning by interaction with the
environment
= Is learning what to do
= How to map situations to actions

Reinforcement Learning basics

» Has its roots in animal learning

= Draws upon many insights from the
fields of control theory, operations
research, neural networks, and artificial
intelligence

Reinforcement Learning basics

= A policy is a decision making function
which specifies what action to take in
each situation

= A policy may be stochastic

= A reward function maps the state to a
reward and the goal of the agent is to
maximize this reward over the long run

Reinforcement Learning basics

= A value function determines the expected
reward in the long run

= The value of a state is the sum of the
rewards that it collects over long run or
expects to accumulate in the future starting
from that state

= A state may receive a low immediate reward
but be of high value because it is often
followed by states which receive high rewards

Reinforcement Learning Basics
Boltzmann distribution

Boltzmann distribution:
et
" eQ,(a,)/T

 (a;)IT
”IH(ai):

i=1
where 7,,(a) is the probability of selecting action a&;
in the next time step,

T'is called a temperature parameter where the high
values of 7 will make actions more equi-probable and
low values will lead to a more selective policy,

m s the number of actions available to the agent at
time &1

Reinforcement Learning Basics
Reward functions

= Maximize the expected return.

= For processes which always end in a final
time step such as in games, this reward will
be

+7,

+2

’; =Ta

+otry
where T is the final time step.
= For infinite-horizon problems, T =« and

hence the expected reward can become
infinite.

Reinforcement Learning Basics
Reward functions (Cont..)

= This problem is solved in reinforcement learning by
calculating a discounted reward

)
= o - E J
’}_r/+1+}'r/+2+7 ’}+3+ - }/’}+/+1’

Jj=0
where vy is the discount rate and 0 < y<1

= If y=0, then the agent is concerned with only
maximizing the immediate rewards (7).

= Asy gets closer to 1, then the agent considers future
rewards more strongly.

Reinforcement Learning Basics
| Action values

= The action value of taking action ain state susing
policy zis defined

er (S,Ll) = E” z;ﬂrf{”l‘sf =s,a, = a}
j=0

where @ is the action-value function for policy 7.

Reinforcement Learning basics
greedy methods

= Keep an estimate of values for different
actions and always select the action
with the highest action value

= A greedy method only exploits its
environment and does not explore

= RL methods work best when one keeps
a delicate balance between exploration
and exploitation

Elements of Reinforcement
Learning

|
= Policy: Way of behaving at a given time

» Reward function: defines the goal

= Value function: what is good in the long
run.

= Model of environment: mimics the
behavior of the environment.

Reward function vs. Value
function

= We seek actions that bring about states
of highest value, not highest reward

= Because these actions obtain the
greatest amount of reward for us over
the long run.

Exploration vs. Exploitation

|
= Exploitation: always select actions that
result in highest state values

= Exploration: once in awhile, select non-
max actions to allow exploring for
higher values

» Softmax action selection

Solving full Reinforcement
Learning

= Dynamic Programming

= Monte Carlo Method

= Temporal Difference Learning
= A Unified View

| Dynamic Programming

state reward .
s, ", action

ll[

r

s
Environment

S

Agent-environment interaction

Reinforcement Learning Basics
Bellman equations

Vi= Ez{z 7fry+_,+1}
=0

= En{’;ﬂ + 7’2 7”}4,,42}

j=0
=Yty Ry v o
=Y rsay PR+)

where P represents the probability of reaching state s
while taking action ain state sand R’ is its
associated return.

Requires a complete environment model.

| Finite State DP

| Markov Property
|

’
Pr{sr+1 =8, = r‘st7ar7rr7st—l’at—l""7r1’so’a0}

’
Pr{stﬂ =S ’r1+1 - r‘st’al}

| Dynamic Programming

|

Vi (s)= E{R]s, =s}= E{Z P hals, = s}

State-Value function for Policy 7 -

V'(s) = max Efr,,, + W (s,.)ls, = 5.0, =a}

Q' (s.a)= Efr,,, + ymax Q' (s,,.,a)ls, = s.a, = a}
=3 Pe[RY + ymax Q' (s'.a)]

| Dynamic Programming

|

V7(s)= E;[{rm tWt 72”:+3 + ""Sf = s}
= Ezr rt+l + W”(Sﬁl)sr = S}
= Zﬂ'(s, a)z P; [R;» + W”(S,)]

Vk+1 (S) = E;r{rHl + Wk (St+1)‘St = S}
=>7(s, a)z P [Ri +W, (s')]

Policy Evaluation

Input &, the policy to be evaluated

Initialize V(s) = 0, forall s€ S*

Repeat

A0

foreach s€ S veV(s)

V() Y a(s.)Y PLR: + (5]

A max(Aly =V (s)))

until A <@ (a small positive number)

output V=V’

Q" (s.a)= B + W (s, = 5.0, = a}
=Y PeRu[RE + (0]

Policy Improvement

Initialize V arbitrarily, e.g., V(s) =0, forall s S*
Repeat

A0
foreach se S:

ve V(s)

V(s) « max Y. P[RS + W (5]

A max(A,p-V(s)))
until A< @ (asmall positive number)
output a deterministic policy & such that

7(s) = argmax 3 P4 R + W ()]

Monte Carlo Methods

= Any estimation method whose
operation involves a significant random
component.

= Based on averaging complete returns

= Ideas carry over from DP, they both
compute the same value functions

Reinforcement Learning Basics
Monte Carlo method

= Estimate value functions 1/{(s) by maintaining
an average for all the actual returns that
have followed the state since the policy .

= Similarly, maintain an average for all the
occasions that action a has been tried when
visiting state sand it will converge to the true
action value Q1s, a).

= Problem: not practical in large problems with
many states and actions

First-Visit MC method
for estimating 1#

IInitialize

7 < Policy to be evaluated

V< an arbitrary state-value function
Returns(s) < an empty list, for all se S
Repeat forever:

(a) Generate an episode using =

(b) For each state s appearing in the episode

R < return following the first occurrence of s
Append R to Returns(s)
V(s) < Average (Returns(s))

Temporal Difference (TD)
Learning

Learns from experience without a need for a model.

Similar to dynamic programming, TD methods update
their estimates based on other learned estimates.

Unlike Monte Carlo methods, TD methods do not
have to wait until the end of a trial to update their
estimates.

TD methods learn by the following update

AV/ (S,) = a[’}+l + }/Vr (SIH) _Vr (S,)]
where «is a step size parameter

Temporal Difference Learning
and Sarsa

= In order to apply TD methods in control, one has to
learn an action-value function Q7(s,a) instead of a
state-value function V4(s).

x AQ,(s,.a)=alr, +10,(5,1.0,.) -0, (5,.a,)]

= Sarsa: quintuple (S, @, 7u1, Sp+1s dr41)fOr transition
form one state-action pair to the next.

= Sarsa is an on-policy control algorithm which
continually estimate @~ for the behavior policy =.

Tabular TD(0) for estimating
V*

Initialize U s) arbitrarily, zthe policy to be
evaluated

Repeat (for each episode):
Initialize s
Repeat (for each step of episode):
a <« action given by rfor s
Vs)=VE)+alr+ W (s)-V(s)]
Tak;a action g, observe reward r, and next state
s

s« S

nuntil cic tarminal

| TD(V)

B AV(s)=a((r+ WV (s,,)=V(s,))e(s)

» &(5) is the state’s eligibility

= &) = A¥where k is the number of
steps since s was visited

Q-Learning

= Introduced by Watkins for Reinforcement Learning.

= Q-learning maintains an estimates Q(x,a) of the
values of taking action ain state x and continuing
with the optimal policy after a new state is reached.

= The values of a state can be defined as the value of
the state’s best state-action pair:

V(x)=Max,0(x,a)

Driving home example (Monte
Carlo Changes)

Driving home example
Elapsed Time | Predicated | Predicated
Time to Go | Total Time
Leaving office, 0 30 30
Friday at 6
Reach car, raining 5 35 40
Exiting highway 20 15 35
Secondary road, 30 10 40
behind truck
Entering home 40 3 43
street
Arrive home 43 0 43

predicted total travel time

|
leaving ofice reach car _ exiting highway secondary road home street arrive home

Situation

Driving home example (TD

Methods Changes)

actual
outcome|

predicted total travel time
@
8
T
|
|
|

leaving ofice reach car _exiting highway secondary road home street arrive home

Situation

Generalization and Function
Approximation

= Gradient Descent Methods

= Radial Basis Functions

= Coarse Coding and Tile Coding
= Linear Functions

Generalized Approximate
Reasoning-based Intelligent Control
(GARIC)

(H.Bereniji, P.Khedkar)

weight
updates

T] e e
' < |
7

Action v
Evaluation —»
Network

Stochastic

Action F Is’hchal
fon ystem

Modifier

Action action
Selection recommended
Network

State

Failure
Signal

v State

Action Selection Network

Layer 1: the input layer, consisting of the real-
valued input variables.

Layer 2: nodes represent possible values of linguistic
variables in layer 1.

Layer 3: conjunction of all the antecedent conditions
in a rule using softmin operation.

Layer 4: a node corresponds to a consequent label
with an output

Layer 5: nodes as output action variables where the
inputs come form Layer 3 and Layer 4.

The Action Evaluation Network

The AEN plays the roles of an adaptive critic element
and constantly predicts reinforcements associated
with different input states.

The only information received by the AEN is the state
of the physical system in terms of its state variables
and whether or not a failure has occurred.

The AEN is a standard tow-layer feedforward net
with sigmoids everywhere except in the output layer.

The Action Evaluation Network
(Cont..)

The output unit of the evaluation network:

n h
Vit +10= Y BlAx [t +11+Y ¢ [ty [t +1]
where vis't:he prediction Slf reinforcement.

Evaluation of the recommended action:
0 start;

Fle+11=4 [t +11- [t 1] failure;
e+ 11+ w1 + 11— v[1,1] else

where 0< <1 is the discount rate.

Learning in ASN

= We use the following learning rule

= We assume that dv4AF can be computed by the
instantaneous difference ratio
v _dv _ vB)-v(-1)

p dF F()-F(t-1)

Rule strength calculation using
softmin operator

Using the softmin, the strength of Rule 1 is:

kit (xo) ~ktty (¥)
_Hy (xp)e ™ + U (ype ™
- o a0 | e (o)

W
+e

Similarly we can find w, for Rule 2.
The control output of rule 1:
2 = fhe (W),
and for Rule 2:
2, = flet (),
Using a weighted averaging approach, z and

2z, are combined to produce the combined
result 7

The Action Evaluation Network

| (Cont..)

= The input is the state of the plant, and the output is
an evaluation of the state (a score), denoted by v.

= The wvalue is suitably discounted and combined with
the external failure signal to produce internal
reinforcement 7,

= The output of the,units in the hidden layer is:
yilt.t+11= g a,ltlx,[r+1))
where =

Ve 1+e™
and tand #+1 are successive time steps.

The Action Evaluation Network
(Cont..)

|
= The output unit of the evaluation network:
n h
vit,t+11= Y blelx [t +11+Y ¢, [ty [t +1]
i=1 i=1

where vis the prediction of reinforcement.
= Evaluation of the recommended action:
0 start;

Flt+1]=1r[t+1]—-[t,¢] faiIure;
rlt +1]+ wlt,t +1]—-v[t,¢] else

Rule strength calculation using
softmin operator

= Using the softmin, the strength of Rule 1 is:
iy (x,) o 0 | H, ()’0)67’;#”')
Wi = iy o) | ki (30)
= Similarly we can find w, for Rule 2.

= The control output of rule 1:
3= ,UEI] (W),
and for Rule 2:
= :u;zl (w,),
= Using a weighted averaging approach, z and z are
combined to produce the combined result Z.

GARIC Applied to Cart-Pole
Balancing

Cart-Pole System

4inputs 14 labels 13mles 9 ouputs

Fuzzy Q-Learning

= Introduced by Berenji in 1993 for Fuzzy
Reinforcement Learning

= Fuzzy Q-Learning extends Watkin's Q-learning
method for decision process in which the goals
and/or the constraints, but not necessarily the
system under control, are fuzzy in nature.

= An example of a fuzzy constraint is: “the weight of
object A must not be substantially heavier than w’
where wis a specified weight. Similarly, an example
of a fuzzy goal is: “the robot must be in the vicinity
of door K".

The GARIC-Q Architecture
| (Cont..)
|

= The FQ values are updated according to:
AFQ=[(r+V(»)-V(x)

= Ux) is the value of state xand action g,
selected through a Boltzman process.

= U()) is the value of the best state-agent pair
defined by:
V(y)=Max,FQ(y,a,)

where k= 1 to K] is the agent number and &,
is its recommended final action.

Reinforcement Learning Basics
Markov Decision Process (MDP)

= An example of a MDP with 5 states with two
goals (i.e., terminal states) where two actions
a;and a, are available at each non-terminal
state.

| FQ-Learning (Cont..)
|

= FQ is the confluence of the immediate reinforcements
plus the discounted value of the next state and the
constraints on performing action a in state x.

FO(x,a) = E{(r+ W(») A i (x,@)}

= Update Rule:
AFQ(x,a) < Bl(r+ W (3) A e (x,a) — FQ(x,a)]

The GARIC-Q Architecture
(Cont..)

= At each time step, using Fuzzy Q-Learning, GARIC-Q
selects a winner among the GARIC agents and
switches the control to that agent for that time step.

= The agent takes over and:

- Calculates what action to apply using the current set of
rules, within the selected agent, and their fuzzy labels.

- Using SAM and #(r —1) calculates a new action F’

The GARIC-Q Architecture

= The GARIC-Q method presents an algorithm
to model a society of rule bases (i.e., agents)

= Each agent operates internally with the
methodology of GARIC and at the top level,
using a modified Fuzzy Q-learning to select
the best agent at each particular time step.

TD Method

= Real-time dynamic programming (Barto et al 1995)

= RTDP combines value function idea with simulation
idea

7D(1): Supervised training
= 70(0): Train for one-step

= 7D(\): Mixture

Q-Learning

= The development of Q-learning by Watkins is
one of the most significant breakthroughs in
reinforcement learning.

= Q-learning is an off-policy TD control
algorithm and uses the following update rule:

AQ (s, a,) =, + ymax 0, (s,,1.a,) ~0,(s,.,)

The GARIC Architecture

= The Action Selection Network maps a state vector
into a recommended action F, using fuzzy inference.

= The Actor Evaluation Network maps a state vector
and a failure signal into a scalar score which indicates
sate goodness. This is also used to produce internal
reinforcement 7.

» The Stochastic Action Modifier uses both Fand 7 to
produce an action F which is applied to the plant.

Fuzzy Dynamic Programming

= Developed by Bellman and Zadeh, 1970
= Goals and Constraints can be fuzzy

= Provides a symmetrical view over gorals and
constraints

= Decision:
Confluence of goals and constraints

Fuzzy Q-Learning

Introduced by Bereniji in 1993 for Fuzzy
Reinforcement Learning

Fuzzy Q-Learning extends Watkin’s Q-learning
method for decision process in which the goals
and/or the constraints, but not necessarily the
system under control, are fuzzy in nature.

An example of a fuzzy constraint is: “the weight of
object A must not be substantially heavier than w”’
where wis a specified weight. Similarly, an example
of a fuzzy goal is: “the robot must be in the vicinity
of door X"

Fuzzy Q-Learning

= FQ-learning maintains an estimate FQ(x,a) of
the value of taking action ain state xand
continuing with the optimal policy after a new
state is reached.

= The value of a state can be defined as the
value of the state’s best state-action pair:

V(x)=Max,FQ(x,a)

FQ-Learning (Cont..)

» FQ is the confluence of the immediate
reinforcements plus the discounted
value of the next state and the
constraints on performing action ain
state x.

FQ(x,a) = E{(r+ W (y)) At (x,@)}

= Update Rule:
AFQ(x,a) « Bl(r+ W (») A o (x,a) — FO(x,a)]

The FQ-Learning Algorithm

Initialize FQ values

Until FQ values converge do {
1. X ¢ current state
2. Select the action with the highest FQ. If multiple
exist, select randomly among them.
3. Apply action, observe the new state (y) and reward
()
4. Update
FQ(x,a) « FQ(x,a)+ Bl(r+ W () A e (x.0) - FQ(x.a)]

The GARIC-Q Architecture

|
= The GARIC-Q method presents an algorithm
to model a society of rule bases (i.e., agents)

= Each agent operates internally with the
methodology of GARIC and at the top level,
using a modified Fuzzy Q-learning to select
the best agent at each particular time step.

The Architecture of GARIC-Q

Action Evaluation
Network

FQ-Learning
" to

GARIC for agent 1
GARIC for agent 2

select an agent

GARIC for agent K

External Reinforcement

State

The GARIC-Q Architecture
| (Cont..)

= At each time step, using Fuzzy Q-Learning,
GARIC-Q selects a winner among the GARIC
agents and switches the control to that agent
for that time step.

= The agent takes over and:

- Calculates what action to apply using the current set of rules,
within the selected agent, and their fuzzy labels.

- Using SAM and 7(f — 1) calculates a new action F”

The GARIC-Q Architecture
(Cont..)

» Calculates the internal reinforcement #(2)
= Updates the weights of AEN

= Updates the parameters of the fuzzy labels in
ASN

» Updates the fg values of all the rules used by
the agent

The GARIC-Q Architecture
| (Cont..)

= An approach similar to Glorennec’s method
for selecting a rule base among the
competing rule bases.

= Assuming that there are K'agents and each
agent & has R, rules, then the total number of
rules considered by the system is

R=Y"R,.
» Rjrefers to rule number /of agent Jj.
Associated with each rule R;is a fg;which
represnts the 7g of rule R;.

The GARIC-Q Architecture
(Cont..)

= The FQ value for an agent kis
calculated from:

_ > fgra
z:: a;

FQ,

11

The GARIC-Q Architecture
(Cont..)

= The FQ values are updated according to:
AFQ=B(r+ W (y)-V(x)
= UX) is the value of state xand action g,
selected through a Boltzman process.

= U)) is the value of the best state-agent pair

defined by:
V(y)=Max,FQ(y,a,)

where k= 1 to K] is the agent number and a,
is its recommended final action.

The GARIC-Q Architecture
(Cont..)

'- The reinforcement r(t) can take:
+1if within the success region
"0 =10 Viable zone
-1 Failure

= Within each agent or rule base &, the reward
or punishment is distributed based on the
activity of rule /.

pi=

.

i

>

where ¢;is the strength of rule /.

The GARIC-Q Architecture
(Cont..)

= The fg values are updated for the selected agent ;
using:

Afg, = A# p,+* AFQ

= Upon each success or failure the state of the system
is returned to an initial state (can be a random state)
in the viable zone and learning restarts.

= Agents compete until the whole process converges to
a unique agent or a combination of different agents
have been able to control the process for an
extended time.

Experiments

The 13 rules used by each
agent with 7 labels for force

4 0 X x F
PO1 PO2 null null PL
PO1 ZE2 null null PL
PO1 NE2 null null ZE
ZE1 PO2 null null PS
ZE1 ZE2 null null ZE
ZE1 NE2 null null NS
NE1l PO2 null null ZE
NE1 ZE2 null null NL
NE1 NE2 null null NL
VG1 VS2 PO3 P PS
VS1 VS2 PO3 PS4 PVS
VS1 VS2 NE3 NE4
VS1 VS22 NE3 NS4 NVS

Conclusion

= GARIC-Q improves the speed of GARIC

= More importantly, GARIC-Q provided the
facility to design and test different types of
agents.

= These agents may have different number of
rules, use different learning strategies on the
local level, and have different architectures.

12

Conclusion (Cont..)

= GARIC-Q provided the first step toward a true
intelligent system where at the lower level,
agents can explore the environment and
learn from their experience, while at the top
level, a super agent can monitor the
performance and learn how to select the best
agent for each step of the process.

MULTI-GARIC-Q

= MULTI-GARIC-Q extends the GARIC-Q.

= The evaluator or AEN to learn not only based on the
trials of the winning agent but also learn based on all
the hypothetical experiences gained by the non-
winning agents.

= The AEN in this model acts like a classroom teacher
that learns by observing what each individual student
is doing but only listens to the best student who has
won the competition at that cycle.

USING FUZZY
REINFORCEMENT LEARNING
FOR POWER CONTROLIN
WIRELESS TRANSMITTERS

David Vengerov
Hamid Berenji

| State Generalization

I
= In large state spaces, most states will
be visited only once

= Need to generalize learning experience
across similar states

= Function approximation for generalizing
state values

Limitations of Q-learning With
State Generalization

= Q-learning can diverge even for linear
approximation architectures

= Requires solving a nonlinear programming
problem at each time step when action
space is continuous

Actor-Critic Algorithms

= Actor-critic (AC) algorithms can be used
in continuous action spaces because actor
can be parameterized

» Tsitsiklis and Konda (1999) presented a
practical convergent AC algorithm

= Actor is a parameterized function that has
to satisfy certain conditions

13

Actor-Critic Fuzzy Reinforcement
Learning (ACFRL) algorithm

= Actor is represented by a fuzzy rulebase

= Convergence proven in Fuzz-IEEE 2000

Power Control for Wireless
Transmitters

= Transmitter -- finite-buffer FIFO queue

= The transmission probability is a function
increasing with power p,and decreasing with,
channel interference /: prob(success| p,.i,) =1-¢ *

= The transmission cost at time ¢tis a function
of transmitter’s backlog b, and the power
used p: C=a p,+ b,

= When a packet arrives to a full buffer, an
overflow cost L is incurred.

Power Control for wireless
transmitters

|
= Agent observes current interference /,and
backlog b, and chooses a power level p,

= Objective: minimize the average cost per
time step.

Tradeoff to be learned
|

= Higher power incurs a higher
immediate cost but also increases the
probability of a successful transmission
thereby reducing the future backlog.

Agent Structure

= 1An agent is a fuzzy rulebase, which specifies transmission
power as a function of backlog(b) and interference(i):

If (b is SMALL) and (i is SMALL) then (power is p1)
If (b is SMALL) and (i is MEDIUM) then (power is p2)
If (b is SMALL) and (i is LARGE) then (power is p3)
If (b is LARGE) and (i is SMALL) then (power is p4)
If (b is LARGE) and (i is MEDIUM) then (power is p5)
If (b is LARGE) and (i is LARGE) then (power is p6)

Motivation for the rulebase

structure

|
Bambos and Kandukuri (INFOCOM 2000) analytically
derived a special-case power control policy:
Hump-shaped interference response resulting in a backoff
behavior
The size of the hump grows with backlog

14

Fuzzy Labels

» Fuzzy input labels:
= backlog! —3 L

0 B

= interference:
A M

Simulation Procedure

|
Determine optimal constant power p*
Initialize p1,...,p6 to p*

Let ACFRL tune pl1,...p6

Problem Parameters

Problem setup of Bambos and Kandukuri:

Poisson arrivals, uniform i.i.d. interference, finite buffer
Simulated arrival rates 0.1 through 0.6, corresponding to low and
high stress levels on the transmitter

Results

ACFRL learns a hump-shaped interference response

The size of the hump grows with backlog

Corresponds to a special-case analytical study by Bambos and
Kandukuri

Results

Coslt improvement of ACFRL over optimal constant power policy:

Cost reduction

at 0.2 03 o4 as as
Aurival Rate

For high arrival rates there is less freedom of buffering the arriving packets
and waiting for better future channel conditions

Conclusions

= Demonstrated how ACFRL can be applied to a
challenging delayed reward problem

= ACFRL converges to a policy that significantly
improves upon optimal constant policy

= ACFRL learns the same function of the input
variables as predicted by analytical
investigations for a special case

15

Co-evolutionary Perception-based
Reinforcement Learning for Sensor
*Allocation in Autonomous Vehicles

' Hamid Berenji, David Vengerov, Jayesh Ametha
IIS Corp

Fuzz-IEEE, St. Louis
May 26, 2003

Distributed Sensor Allocation in
Teams of Automated Vehicles

= "Curse of dimensionality” problem

= At the team level, treat each AV as a
composite sensor

= Distribute AVs to different regions of
search space

= An AV Must be aware of other nearby
AVs (e.g., not to track the same
targets)

Perception-based
Reinforcement Learning (PRL)

= Uses Perception-based Rules for
Generalizing decision strategy across
similar states

= Uses Reinforcement Learning for
adapting these rules to the uncertain,
dynamic environment

Co-evolutionary PRL for Sensor
Allocation in AVs

I. AVs must learn two complementary policies:
= How to allocate their individual sensors
= How to distribute themselves as a team in space to
match the density and importance of targets
= Learn policies separately but with a common
reward function => co-evolution toward the
common objective

Reinforcement Learning (RL)

had !
! Objective: Hﬂ%ﬁ»__EIZmO 4 ’?(Suaz)l
Subject to the constraint on the evolution of sequence of states:
S, =f(s,,a,).
Q-value: QO(s,a)= E{Z V'r(s.a)lsy=s.a,=a},
=0

expected long-term benefit of taking action a in state s and
following the optimal policy thereafter.

Then, the optimal action in state s is a*(s) =argmax Q(s,a)
a

Example of RL: Q-learning

Q¥alue satisfies Bellman’s equation: Q(s,,a) = E{r, + ymax O(s,,,,a)}
Idea of Q-learning: compute a noisy sample of Bellman(’ls error:
8, = Elr, + ymax 0(s,,,,a)} = O(s,.a)
=1, +ymax 0(s,,,, @)~ 0(s,.4,)

Stochastic update in small
discrete state-action spaces:

0(s,,a,) < 0(s,,a,)+a,0,

In large or continuous
state-action spaces:

91 «— 91 +a151V0Q(SI’aI’01)

16

Computational Theory of
Perceptions

= Based on Computing with Words

= Granulation based on perceptions plays a critical role

= Combining rules with different 8, recommendation
of a Q-value

= Weighted by wi(s,a), normalized applicability of each
rule

Q(S, a, 9) = ZZI eiwi (S, Cl)

Perception-based
Q-Learning

| Given Q(s,a,0) = ZZI O'w'(s,a),
VOQ(Sz oD 91) becomes (Wl (SI »a;)7---7 WM (SI 4,))l

Continuous update equation 0, «— 0, +,0,V,0(s,,q,.0,)
for perception-based rules becomes component-wise
0 0 +adw (s, a)i=1..M

TD(A) updates rules according to how much they have
contributed to decision-making in the past, discounting by y1:

6 0 +a,0, leo(y/i)’frw"(sr,ar)

AV Reward Functions

Reward received by AV k for tracking all targets within its
sensor range after aligning itself with target j:

1

vV 1+d;,
rkj:z,,=1[1+d2] ZM kl
kn

m=11 4 d;n

State variables

}!valuating a target for individual sensor allocation:
Sum of potentials for all targets that an AV expects to track after aligning itself

with target j:
v v,
x[u:anl[Hdz]
kn

Sum of potentials of all other UAVs near target j:

P 1
-3
m

Choosing direction of motion for allocating AVs in a search space:

y[1]="target potential”

y[2]="AV potential”

Potential Surface of AVs

[[] =TT

LY I T v |
L
&

i

|

Darker locations have higher target potentials

R[ules for sensors alignment

« If (5,is SMALL) and (5, is SMALL) then 6'
w If (5,is SMALL) and (s, is LARGE) then 8°
= If (5,is LARGE) and (5: is SMALL) then 6°
= If (5,is LARGE) and (s, is LARGE) then 6*

17

Experiments

.I 3 AVs to track 6 targets

= Use Player-Stage to simulate

» 2D square-shaped environment of length 2
= Size of AV and targets is .05 and .025

Sensors on each AV

I
= Sony EVID30 pan-tilt-zoom camera set
to a range of 60 degrees

= SICK LMS-200 laser rangefinder for
measuring distance

= GPS device for exact location position

Experimental Results

Measuring average team performance for different values
of the TD parameter A:

A=0 A=0.5 A=0.9

Before 1.1 1.1 1.1
Learning

After 2.55 2.52 2.25
Learning

Decrease in performance for higher A => decreased importance
of past actions due to co-evolution with the second policy

Conclusions

"a Co-evolutionary Perception based
Reinforcement Learning algorithm
performs well and it is feasible for AVs

= Joint optimization of individual sensor
allocation policy and the team motion
policy

= The methodology can be used in other
domains such as robotic swarms

David Vengerov
Hamid Berenji
Alexander Vengerov

Task distribution in multi-
agent systems

» Traditional task distribution in multi-
agent systems:

= Centralized allocation

= Allocation by auction (directly or
through brokers)

= Allocation by acquaintances

= Works well in static, known
environments

18

Emergent allocation methods

» Interested in dynamic, a priori unknown
environments

= Emergent allocation methods: signal-
based rather than message-based.

= Agents learn the value of signals in the
context of their local environments

Q-learning

» (Js,a) is the expected reward in state s after
taking action a and following the optimal policy
thereafter:

O(s,a)=E{R,|s,=s,a,=a}

:E{Zykrwk |S, =54, =a}

k=0

= r;: the reward received after taking action ain

state s,

= y: is the discounting factor.

Q-learning

I- In discrete state and action spaces:

0(s,,a) < 0(s,,a)+o,(r,+ ymax O(s,,,,a) — O(s,, a)),

= ¢4 is the learning rate at time &

= Converges to optimal Q-values (Watkins, 1989) if each
action is tried in each state infinitely many times,

ia, =09, i(lt < oo,
=0 t=0

State Generalization

= In large state spaces, most states will
be visited only once

= Need to generalize learning experience
across similar states

= Function approximation for generalizing
state values

Q-learning with state

generalization
|

0, <8, ~ eV, [, +7max (s,..8) - 0(s,.4,.8,)T".

0, <80, +a,VelQ(s,,a,,9,)[r,+, +ymax Q(s,,,,a,0,)—0(s,,q,,0,)].

n ((s,a,0) approximates Q(s,a)
= 0 is the set of all parameters arranged in a single

vector.

Distributed Dynamic Web
Caching

» Servers distributed throughout the
Internet

= Replicate content for faster access

= Main focus so far: directing requests to
the “best” server

= Important issue: dynamically moving
relevant content to servers located in
“hot spots”

19

Agent-based View

= Agents represent content blocks
= Need to allocate themselves in
proportion to the demand in each area
» Natural tradeoff for an agent:
= moving to the highest demand area

= ensuring adequate coverage of the whole
area by the team

Tileworld Simulation

| N

% ;

Tileworld Description

= Demand sources appear and disappear
randomly

= Location-based similarity of interests

= Potential field model: demand source /
contributes demand potential to location j

— Vj
i 2

= Total potential at each location: P=YP

Tileworld Description

= Agent at location /extracts reward from
source jequal to P;

= The value of each demand source
decreases at each time step by the total
reward extracted by all agents from this
source

= Agent’s goal: maximize average reward
per time step

Agent Coordination

= Information about the team is
presented to each agent in the form of
“agent potential”

= Just like demand potential with agents
being the sources

| Decision Making

. I Agents evaluate 8 adjacent locations

= Sample rule k: IF (demand potential at L, is LARGE) and
(agent potential at L, is SMALL) then (Q-value of moving
to L;is Q') _

1R Small Lacge
©

Label Valu

o Mid
Input Value

= Final value of moving to location L;:

Q"= 1,0

20

Experimental Setup

= 20-by-20 tileworld with 10 demand
sources and 5 agents

= Agents are trained using fuzzy Q-
learning for 1000 time steps and then
tested for 100 time steps

= Sensory radius: 5 units of distance or
unlimited

Results

.'Agents learn rules that prefer higher
demand potential and smaller agent
potential

= Coordinating agents perform 50-100%
better than random agents

» Independent agents perform worse than

random agents because they crowd
together

Conclusions

» Fuzzy rulebased agents can learn
successfully in continuous state spaces

= A new method for adaptive coordination
among fuzzy reinforcement learning
agents

= Agents learn an efficient group behavior
in a dynamic resource allocation
problem

References

= David Vengerov, Nicholas Bombos, Hamid Bereniji,
Reinforcement Learning Approach to Power Control
in Wireless Transmitters, IEEE Transactions on
Systems, Man, and Cybernetics, August 2005.

» Richard Sutton, Andrew Barto, Reinforcement
Learning, An Introduction, MIT Press, 1988.

= Hamid Berenji, Pratap Khedkar, Generalized
Approximate Reasoning based Intelligent Control,
IEEE Transactons on Neural Networks, August
1992,

= Hamid Berenji, David Vengerov, On Convergence of
Fuzzy Reinforcement Learning, IEEE Fuzzy systems,
2001.

References (Cont...)

= Hamid Berenji, David Vengerov, A Convergent actor
critic based fuzzy reinforcement learning with
application to power management of wireless
transmitters, IEEE Transactionof Fuzzy Aystems,
vpl. 11, no.4, 478-485, August 2003.

= Hamid Berenji, David Vengerov, Cooperation and
Coordination between Fuzzy Reinforcement
Learning Agents in Continuous State Partially
Observable Markov Decision Processes,IEEE
Conference on Fuzzy Systems, 2002.

21

